Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (530)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.71 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Tính lim

x→+∞

x−2
x+3

A. 1.
Câu 2. Tính lim
x→3

A. 6.

x2 − 9
x−3

B. 2.

2
C. − .
3


D. −3.

B. +∞.

C. 3.

D. −3.

Câu 3. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 15, 36.
C. 3, 55.
D. 20.
Câu 4. Dãy số nào sau đây có giới hạn khác 0?
sin n
1
A.
.
B. √ .
n
n

C.

1
.
n


D.

n+1
.
n

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m ≤ 0.
D. m < 0.

Câu 5. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m = 4.

B. m < 0 ∨ m > 4.

Câu 6. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
B. −e.
C. − .
D. − 2 .
A. − .
e
2e
e
Câu 7. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √

tích khối chóp S .ABCD là

3
3
2a 3
a3
4a3 3
a
.
B.
.
C.
.
D.
.
A.
3
3
6
3
! x3 −3mx2 +m
1
Câu 8. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên khoảng
π
(−∞; +∞)
A. m , 0.
B. m = 0.
C. m ∈ (0; +∞).
D. m ∈ R.

Câu 9. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 4.

C. 3.

D. 2.

Câu 10. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 5 mặt.
C. 3 mặt.

D. 4 mặt.

Câu 11. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. −2.
B. 2.
C. .
2

1
D. − .
2

Trang 1/10 Mã đề 1


Câu 12. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 387 m.
C. 1587 m.
D. 25 m.
Câu 13. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Nhị thập diện đều. C. Tứ diện đều.
Câu 14. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 3n
.
B. un =
.
A. un =
2
n
5n + n2

C. un =

n2 + n + 1
.
(n + 1)2


D. Bát diện đều.
D. un =

Câu 15. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. 1.

C. 3.

D. +∞.

Câu 16. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 6.

C. 10.

D. 8.

n2 − 2
.
5n − 3n2

Câu 17. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
2a

a
8a
.
B.
.
C.
.
D. .
A.
9
9
9
9
x−1
Câu 18. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
AB có độ dài bằng

√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng √
A. 2 3.
B. 2.
C. 6.
D. 2 2.
Câu 19. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 8.

C. 12.


D. 30.

Câu 20. Cho hàm số y = x − 3x − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số nghịch biến trên khoảng (0; 1).
3

2

Câu 21. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

3
3
a 3
a3 3
a3 6
a 2
.
B.
.
C.
.
D.
.

A.
16
48
24
48
Câu 22. Tứ diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 3}.
D. {4; 3}.
Câu 23.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.

f (x)dx = F(x) +C ⇒
!0
f (x)dx = f (x).

f (u)dx = F(u) +C. B.

Z
Z

D.

k f (x)dx = k


Z

f (x)dx, k là hằng số.
Z
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.

Câu 24. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
A. √
.
B. √
.
C. 2
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 25. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5

a3 5
a3 3
a3 5
A.
.
B.
.
C.
.
D.
.
12
6
12
4
Trang 2/10 Mã đề 1


Câu 26. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m < .
C. m > .
D. m ≥ .
4
4
4

4
Câu 27. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối lập phương.
C. Khối lăng trụ tam giác.
D. Khối tứ diện.
d = 60◦ . Đường chéo
Câu 28. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
4a3 6
2a3 6
3
A.
.
B.
.
C. a 6.
D.
.
3

3
3
Câu 29. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.
D. 9 mặt.
Câu 30. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là −3, phần ảo là 4.
Câu 31. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 32. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 4).
C. (2; 4; 3).
D. (1; 3; 2).
1
Câu 33. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 2.
C. 1.

D. 3.
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 34. Giá trị lớn nhất của hàm số y =
m−x
3
A. −2.
B. 1.
C. 0.
D. −5.
Câu 35. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
4
8
12

Câu 36. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.
C. Khối tứ diện đều.
D. Khối bát diện đều.
Câu 37. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 30.

C. 12.

D. 8.

Câu 38. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

αβ
α β
A. a = (a ) .
B. β = a β .
C. aα bα = (ab)α .
D. aα+β = aα .aβ .
a
Câu 39. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B. 5.
C. 7.
D.

.
2
2
Câu 40. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. Vô nghiệm.
D. 3.
8
Câu 41. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 64.
C. 96.
D. 81.
Trang 3/10 Mã đề 1


log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0.
D. m ≤ 0.

Câu 42. [1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m > 4.

B. m < 0 ∨ m = 4.

Câu 43. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây

thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1134 m.
C. 6510 m.
D. 1202 m.
Câu 44. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 24.
D. 23.
Câu 45. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A. a3 .
B.
.
C.
.
D.
.
24
6
12
Câu 46. Trong các khẳng định sau, khẳng định nào sai?
A. Z

F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Z 2
ln(x + 1)
Câu 47. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 0.
B. 1.
C. −3.
D. 3.

Câu 48. Cho chóp S .ABCD có đáy ABCD là hình vuông cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là


a3 3
a3 3
a3
3
A.
.

B. a 3.
C.
.
D.
.
12
3
4
Câu 49. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2


A. −3 − 4 2.
B. 3 + 4 2.
C. 3 − 4 2.
D. −3 + 4 2.
Câu 50. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
B. 2.
C. 26.
D.
.
A. 2 13.
13
Câu 51. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .

A. A0 (−3; −3; 3).
B. A0 (−3; 3; 1).
C. A0 (−3; −3; −3).
D. A0 (−3; 3; 3).
Câu 52. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có một.
C. Có vơ số.
D. Khơng có.
Câu 53. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 3.
C. V = 5.
D. V = 4.
Câu 54. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 8.

C. 5.

D. 4.
Trang 4/10 Mã đề 1


Câu 55. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

10a3 3

3
3
3
.
A. 40a .
B. 10a .
C. 20a .
D.
3
Câu 56. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 8 mặt.

D. 7 mặt.

Câu 57. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Bốn cạnh.
C. Năm cạnh.

D. Ba cạnh.

Câu 58. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng





20 3
14 3
A. 6 3.
B. 8 3.
C.
.
D.
.
3
3
Câu 59. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. e.
C. 4 − 2 ln 2.
D. 1.



x=t




Câu 60. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t

lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y + 1) + (z + 3) = .
D. (x + 3) + (y + 1) + (z + 3) = .
4
4
x
Câu 61.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
A.
.
B. 1.
C. .

D. .
2
2
2

Câu 62. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 38
3a 58
a 38
3a
A.
.
B.
.
C.
.
D.
.
29
29
29
29

Câu 63. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1


A. 7.

B. 0.

C. 9.

D. 5.

Câu 64. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.

x2 + 3x + 5
Câu 65. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. 0.
C. 1.
D. − .
4
4
Câu 66. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vuông góc√với đáy và S C = a 3. √

Thể tích khối chóp S .ABC√là

3
3
2a 6
a 3
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
9
4
12
2
Trang 5/10 Mã đề 1


Câu 67. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 135.

ln2 x
m

trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 22.

D. S = 32.

Câu 68. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 3.
C. 1.
D. Vô nghiệm.
Câu 69. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.
D. {3; 5}.
log 2x
Câu 70. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1 − 2 ln 2x
1
1 − 2 log 2x
A. y0 =
.
B. y0 = 3
.

C. y0 = 3
.
D. y0 =
.
3
2x ln 10
x ln 10
2x ln 10
x3

Câu 71. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. 64.
D. Vô số.
Câu 72. Xét hai câu sau
Z
Z
Z
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
(I)
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Cả hai câu trên đúng. C. Chỉ có (I) đúng.

2−n
Câu 73. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 2.
C. 1.

D. Chỉ có (II) đúng.

D. 0.

Câu 74. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 6.
B. −5.
C. 5.

D. −6.

2

Câu 75. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 0.
C. 3.
2
x − 3x + 3
Câu 76. Hàm số y =
đạt cực đại tại
x−2

A. x = 1.
B. x = 0.
C. x = 2.
2n − 3
bằng
Câu 77. Tính lim 2
2n + 3n + 1
A. 0.
B. +∞.
C. −∞.
log2 240 log2 15
Câu 78. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 1.
B. 4.
C. 3.

D. 1.
D. x = 3.
D. 1.

D. −8.

Câu 79. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng




2a 3
a 3
a 3
A.
.
B.
.
C. a 3.
D.
.
2
2
3
!
!
!
4x
1
2
2016
Câu 80. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017

2016
A. T = 1008.
B. T =
.
C. T = 2017.
D. T = 2016.
2017
Trang 6/10 Mã đề 1



Câu 81. Tính lim


4n2 + 1 − n + 2
bằng
2n − 3
B. 1.

3
.
2
Câu 82. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 8%.
C. 0, 7%.
D. 0, 5%.
A. 2.


C. +∞.

D.

Câu 83. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n lần.
C. n3 lần.
D. n2 lần.
Câu 84. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 85. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 5.
B.
.
C. 34.
D. 68.
17
Câu 86. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

A. 120 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
 π π
3
Câu 87. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. −1.
C. 3.
D. 1.
Câu 88. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (0; −2).
C. (2; 2).

D. (−1; −7).

Câu 89. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tam giác.
Câu 90. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng 2n+1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 91. Hàm số y = x3 − 3x2 + 4 đồng biến trên:

A. (−∞; 0) và (2; +∞). B. (0; +∞).
!4x
!2−x
2
3


Câu 92. Tập các số x thỏa mãn
3
2
#
"
!
2
2
A. −∞; .
B. − ; +∞ .
5
3
Câu 93. [1] Đạo hàm của làm số y = log x là
1
ln 10
A. y0 =
.
B. y0 =
.
x ln 10
x
Câu 94. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.

B. 10.

C. (0; 2).

D. (−∞; 2).

"

#
2
D. −∞; .
3

1
.
10 ln x

1
D. y0 = .
x

!
2
C.
; +∞ .
5
C.

C. 12.


D. 20.
Trang 7/10 Mã đề 1


2x + 1
x+1
1
A. 1.
B. .
2
Câu 96. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 8.
Câu 95. Tính giới hạn lim

x→+∞

C. 2.

D. −1.

C. 20.

D. 30.

Câu 97. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục thực.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.

Câu 98. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m , 0.
C. m > 0.

D. m = 0.

Câu 99. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = − loga 2.
C. log2 a = loga 2.
D. log2 a =
.
loga 2
log2 a
Câu 100.
!n Dãy số nào sau đây có giới
!n hạn là 0?
5
5
A.
.
B. − .
3
3

!n

1
C.
.
3

!n
4
D.
.
e

π
Câu 101. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

B. T = 4.
C. T = 2 3.
D. T = 2.
A. T = 3 3 + 1.
Câu 102. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
C. lim

1
= 0 với k > 1.
nk


1
B. lim √ = 0.
n
D. lim qn = 1 với |q| > 1.

Câu 103. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −10.
C. P = 21.
D. P = −21.
Câu 104. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y z−1
x−2 y−2 z−3
.
B.
=

=
.
A. = =
1 1
1
2
3
4
x y−2 z−3
x−2 y+2 z−3
=
.
D.
=
=
.
C. =
2
3
−1
2
2
2
Câu 105. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. [1; 2].
C. [−1; 2).

D. (−∞; +∞).


Câu 106. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 107. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 6 mặt.
C. 4 mặt.

D. 8 mặt.

Câu 108. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 − 2; m = 1.
C. M = e−2 + 1; m = 1.
D. M = e−2 + 2; m = 1.
Trang 8/10 Mã đề 1


Câu 109. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. 1 − sin 2x.
C. −1 + sin x cos x.

D. 1 + 2 sin 2x.

Câu 110. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.

B. 210 triệu.
C. 212 triệu.
D. 216 triệu.
Câu 111.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
xα+1
1
dx = ln |x| + C, C là hằng số.
B.
xα dx =
+ C, C là hằng số.
A.
α+1
Z x
Z
C.

0dx = C, C là hằng số.

Câu 112. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 20.

D.

dx = x + C, C là hằng số.

C. 12.


D. 30.

Câu 113. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m < .
C. m > .
D. m ≥ .
4
4
4
4
Câu 114. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 13.
C. 0.
D. 9.
Câu 115.
thức nào sau đây không có nghĩa
√ Biểu
0
A. (− 2) .
B. (−1)−1 .

C. 0−1 .

D.



−1.

−3

Câu 116. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
B.
D. a 6.
A. a 3.
.
C. 2a 6.
2
Câu 117. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. [6, 5; +∞).
C. (4; 6, 5].
D. (−∞; 6, 5).
Câu 118. Trong các mệnh đề dưới đây, mệnh đề !nào sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!

un
= −∞.
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
mx − 4
Câu 119. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 67.
C. 34.
D. 45.
Câu 120. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 10 năm.
C. 9 năm.
D. 8 năm.
Câu 121. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 3 lần.

D. Tăng gấp 27 lần.
Trang 9/10 Mã đề 1


Câu 122. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −3.
C. m = 0.

D. m = −2.

Câu 123. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách √
từ C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √

2 3
A. 2.
B. 1.
C.
.
D. 3.
3
Câu 124. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là



3
3

a3 15
a
6
a
5
A.
.
B. a3 6.
C.
.
D.
.
3
3
3
Câu 125. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 0.
C. −6.
D. 3.
Câu 126. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.

log7 16
Câu 127. [1-c] Giá trị của biểu thức
bằng
15
log7 15 − log7 30
A. 4.
B. −2.
C. −4.
D. 2.
1
Câu 128. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (−∞; 3).
C. (−∞; 1) và (3; +∞). D. (1; 3).
Câu 129. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a 3. Thể tích khối chóp S .ABCD



3
3
a 3
a3 3
a
3
.
C.
.

D.
.
A. a .
B.
3
9
3
Câu 130. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Ba mặt.
C. Năm mặt.
D. Hai mặt.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.

2. A
4.

B

5. A


D
C

6.
D

7.
9.

8.

B
D

10.

C

11. A

12. A

13. A

14.

B

15. A


16.

B

17. A

18. A

19.
21.

20.

C

22.

B

23. A

24.

25. A

26. A

27.

D


28.

30.

D

31.

32. A

C
D
C
B

33.

C
C

34.

C

35.

36.

C


37.

38.

B

39. A

40.

B

41.

42.

B

43.

B
D
C

45.

44. A
46.


D

D

47.

B

C

49.

D

51.

D

52. A

53.

D

54. A

55.

48.


C

50.

56.

D

57.

B

58. A

B
B

C

61.

62.

C

63.

64. A
C


68. A
1

D

59.

60.

66.

C

C

65.

D

67.

D

69.

D


70.


B

71. A

72.

B

73. A

74.

B

75.

76. A

77. A

78.

79.

D

80. A

81.


82.

C

83.

84.

C

85.

86.

B

87.

88.

B

89. A

90. A
92.

B

B

D

C
D

97.
99. A

B
C

101.
D

102.
104. A

D

105.

D

B

107.

108.

B


109. A

110.

C

111.

B

116.

D

118. A
120.
122.

D

115.

C

117.

C

119.


C
D

123. A

C

125. A
127.

B

128.

B

121.

C

124.

B

113. A
C

114.


B

103.

106.

130.

C

95.

C

100.

126.

B

93. A

96. A

112.

D

91. A


94.
98.

B

C

129.

B

2

C
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×