Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (530)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (157.09 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình chóp.
C. Hình lăng trụ.
Câu 2. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 22.
Câu 3. [2] Tổng các nghiệm của phương trình 2
A. 6.
B. 5.
Câu 4. Tứ diện đều thuộc loại
A. {5; 3}.
B. {4; 3}.

x2 +2x

D. Hình tam giác.

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các


x
e
C. S = 32.

D. S = 24.

= 82−x là
C. −6.

D. −5.

C. {3; 3}.

D. {3; 4}.

Câu 5. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
D. − < m < 0.
A. m ≤ 0.
B. m ≥ 0.
C. m > − .
4
4
Câu 6. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá trị
của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 6.
C. y(−2) = 22.

D. y(−2) = 2.
1
Câu 7. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = 4.
C. m = −3, m = 4.
D. m = −3.
Câu 8. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Nhị thập diện đều. C. Thập nhị diện đều.

D. Tứ diện đều.

Câu 9. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm
3
dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6 giây
2
cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 25 m.
C. 27 m.
D. 1587 m.
Câu 10. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 4.
B. 8.
C. 3.

D. 6.
Câu 11. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

a3 3
a 3
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
12
4
Câu 12. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 5 mặt.

D. 3 mặt.


Câu 13. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 15, 36.
C. 24.
D. 3, 55.
Trang 1/10 Mã đề 1


1

Câu 14. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = R \ {1}.
C. D = (−∞; 1).
1 − 2n
bằng?
Câu 15. [1] Tính lim
3n + 1
2
2
A. .
B. − .
3
3

C.

D. D = (1; +∞).


1
.
3

D. 1.

Câu 16. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. −1.

B. 6.

C. 2.

3

Z

6
3x + 1

. Tính

1

f (x)dx.
0


D. 4.

Câu 17. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

3
10a
3
A. 20a3 .
B. 10a3 .
C. 40a3 .
D.
.
3
2
Câu 18. Tính
√4 mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.


D. |z| = 2 5.

Câu 19. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tứ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.

Câu 20. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 24.
C. 21.
D. 23.
x+3
Câu 21. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 1.
C. 3.
D. 2.
Câu 22. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.1, 03
100.(1, 01)3
A. m =
triệu.
B. m =
triệu.
3
3
120.(1, 12)3

(1, 01)3
C. m =
triệu.
D.
m
=
triệu.
(1, 12)3 − 1
(1, 01)3 − 1
Câu 23. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 10.
C. ln 14.
D. ln 4.
Câu 24. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 8.

C. 12.

D. 6.

Câu 25. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −12.
C. −15.
D. −9.
Trang 2/10 Mã đề 1



Câu 26. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 27. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 2
a3 3
a3 3
2
.
B.
.
C. 2a 2.
D.
.
A.
24
24
12
Câu 28. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường

√ thẳng BD bằng



c a2 + b2
b a2 + c2
a b2 + c2
abc b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
!x
1
1−x
Câu 29. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. log2 3.
B. − log2 3.
C. − log3 2.
D. 1 − log2 3.

Câu 30. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là
1
2
9
1
B.
.
C. .
D.
.
A. .
5
10
5
10
Câu 31. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 72cm3 .
C. 64cm3 .
D. 46cm3 .
Câu 32. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {3}.
C. {5}.
D. {5; 2}.
Câu 33. [1] Đạo hàm của hàm số y = 2 x là
A. y0 = 2 x . ln x.


B. y0 = 2 x . ln 2.

Câu 34. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.

C. y0 =

B. 0 ≤ m ≤ 1.

x

.

C. Khối 12 mặt đều.

D. y0 =

1
.
ln 2

D. Khối bát diện đều.

1

= m − 2 có nghiệm
3|x−2|
C. 0 < m ≤ 1.
D. 2 < m ≤ 3.


Câu 35. [3-12214d] Với giá trị nào của m thì phương trình
A. 2 ≤ m ≤ 3.

1
2 x . ln

Câu 36. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 37. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1728
1079
23
A.
.
B.
.
C.
.
D.
.
4913
4913
4913
68
Câu 38. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = 21.

C. P = −10.
D. P = −21.
Câu 39. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Trang 3/10 Mã đề 1


Câu 40. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC √là
vng góc
√ với đáy và S C = a 3.3 √

a3 6
a 3
2a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
12
4

9
2
Câu 41. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; 1).
C. (−1; 1).
D. (−∞; −1).
Câu 42. Tính lim
x→3

A. 3.

x2 − 9
x−3

B. +∞.

C. −3.
D. 6.
1
Câu 43. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.
x+1
Câu 44. Tính lim
bằng
x→+∞ 4x + 3

1
1
A. 1.
B. .
C. .
D. 3.
3
4
Câu 45. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
A. √
.
B. 2
.
C. √
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 46. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.

C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
dx = log |u(x)| + C.
D.
u(x)
Câu 47. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 48. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 3. Thể tích khối chóp S .ABCD là

3
a 3
a
a3 3
3
.
B.
.
C. a .
D.
.
A.
9

3
3
Câu 49. Bát diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {4; 3}.
D. {3; 3}.
Câu 50. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 12 năm.
C. 10 năm.
D. 11 năm.
Câu 51. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
A.
.
B. a 3.
C.
.
D. a 2.
3
2

Câu 52. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 12.
C. 6.
D. 10.
Trang 4/10 Mã đề 1



Câu 53. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 2 nghiệm.
C. 1 nghiệm.
D. 3 nghiệm.
Câu 54. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 1.
C. 3.
D. 7.
Câu 55. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục ảo.
D. Trục thực.
Câu 56. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|



12 17

.
B. 68.
C. 5.
D. 34.
A.
17
Câu 57. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng


a 2
a 2
.
B. a 2.
C.
.
D. 2a 2.
A.
2
4
Câu 58. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; −8)(.
C. A(−4; 8).
D. A(4; 8).
log(mx)
= 2 có nghiệm thực duy nhất

Câu 59. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0.
B. m < 0 ∨ m = 4.
C. m < 0 ∨ m > 4.
D. m ≤ 0.
Câu 60. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối tứ diện.
Câu 61. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. −1 + 2 sin 2x.
C. 1 − sin 2x.

D. 1 + 2 sin 2x.

d = 30◦ , biết S BC là tam giác đều
Câu 62. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vuông √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.

B.
.
C.
.
D.
.
9
26
16
13
n−1
Câu 63. Tính lim 2
n +2
A. 1.
B. 3.
C. 2.
D. 0.
Câu 64. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
B. f (x) xác định trên K.
C. f (x) có giá trị nhỏ nhất trên K.
D. f (x) có giá trị lớn nhất trên K.
1
Câu 65. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. (−∞; −2) ∪ (−1; +∞). C. −2 ≤ m ≤ −1.
D. −2 < m < −1.
1 + 2 + ··· + n
Câu 66. [3-1132d] Cho dãy số (un ) với un =

. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 1.
B. lim un = 0.
1
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = .
2
Trang 5/10 Mã đề 1


Câu 67. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d ⊥ P.
C. d nằm trên P.
D. d song song với (P).
!
5 − 12x
Câu 68. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 3.
B. 1.
C. Vô nghiệm.
D. 2.
 π
Câu 69. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2



1 π
3 π6
2 π4
C.
D. e 3 .
A. 1.
B.
e .
e .
2
2
2
Câu 70. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

C. lim f (x) = f (a).
x→a

D. lim+ f (x) = lim− f (x) = a.
x→a

x→a

x+2
Câu 71. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng

x + 5m
(−∞; −10)?
A. Vô số.
B. 3.
C. 2.
D. 1.
Câu 72. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 16 tháng.
B. 18 tháng.
C. 17 tháng.
D. 15 tháng.
Câu 73. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
9
23
5
B.
.
C.
.
D. −
.
A. − .
16
100
25

100
Câu 74. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.424.000.
B. 102.423.000.
C. 102.016.000.
D. 102.016.000.
Câu 75. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 12 cạnh.

C. 9 cạnh.

D. 10 cạnh.

d = 120◦ .
Câu 76. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
C. 4a.
D. 2a.
A. 3a.
B.
2
Câu 77. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.

C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 78. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Bốn mặt.
C. Hai mặt.

D. Ba mặt.

Câu 79. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Bốn mặt.
C. Một mặt.

D. Hai mặt.

x2

Câu 80. [2] Tổng các nghiệm của phương trình 3 x−1 .2 = 8.4 x−2 là
A. 2 − log2 3.
B. 3 − log2 3.
C. 1 − log3 2.

D. 1 − log2 3.
Trang 6/10 Mã đề 1






x = 1 + 3t




Câu 81. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
1
+

3t
x
=
−1
+
2t
x
=
−1
+
2t
x = 1 + 7t
















A. 
B. 

.
y = 1 + 4t .
y = −10 + 11t . C. 
y = −10 + 11t . D. 
y=1+t
















z = 1 − 5t
z = 6 − 5t
z = −6 − 5t
z = 1 + 5t
Câu 82. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 4.

C. 2.


D. 3.

Câu 83. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).

Hai mặt bên
√hợp với đáy một góc 30
√. Thể tích khối chóp S .ABCD
√ là
√ (S BC) và (S AD) cùng
3
3
3
8a 3
a 3
8a3 3
4a 3
.
B.
.
C.
.
D.
.
A.
9
9
9
3
3

Câu 84. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e5 .
C. e3 .
D. e.
Câu 85. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 8 mặt.
C. 9 mặt.

D. 6 mặt.

Câu 86. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
d = 300 .
Câu 87. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √

3
3

a
3
3a
3
C. V =

A. V = 6a3 .
B. V = 3a3 3.
.
D. V =
.
2
2
Câu 88. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. .
B. 2.
C. −2.
D. − .
2
2
Câu 89. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là


3
3

a
6
a
5
a3 15
C.
A.

.
B. a3 6.
.
D.
.
3
3
3
log2 240 log2 15
Câu 90. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 1.
B. −8.
C. 4.
D. 3.
Câu 91. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m > 3.
D. m ≥ 3.
Câu 92. Cho số phức z thỏa mãn |z +

√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 10.
C. |z| = 17.
D. |z| = 17.

2n2 − 1
Câu 93. Tính lim 6
3n + n4
2
A. 1.
B. 2.
C. 0.
D. .
3
Trang 7/10 Mã đề 1


Câu 94. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = ln 10.

B. f 0 (0) = 10.

C. f 0 (0) =

1
.
ln 10

D. f 0 (0) = 1.

Câu 95. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 2
n2 + n + 1
n2 − 3n

.
B.
u
=
.
C.
u
=
.
D.
u
=
.
A. un =
n
n
n
n2
5n + n2
5n − 3n2
(n + 1)2
Câu 96. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là

3
3
3


a 3
2a 3
a
3
A.
.
B.
.
C. a3 3.
D.
.
6
3
3
Câu 97. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 2.
C. 1.
D. Vơ số.
!
1
1
1
+ ··· +
Câu 98. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
5
3

A. +∞.
B. .
C. .
D. 2.
2
2
3
2
Câu 99. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2


A. 3 − 4 2.
B. 3 + 4 2.
C. −3 − 4 2.
D. −3 + 4 2.
Câu 100. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 20.

C. 30.

D. 8.

Câu 101. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

a3 6

a3 6
a3 3
a3 6
.
B.
.
C.
.
D.
.
A.
8
24
48
24
d = 60◦ . Đường chéo
Câu 102. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
4a3 6
2a3 6

3
.
C.
.
D.
.
A. a 6.
B.
3
3
3
2

Câu 103. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 3.
C. 2.
D. 4.
√3
Câu 104. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. .
B. 3.
C. − .
D. −3.
3
3
Câu 105. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.

B. Phần thực là −3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là −4.
!
1
1
1
Câu 106. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 1.
B. 2.
C. 0.
D. .
2
Câu 107. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 13 năm.
C. 12 năm.
D. 11 năm.
Trang 8/10 Mã đề 1


Câu 108. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 109. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều đúng.

C. Chỉ có (I) đúng.

D. Cả hai đều sai.

Câu 110. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun √
z.



5 13
.
B. 26.
A.
C. 2.
D. 2 13.
13
x
x+1

x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 111. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−3; +∞).
C. (−∞; −3].
D. [−3; +∞).
Câu 112. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 120 cm2 .
Câu 113.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?
[ f (x) + g(x)]dx =

A.

f (x)dx +


g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
B.

2

Câu 114. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 8.
C. 5.

D. 7.

Câu 115. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?

A. Không có.
B. Có vơ số.
C. Có hai.
D. Có một.
Câu 116. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y−2 z−3
x y z−1
A. =
=
.
B. = =
.
2
3
−1
1 1

1
x−2 y+2 z−3
x−2 y−2 z−3
C.
=
=
.
D.
=
=
.
2
2
2
2
3
4
2x + 1
Câu 117. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. 1.
C. .
D. −1.
2
Câu 118. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac

3b + 3ac
A.
.
B.
.
C.
.
D.
.
c+2
c+3
c+2
c+1
Trang 9/10 Mã đề 1


Câu 119. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −5.
C. −7.
D. Khơng tồn tại.
mx − 4
Câu 120. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 34.
B. 26.
C. 67.
D. 45.


Câu 121. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 2
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
18
6
6
36
Câu 122. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 8.
C. 12.
D. 30.
Câu 123. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất



√ của hàm số. Khi đó tổng M + m
B. 16.
C. 8 2.
D. 7 3.
A. 8 3.
log 2x
Câu 124. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1 − 4 ln 2x
1
1 − 2 ln 2x
0
0
.
B. y0 =
.
C.
y
=
.
D.
y
=
.
A. y0 = 3
x ln 10

x3
2x3 ln 10
2x3 ln 10
Câu 125. ZCho hai hàmZy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f (x)dx =

A. Nếu
Z
B. Nếu

f (x)dx =

g(x)dx thì f (x) = g(x), ∀x ∈ R.

Z

g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
0
D. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 126. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam

giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

11a2
a2 7
a2 5
a2 2
A.
.
B.
.
C.
.
D.
.
4
32
8
16
1
Câu 127. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = −e − 1.

C. xy0 = ey − 1.
D. xy0 = ey + 1.
log 2x
Câu 128. [1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1
1 − 2 ln 2x
1 − 2 log 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10
2x ln 10
x ln 10
x3
!
!
!
4x
1
2
2016

Câu 129. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 1008.
B. T =
.
C. T = 2016.
D. T = 2017.
2017
Câu 130.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
1
A.
dx = ln |x| + C, C là hằng số.
B.
dx = x + C, C là hằng số.
x
Z
Z
xα+1
C.
0dx = C, C là hằng số.
D.

xα dx =
+ C, C là hằng số.
α+1
- - - - - - - - - - HẾT- - - - - - - - - Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.

C

3.

D

4.

C

5.

C

6. A


7.

C

8.

C

9.

C

10.

C

11.

B

12.

13.

B

14.

D


15.

B

16.

D

17. A

B

18. A

19.

C

20. A

21.

C

22.

23.

C


24.

C

D

25.

B

26.

C

27.

B

28.

C

29.

B

30.

31. A

33.

D

32.

C

34. A

B

35.

D

36.

D

37. A

38.

D

39. A

40. A


41.
43. A

44.

45.

D

48.

49. A

50.

51.

C

46.

47. A

53.

D

42.

C


D
B
D

52.

C
B

C

54. A

55. A

56. A

57. A

58.

D

59.

B

60.


D

61.

B

62.

D

63.
65.

D

64. A
66.

C

67. A

68.
1

D
B


69.


C

70.

71.

C

72. A

73.

D

74. A

75.

D

76.

B

78.

C

77.


C

D

79.

B

80. A

81.

B

82.

B

83.

B

84.

B

86.

B


C

85.

D

87.
C

89.

D

91.
93.

C

88.
90.

B

92.

B

94. A


C

95.

B

96.

D

97.

B

98.

D

D

99.
101.

B
D

104. A

B


106. A
C

107.

108.

109. A

112.

C

113.

C

114.

D

115.

116.

C

117. A

D

B

118. A

119.

D

120. A
122.

121. A
B

D

124. A

125. A
127.

B

110. A

111.

123.

B


102. A

103.
105.

100.

C

126.

C

128.

C

130.

129. A

2

D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×