Tải bản đầy đủ (.pdf) (12 trang)

Đê ôn thptqg 4 (103)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (148.93 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

1 − 2n
bằng?
3n + 1
2
A. 1.
B. .
3

Câu 2. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 108.
Câu 1. [1] Tính lim

2
C. − .
3

D.

1
.
3



C. 4.

D. 36.

Câu 3. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
f (x)dx = f (x).
D.
Câu 4. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; +∞).

C. (0; 2).

f (x)dx = F(x) + C.

D. (−∞; 0) và (2; +∞).

Câu 5. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3
a3 3
a3 3

3
.
C.
.
D.
.
A. a .
B.
2
3
6
Câu 6. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 3 mặt.
D. 5 mặt.
x2 − 5x + 6
Câu 7. Tính giới hạn lim
x→2
x−2
A. 1.
B. 0.

x2 + 3x + 5
Câu 8. Tính giới hạn lim
x→−∞
4x − 1
1
A. 0.
B. .

4
cos n + sin n
Câu 9. Tính lim
n2 + 1
A. −∞.
B. +∞.
Câu 10. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 12.

C. 5.

D. −1.

1
C. − .
4

D. 1.

C. 0.

D. 1.

C. 30.

D. 20.

Câu 11. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

A. 1200 cm2 .
B. 160 cm2 .
C. 120 cm2 .
D. 160 cm2 .
x−2 x−1
x
x+1
Câu 12. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−3; +∞).
C. (−∞; −3].
D. [−3; +∞).
√3
Câu 13. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. 3.
B. −3.
C. − .
D. .
3

3
Trang 1/10 Mã đề 1


Câu 14. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 9.

B. 7.

C. 5.

D. 0.

Câu 15. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 5
a3 15
a3
A.
.
B.
.
C.
.
D.
.

5
25
25
3
0 0 0 0
0
Câu 16.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
7
2
3
2
2−n
Câu 17. Giá trị của giới hạn lim
bằng
n+1
A. −1.

B. 2.
C. 0.
D. 1.
1
Câu 18. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = −e + 1.
C. xy0 = ey + 1.
D. xy0 = ey − 1.

Câu 19. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A.
.
B. 12.
C. 27.
D. 18.
2
Câu 20. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

A. 387 m.
B. 25 m.
C. 1587 m.
D. 27 m.
Câu 21. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 12.

C. 10.

D. 6.

Câu 22. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
A. √
.
B. 2
.
C. √
.
D. √
.
2
a +b
a2 + b2
a2 + b2

2 a2 + b2
Câu 23. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + 1.
C. T = e + 3.
D. T = e + .
e
e
Câu 24. Bát diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.

C. {3; 4}.

D. {3; 3}.

Câu 25. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là 4, phần ảo là 1.
Câu 26. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. −1.
C. 1.

D. 2.


Câu 27. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim f (x) = f (a).
x→a

x→a

C. f (x) có giới hạn hữu hạn khi x → a.

x→a

D. lim+ f (x) = lim− f (x) = a.
x→a

x→a

Trang 2/10 Mã đề 1


Câu 28. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 3.



C. 1.




1
3|x−1|

= 3m − 2 có nghiệm duy

D. 2.

Câu 29. [12215d] Tìm m để phương trình 4 x+
− 4.2 x+
− 3m + 4 = 0 có nghiệm
3
9
3
B. 0 < m ≤ .
C. m ≥ 0.
D. 0 ≤ m ≤ .
A. 0 ≤ m ≤ .
4
4
4
Câu 30. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là



5a3 3
4a3 3

2a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
2
3
3
3
Câu 31. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d song song với (P).
C. d nằm trên P hoặc d ⊥ P.
D. d nằm trên P.


Câu 32. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt l √

A. Phần thực là √2, phần ảo là 1 − √3.
B. Phần thực là 1√− 2, phần ảo là − √3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
3a
Câu 33. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
a 2
2a
a
A. .
B.
.
C.
.
D. .
4
3
3
3
!
3n + 2
+ a2 − 4a = 0. Tổng các phần tử
Câu 34. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 4.
B. 5.
C. 2.
D. 3.
2

m
ln x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
Câu 35. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 22.
C. S = 135.
D. S = 32.
2n + 1
Câu 36. Tìm giới hạn lim
n+1
A. 3.
B. 2.
C. 0.
D. 1.
2
x −9
Câu 37. Tính lim
x→3 x − 3
A. 3.
B. +∞.
C. 6.
D. −3.
1−x2

1−x2


Câu 38. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
log 2x
Câu 39. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 4 ln 2x
1
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
3
x ln 10
2x ln 10
2x ln 10
Câu 40. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (1; +∞).
C. (−∞; 1).

D. y0 =

1 − 2 log 2x

.
x3

D. (−1; 1).
Trang 3/10 Mã đề 1


Câu 41. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
.
D. 20a3 .
A. 40a3 .
B. 10a3 .
C.
3
9t
Câu 42. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 1.
C. 0.
D. 2.
d = 300 .
Câu 43. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0

Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho. 3 √

a3 3
3a 3
A. V =
.
B. V = 3a3 3.
C. V =
.
D. V = 6a3 .
2
2
Câu 44. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
2a
a
8a
.
B.
.
C.
.
D. .
A.
9
9
9

9
!
x+1
Câu 45. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2016
2017
.
C.
.
D.
.
A. 2017.
B.
2018
2018
2017
Z 3
a
a
x
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 46. Cho I =

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?

A. P = 4.
B. P = −2.
C. P = 28.
D. P = 16.
Câu 47. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Ba cạnh.
C. Năm cạnh.

D. Bốn cạnh.

Câu 48. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 2.
C. 0, 5.
D. 0, 3.
Câu 49. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 50. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)

C. m < 0 ∨ m > 4.
D. m < 0 ∨ m = 4.

Câu 51. [1226d] Tìm tham số thực m để phương trình

B. m < 0.
mx − 4
Câu 52. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 67.
C. 45.
D. 34.
A. m ≤ 0.

Câu 53. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 24.
C. 15, 36.
D. 3, 55.
Trang 4/10 Mã đề 1


Câu 54. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
!
1

1
B. Hàm số đồng biến trên khoảng ; 1 .
A. Hàm số nghịch biến trên khoảng −∞; .
3
!3
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3

Câu 55. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là



a3 3
a3 3
a3
3
.
B. a 3.
.
D.
.
C.
A.
4
12
3
Câu 56. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =

xy + x + 2y + 17
A. −5.
B. −12.
C. −9.
D. −15.
Câu 57. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 10.
Câu 58. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
n2 − 3n
A. un =
.
B.
u
=
.
n
(n + 1)2
n2

C. 12.

D. 8.

C. un =

1 − 2n
.
5n + n2


2
Câu 59. Tính mơ đun của số phức z biết
√ (1 + 2i)z = 3 + 4i. √
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.

D. un =

n2 − 2
.
5n − 3n2

D. |z| =

√4
5.

Câu 60. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 2.
C. y(−2) = 6.
D. y(−2) = −18.
Câu 61. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m > 0.
C. m , 0.


D. m < 0.

Câu 62. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
Câu 63. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 30.

C. 20.

D. 12.

Câu 64. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng




a 6
C. a 3.
D. a 6.
A.
.
B. 2a 6.
2
n−1
Câu 65. Tính lim 2
n +2
A. 1.
B. 3.
C. 2.
D. 0.
Câu 66.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
A.
Z
C.

( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

f (x)g(x)dx =


B.
Z
D.

f (x)dx g(x)dx.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Trang 5/10 Mã đề 1


Câu 67. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 17 tháng.
C. 16 tháng.
D. 15 tháng.
Câu 68. Tính lim
A. 2.

5
n+3

B. 1.

C. 0.


D. 3.

Câu 69. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
.
C. 1.
D.
A. 2.
B. 3.
3
Câu 70.
Z [1233d-2] Mệnh đề nào sau đây sai?

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
[ f (x) + g(x)]dx =

f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
B.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

A.

Câu 71. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 8.

C. 4.

D. 6.

Câu 72. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 4.

C. 5.


D. 6.

Câu 73. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≤ 3.
C. m > 3.
D. m ≥ 3.
Câu 74. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 4.

C. 2.

D. 3.

Câu 75. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(−4; −8)(.
C. A(−4; 8).
D. A(4; −8).
Câu 76. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 77. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A.

.
B. 5.
C. 7.
D. .
2
2
2
3
7n − 2n + 1
Câu 78. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. 0.
C. 1.
D. .
3
3
Câu 79. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −5.
C. −7.

D. Không tồn tại.
Trang 6/10 Mã đề 1


Câu 80.


[12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [−1; 0].
B. m ∈ [0; 4].

C. m ∈ [0; 2].

q
x+ log23 x + 1+4m−1 = 0

D. m ∈ [0; 1].

Câu 81. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Trục thực.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục ảo.
Câu 82. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −1.
C. m = −3.

D. m = −2.

x3 −3x+3


Câu 83. [2-c] Giá trị lớn nhất của hàm số f (x) = e
trên đoạn [0; 2] là
5
3
2
A. e .
B. e .
C. e .

D. e.

Câu 84. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. 2.
C. −4.

D. −2.

Câu 85. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng



a 2
a 2
A.
.
B. a 2.

.
C. 2a 2.
D.
4
2
!
!
!
4x
1
2
2016
Câu 86. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
B. T = 2016.
C. T = 2017.
D. T = 1008.
A. T =
2017
Câu 87. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .

B. 2e + 1.
C. 2e.
D. 3.
e
Câu 88. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
B. .
C. 2.
D. −2.
A. − .
2
2
Câu 89. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là


3
a 3
a3 3
a3 3
a 2
.
B.
.
C.
.
D.

.
A.
12
12
6
4
Câu 90. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.

36
12
24
6
Câu 91. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −21.
C. P = −10.
D. P = 21.

Câu 92. Xác định phần ảo của số √
phức z = ( 2 + 3i)2

A. 7.
B. −6 2.
C. −7.
D. 6 2.
x2
Câu 93. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = , m = 0.
C. M = e, m = 1.
D. M = e, m = 0.
e
e
Trang 7/10 Mã đề 1



Câu 94. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 12.
log7 16
Câu 95. [1-c] Giá trị của biểu thức
log7 15 − log7
A. 4.
B. −4.

C. 10.
15
30

D. 8.

bằng
C. −2.

D. 2.

Câu 96. [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 1.
B. 2.
C. 5.
D. 3.
Câu 97. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 3}.

C. {5; 3}.

D. {4; 3}.

Câu 98. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 16 m.
C. 12 m.
D. 24 m.
2
2n − 1
Câu 99. Tính lim 6
3n + n4
2
A. 2.
B. 1.
C. .
D. 0.
3
Câu 100. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 20, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 50, 7 triệu đồng.
Câu 101. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 4.

C. 10.


D. 6.

Câu 102. Cho z là nghiệm của phương trình x2 + x + 1 = 0. Tính P √
= z4 + 2z3 − z

−1 + i 3
−1 − i 3
A. P = 2.
B. P = 2i.
C. P =
.
D. P =
.
2
2
ln x p 2
1
Câu 103. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
1
8
8
A. .
B. .
C. .
D. .

3
9
3
9
Câu 104. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 9 mặt.
C. 8 mặt.
D. 6 mặt.
Câu 105. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B. a3 .
C.
.
D.
.
6
24
12
Câu 106. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. −1 + 2 sin 2x.
C. 1 − sin 2x.
D. 1 + 2 sin 2x.

2

Câu 107. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. 2 .
B.
.
C. √ .
3
e
2e
2 e
Câu 108. Tứ diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.
x−3
Câu 109. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. −∞.

D.

2
.
e3


C. {4; 3}.

D. {3; 3}.

C. 1.

D. 0.
Trang 8/10 Mã đề 1


Câu 110. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)

cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD

3
3
a
a
a3
3
3
A. a3 .
B.
.
C.
.
D.
.
3

9
3
Câu 111. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (−∞; 1).
C. (2; +∞).
D. (0; 2).
Câu 112. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. Vơ nghiệm.
D. 3.
x+1
bằng
Câu 113. Tính lim
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. 1.
D. .
6
2
3
Câu 114. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.

B. 9 năm.
C. 10 năm.
D. 8 năm.
Câu 115. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 13 năm.
D. 10 năm.
Câu 116. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa

√ hai đường thẳng BD và√S C bằng

a 6
a 6
a 6
.
B.
.
C. a 6.
.
D.
A.
6
3
2
Z 2

ln(x + 1)
Câu 117. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 1.
C. 0.
D. 3.
Câu 118. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n3 lần.
C. 3n3 lần.
D. n2 lần.
Câu 119. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 + 1; m = 1.
C. M = e−2 − 2; m = 1.
D. M = e−2 + 2; m = 1.
Câu 120. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có hai.
C. Khơng có.
D. Có một hoặc hai.
Câu 121. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hồn nợ ở mỗi tháng là như nhau và ơng A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A. 2, 20 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 22 triệu đồng.
Câu 122. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 8.

C. 20.

Câu 123. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = 3S h.
B. V = S h.
C. V = S h.
3

D. 30.
1
D. V = S h.
2
Trang 9/10 Mã đề 1


Câu 124. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−1; 0).
C. (−∞; −1) và (0; +∞). D. (−∞; 0) và (1; +∞).
1
Câu 125. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm

3
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
2n + 1
Câu 126. Tính giới hạn lim
3n + 2
3
2
1
A. .
B. .
C. 0.
D. .
2
3
2
2,4
Câu 127. [1-c] Giá trị của biểu thức 3 log0,1 10 bằng
A. −7, 2.
B. 7, 2.
C. 72.
D. 0, 8.
Câu 128. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (0; −2).
C. (1; −3).

D. (2; 2).


Câu 129. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
5
13
23
.
B.
.
C. − .
D.
.
A. −
100
25
16
100
x−2
Câu 130. Tính lim
x→+∞ x + 3
2
C. −3.
D. 2.
A. 1.
B. − .
3
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C

1.
3.

B

4.

5.

B

6.
D

7.
11.

10.

B
D

D


19.

C

B

C

18.

D

20.

D

22. A
C

24.

25.

B

26. A

27.


B

28.

29. A

C
C

30. A

31.

C

32.

33.

C

34. A

35.

D
C

37.
39. A

41.

D

43.

C

D

36.

B

38.

B

40.

D

42.

D

44. A

45.


B

46. A

47.

B

48.

49.

D

50. A

51.

D

52.

53.

B

16.

C


23.

C

14. A

17. A
21.

B

12.

13.
15.

D

8.

C

9.

C

2.

C


D
D

54.

C

55.

D

56.

57.

D

58.

59.

D

60.

D

B
C


61.

C

62.

D

63.

C

64.

D

65.
67.

D

66.
68.

C
1

B
C



69. A

70.

D
D

71.

D

72.

73.

D

74.

B
D

76.

75. A
77.

D


78. A

79.

D

80. A

81. A

82.

D

83. A

84.

D

85.

D

86.

D

87.


D

88.

D

89.

B

90.

91.

B

92.
D

93.
95.

C

99.

D

94. A


B

97.

B

D

101. A

96.

B

98.

B

100.

B

102. A

103.

D

104.


B

105.

D

106.

B

107. A

108.

D
D

109.

D

110.

111.

D

112.

B


114.

B

113. A
115.

B

116. A

117. A
119.

118.
120.

C

121.

B

D

D

122. A


123.

C

124.

B

125.

C

126.

B

127. A

128.

B

129. A

130. A

2




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×