Tải bản đầy đủ (.pdf) (13 trang)

Đê ôn thptqg 4 (652)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (156.36 KB, 13 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
24
48


8
Câu 2. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (II) sai.

C. Khơng có câu nào D. Câu (I) sai.
sai.
 π π
3
Câu 3. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. 3.
C. −1.
D. 1.
Câu 4. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 4.

C. 24.

D. 144.

Câu 5. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay

đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 6%.
C. 0, 8%.
D. 0, 5%.
Câu 6. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc của
0
A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và BC
a 3
. Khi đó thể tích khối lăng trụ là

4 √



a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
6

36
12
Câu 7. Cho hình chóp S .ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

3
3
a 6
a 3
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
48
24
48
16
Câu 8. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 8 mặt.
C. 6 mặt.
D. 10 mặt.

log7 16
Câu 9. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. −2.
B. 4.
C. 2.
D. −4.
Câu 10. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 8.
2
2n − 1
Câu 11. Tính lim 6
3n + n4
A. 0.
B. 1.

C. 5.

D. 4.

2
.
3

D. 2.

C.


Trang 1/11 Mã đề 1


Câu 12. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
3
3
2a 3
a3
a3
4a 3
.
B.
.
C.
.
D.
.
A.
3
3
3
6
Câu 13. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 4 mặt.


D. 9 mặt.

d = 60◦ . Đường chéo
Câu 14. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
a3 6
4a3 6
3
A.
C.
.
B. a 6.
.
D.
.
3
3
3
Câu 15. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.

B. 4.

C. 2.

D. 5.

Câu 16. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.
D. .
A. 5.
B. 7.
C.
2
2


4n2 + 1 − n + 2
Câu 17. Tính lim
bằng
2n − 3
3
A. +∞.
B. .
C. 1.
D. 2.
2
m
ln2 x

trên đoạn [1; e3 ] là M = n , trong đó n, m là các
Câu 18. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 32.
C. S = 22.
D. S = 135.

Câu 19. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3

a3
a 3
a3 3
3
C.
A.
.
B. a 3.
.
D.
.
12
4
3

Câu 20. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Tứ diện đều.
B. Nhị thập diện đều. C. Thập nhị diện đều.

D. Bát diện đều.

Câu 21. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. Không tồn tại.
C. 9.

D. 13.

x
Câu 22.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
3
1
.
B. 1.
C. .
D. .
A.
2
2
2

Câu 23. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có

thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 22.
C. 24.
D. 23.
Câu 24. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. Cả ba câu trên đều sai.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Trang 2/11 Mã đề 1




Câu 25. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l

A. Phần thực là 2 −√1, phần ảo là √
3.
B. Phần thực là √2, phần ảo là 1 − √
3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
1 − 2n
Câu 26. [1] Tính lim
bằng?
3n + 1
2

2
1
A. .
B. 1.
C. − .
D. .
3
3
3
x
x
x
Câu 27. [12211d] Số nghiệm của phương trình 12.3 + 3.15 − 5 = 20 là
A. Vô nghiệm.
B. 2.
C. 1.
D. 3.
cos n + sin n
Câu 28. Tính lim
n2 + 1
A. 1.
B. −∞.
C. 0.
D. +∞.
Câu 29. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.

Câu 30. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 4.
C. V = 6.
D. V = 3.
q
2
Câu 31. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 4].
C. m ∈ [0; 1].
D. m ∈ [−1; 0].
Câu 32. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
4a3 3
2a3 3
a3 3
5a 3
.
B.

.
C.
.
D.
.
A.
3
3
3
2
Câu 33. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 8π.
C. 32π.
D. V = 4π.
Câu 34. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có hai.
C. Có một hoặc hai.
D. Có một.
Câu 35. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
.
B. m =
.
C. m =

.
A. m =
4 − 2e
4e + 2
4 − 2e
Câu 36. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 10.
C. 8.

D. m =

1 − 2e
.
4e + 2

D. 6.

d = 120◦ .
Câu 37. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B. 3a.
C.
.
D. 2a.
2
Câu 38. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0

đến đường
√ thẳng BD bằng



a b2 + c2
c a2 + b2
b a2 + c2
abc b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Trang 3/11 Mã đề 1


Câu 39. Dãy số nào có giới hạn bằng 0?
!n
6
2
A. un = n − 4n.
B. un =

.
5

!n
−2
C. un =
.
3

n3 − 3n
.
n+1

D. un =

Câu 40. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
.
C. a 2.
.
B.
D.
A. a 3.
3

2
Câu 41. Dãy
!n số nào sau đây có giới
!n hạn là 0?
5
4
A. − .
B.
.
3
e

!n
5
C.
.
3

!n
1
D.
.
3

C. +∞.

D. 0.

Câu 42. Giá trị của lim(2x2 − 3x + 1) là
x→1


A. 1.

B. 2.

Câu 43. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
D.
dx = log |u(x)| + C.
u(x)
Câu 44. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối lập phương.

9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. 0.
C. Vô số.
D. 2.


Câu 45. [4] Xét hàm số f (t) =

Câu 46. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
với
đáy

S
C
=
a
3. √
Thể tích khối chóp S .ABC√là


3
3
a 6
a 3
a3 3
2a3 6
A.
.
B.
.
C.
.
D.

.
12
2
4
9
Câu 47. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≥ 3.
C. m > 3.
D. m ≤ 3.
Câu 48. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (2; 4; 3).
C. (1; 3; 2).
D. (2; 4; 6).
Câu 49. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 10.

C. 30.

D. 12.

Câu 50. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 10.

C. 8.


D. 6.

Câu 51. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

2
a 5
11a2
a2 2
a2 7
A.
.
B.
.
C.
.
D.
.
16
32
4
8
Trang 4/11 Mã đề 1


Câu 52. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên

(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD


√ là
3
3
3
3
4a 3
a 3
8a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
9
3
9
Câu 53. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab

ab
.
C. √
.
D. √
.
.
B. √
A. 2
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 54. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
9
23
13
A. − .
B.
.
C. −
.
D.
.
16
25
100

100
Câu 55. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối
√ chóp S .ABCD là


3

a 5
a3 15
a3 6
3
B.
.
C.
.
D.
.
A. a 6.
3
3
3
2n + 1
Câu 56. Tính giới hạn lim
3n + 2
2
3
1
A. 0.
B. .

C. .
D. .
3
2
2
Câu 57. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lập phương.
C. Hình lăng trụ.
D. Hình tam giác.
Câu 58. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 2e + 1.

B. 3.

C. 2e.

!
1
1
1
+ ··· +
Câu 59. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
A. .
B. +∞.
C. 2.
2

Câu 60. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 0.
C. m > −1.

D.

2
.
e

D.

5
.
2

D. m > 1.

Câu 61. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b


C. lim− f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim+ f (x) = f (b).

Câu 62. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C.
.
D. a3 .
12
6
24
Câu 63. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều

rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
x2
Câu 64. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = e, m = 1.
C. M = , m = 0.
D. M = e, m = 0.
e
e
Trang 5/11 Mã đề 1


d = 30◦ , biết S BC là tam giác đều
Câu 65. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.

.
B.
.
C.
.
D.
.
16
13
9
26
Câu 66. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm tứ diện đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
1
a
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 7.
D. 2.

Câu 67. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 1.

B. 4.


2
Câu 68. Tính
√ (1 + 2i)z = 3 + 4i.
√4 mô đun của số phức z biết
B. |z| = 2 5.
C. |z| = 5.
A. |z| = 5.

D. |z| =


5.

Câu 69. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. 2a 6.
B. a 6.
C.
.
D. a 3.
2
Câu 70. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
C. 2.
D. 1.

A. 2.
B. 10.
Câu 71. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
A. −4.

B. −7.

C. −2.

D.

67
.
27

Câu 72. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aαβ = (aα )β .
B. β = a β .
C. aα+β = aα .aβ .
D. aα bα = (ab)α .
a
Câu 73. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
C. Khối bát diện đều. D. Khối 12 mặt đều.
Câu 74. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.

C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
1
Câu 75. [1] Giá trị của biểu thức log √3
bằng
10
A. −3.

B. 3.

Câu 76. Tính lim

x→+∞

C.

1
.
3

1
D. − .
3

x−2
x+3

2
C. − .
D. 2.

3
Câu 77. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
a2 + b2
a2 + b2
2 a2 + b2
A. −3.

B. 1.

Trang 6/11 Mã đề 1


Câu 78. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là



a3
a3 3
a3 3
3
A.
.
B.
.
C. a .
D.
.
3
6
2
Câu 79. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối lập phương.
C. Khối bát diện đều.
D. Khối tứ diện.
Câu 80. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m < .
C. m ≤ .
D. m > .
4
4

4
4
[ = 60◦ , S A ⊥ (ABCD).
Câu 81. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là

a3 3
a3 2
a3 2
A.
.
B.
.
C.
.
D. a3 3.
6
4
12
Câu 82. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−1; 0).
C. (0; 1).
D. (−∞; 0) và (1; +∞).
Câu 83. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 11 năm.

B. 14 năm.
C. 12 năm.
D. 10 năm.
Câu 84. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 + ln x.
Câu 85. Hàm số nào sau đây khơng có cực trị
1
A. y = x + .
B. y = x3 − 3x.
x

C. y0 = 1 − ln x.

D. y0 = ln x − 1.

C. y = x4 − 2x + 1.

D. y =

x−2
.
2x + 1

Câu 86. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = −18.
C. y(−2) = 6.
D. y(−2) = 2.

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = −ey − 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.

Câu 87. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.

Câu 88. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
(1, 01)3
A. m =
triệu.
B. m =
triệu.
3
(1, 01)3 − 1
120.(1, 12)3
100.1, 03
C. m =
triệu.
D.

m
=
triệu.
(1, 12)3 − 1
3

Câu 89. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58
3a 38
3a
a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Trang 7/11 Mã đề 1



Câu 90. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ đã cho
√ là 1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 2, 4, 8.
C. 8, 16, 32.
D. 6, 12, 24.
Câu 91. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Chỉ có (II) đúng.

C. Cả hai đều đúng.

D. Cả hai đều sai.

0 0 0 0
0
Câu 92.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
.

B.
.
C.
.
D.
.
A.
7
2
3
2

Câu 93. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 24.
C. 15, 36.
D. 3, 55.
Câu 94. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.

C. Khối tứ diện đều.

D. Khối bát diện đều.

Câu 95. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là 4.

C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là −4.
Câu 96. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. R.

D. (2; +∞).

Câu 97. Các khẳng
!0 định nào sau đây là sai?
Z
Z
Z
A.
f (x)dx = f (x).
B.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Z
Z
Z
Z
C.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
k f (x)dx = k
f (x)dx, k là hằng số.
Câu 98. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2


A. 4.

B. 6.

C. 2.

3

Z

6
3x + 1

. Tính

1

f (x)dx.
0

D. −1.

Câu 99. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17

B. 68.
C. 5.
D.
A. 34.
.
17
Câu 100. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là

3
3
3
a
3
a
a
3
A. a3 .
B.
.
C.
.
D.
.
3
3
9
Câu 101. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là

27
A.
.
B. 18.
C. 27.
D. 12.
2
Trang 8/11 Mã đề 1


Câu 102. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 + 2; m = 1.
D. M = e−2 − 2; m = 1.
1
Câu 103. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 2 < m ≤ 3.
D. 0 < m ≤ 1.
[ = 60◦ , S O
Câu 104. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ O đến (S
√ BC) bằng


2a 57
a 57

a 57
A. a 57.
B.
.
C.
.
D.
.
19
19
17
Câu 105. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. −2e2 .
C. 2e2 .
D. −e2 .
Câu 106. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 107. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
.
B. 1.
C. 2.
D. .
A.
2

2
2
Câu 108. [2-c] Giá trị lớn nhất của hàm số y = ln(x + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 4.
C. ln 12.
D. ln 14.
Câu 109. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tam giác.
Câu 110. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.


Câu 111. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
"
!
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
5
5
A.
;3 .
B. [3; 4).
C. (1; 2).

D. 2; .
2
2
x+2
Câu 112. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 2.
C. Vô số.
D. 3.
2
3
7n − 2n + 1
Câu 113. Tính lim 3
3n + 2n2 + 1
2
7
A. 0.
B. 1.
C. - .
D. .
3
3
3
2
Câu 114. Tìm giá trị của tham số m để hàm số y = −x + 3mx + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].

B. (−∞; −3].
C. [−1; 3].
D. [1; +∞).
Câu 115. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d song song với (P).
C. d ⊥ P.
D. d nằm trên P.
Trang 9/11 Mã đề 1


3
2
Câu 116. Giá
√ trị cực đại của hàm số√y = x − 3x − 3x + 2

A. −3 − 4 2.
B. 3 − 4 2.
C. −3 + 4 2.
2n − 3
bằng
Câu 117. Tính lim 2
2n + 3n + 1
A. 0.
B. +∞.
C. 1.

Câu 118. Tứ diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.


C. {3; 3}.


D. 3 + 4 2.

D. −∞.
D. {4; 3}.

Câu 119. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
12
6

4
12
Câu 120. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 1.
C. 6.

D. −1.

Câu 121. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R \ {1}.

D. D = R.

C. D = (0; +∞).

Câu 122. Cho hai hàm y = f (x), y = Z
g(x) có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
f 0 (x)dx =
g0 (x)dx.
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
Z
Z
0
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z

Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.

Câu 123. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
15
6
18
9
Câu 124. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là

3


a3 3
a3 3
2a
3
A.
.
B.
.
C. a3 3.
D.
.
3
6
3
Câu 125. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.423.000.
D. 102.016.000.
n−1
Câu 126. Tính lim 2
n +2
A. 2.
B. 0.
C. 1.
D. 3.

x−1
Câu 127. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng

√ đều ABI có hai đỉnh A, √
A. 2 3.
B. 2 2.
C. 2.
D. 6.
Câu 128. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 4.

C. 2.

D. 5.
Trang 10/11 Mã đề 1


Câu 129. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. 1 − sin 2x.
C. 1 + 2 sin 2x.

D. −1 + sin x cos x.

Câu 130. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị

nhỏ nhất
√M + m
√ của hàm số. Khi đó tổng

A. 8 3.
B. 8 2.
C. 7 3.
D. 16.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3.

D

5. A
7.

D
B


D

15.
D

C

B

17.

C
D

19.

B

20.
22.

6.

12. A

16.
18.

D


10. A

11. A
14.

4.
8.

C

9.

C

C

21. A

B

23.
D

24.

B
D

25.


26.

C

27.

28.

C

29.

D

31.

D

30.

B

32.

D

34.

35.


D

36. A

C

C

37.

C

38. A

39.

C

40.

D
D

41.

D

42.

43.


D

44.

45.

D

46. A

47.

B

B

48.

D

49.

D

50.

D

51.


D

52.

D

53.

B

54.

C

55.

D

56.

B

57.

D

58.

B


59.
61.

C
D
B

67.
69.

C

62. A

B

63.
65.

60.
64.

D

66.

D

68. A


C

70.

B
1

D


71.

C

72.

73.

C

74. A

75.
77.

D
D

83. A

85.

D
C

C

B

84.

B

86.

B

88.

B

94.

95. A

D
C
B

96. A

B

98. A
D

99.
101.

82.

92.

B

93.
97.

C

90.

89. A
91.

D

80.

B


87.

B

78.

B

79.
81.

76.

B

C

105.

104.
D

107.

D

102.

B


103.

C

100.

106.

C
B
D

108.

C

109. A

110.

B

111. A

112.

B

113.


114. A

C

115. A

116.

C

117. A

118.

C

119. A

120.

C

122.

C

121.

D


124. A

125. A

126.

B

127. A

128.

B

129. A

130.

D

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×