Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Tọa độ của một véc
tơ pháp tuyến của (P) là
A. (2; −1; −2).
B. (−2; 1; 2).
C. (2; −1; 2).
D. (−2; −1; 2).
Câu 2. √Hình nón có bán kính đáy
√ R, đường sinh l thì diện tích xung quanh của nó bằng
A. 2π l2 − R2 .
B. π l2 − R2 .
C. πRl.
D. 2πRl.
m
R
dx
Câu 3. Cho số thực dươngm. Tính I =
theo m?
2
0 x + 3x + 2
2m + 2
m+2
m+1
m+2
A. I = ln(
).
B. I = ln(
).
C. I = ln(
).
D. I = ln(
).
m+2
m+1
m+2
2m + 2
p
Câu 4. Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) 1 − y. Kết luận nào
sau đây là sai?
B. Nếux > 2 thìy < −15.
A. Nếu 0 < x < π thì y > 1 − 4π2 .
C. Nếux = 1 thì y = −3.
D. Nếu 0 < x < 1 thì y < −3.
Câu 5. Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến trên R.
A. m > e2 .
B. m > 2.
C. m ≥ e−2 .
D. m > 2e .
ax + b
Câu 6. Cho hàm số y =
có đồ thị như hình vẽ bên. Kết luận nào sau đây là sai?
cx + d
A. ab < 0 .
B. ad > 0 .
C. ac < 0.
D. bc > 0 .
Câu 7. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số
đã cho là
A. 3.
B. −1.
C. 2.
D. 0.
Câu 8. Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 7 − 6i có tọa độ là
A. (6; 7).
B. (−6; 7).
C. (7; −6).
D. (7; 6).
Câu 9. Cho khối lăng trụ đứng ABC · A′ B′C ′ √có đáy ABC là tam giác vuông cân tại B, AB = a. Biết
khoảng cách từ A đến mặt phẳng (A′ BC) bằng 36 a, thể tích khối lăng trụ đã cho bằng
√
√
√
√
A. 42 a3 ..
B. 22 a3 .
C. 2a3 .
D. 62 a3 .
Câu 10. Trong không gian Oxyz, cho điểm A(1; 2; 3). Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A. (−1; 2; 3).
B. (1; 2; −3).
C. (1; −2; 3).
D. (−1; −2; −3).
Câu 11. Cho hàm số y = ax+b
có đồ thị là đường cong trong hình bên. Tọa độ giao điểm của đồ thị hàm
cx+d
số đã cho và trục hoành là
A. (−2; 0).
B. (2; 0).
C. (0; 2).
D. (0; −2).
Câu 12. Tập nghiệm của bất phương trình log(x − 2) > 0 là
A. (3; +∞).
B. (−∞; 3).
C. (2; 3).
D. (12; +∞).
z
= 1. Biết rằng tập hợp các điểm biểu diễn số phức zlà một đường
Câu 13. Cho số phức zthỏa mãn
i + 2
trịn (C). Tính bán kính rcủa đường
√
√ trịn (C).
A. r = 1.
B. r = 3.
C. r = 5.
D. r = 2.
Câu 14. Cho hàm số y = f (x) xác định trên tập R và có f ′ (x) = x2 − 5x + 4. Khẳng định nào sau đây
đúng?
A. Hàm số đã cho đồng biến trên khoảng (−∞; 3).
Trang 1/5 Mã đề 001
B. Hàm số đã cho nghịch biến trên khoảng (1; 4).
C. Hàm số đã cho nghịch biến trên khoảng (3; +∞).
D. Hàm số đã cho đồng biến trên khoảng (1; 4).
Câu 15. Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Điểm cực đại của đồ thị
hàm số đã cho có tọa độ là
A. (−3; 0).
B. (1; −4).
C. (0; −3).
D. (−1; −4).
Câu 16. Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) và N( 3; 2; −1). Đường thẳng
MN có phương trình tham số là
A. x = 1 − ty = tz = 1 + t.
B. x = 1 + 2ty = 2tz = 1 + t.
C. x = 1 + ty = tz = 1 − t.
D. x = 1 + ty = tz = 1 + t.
R
Câu 17. Biết f (x)dx = sin 3x + C. Mệnh đề nào sau đây là mệnh đề đúng?
cos 3x
cos 3x
A. f (x) = −
.
B. f (x) = 3 cos 3x.
C. f (x) =
.
D. f (x) = −3 cos 3x.
3
3
Câu 18. Thể tích khối hộp chữ nhật có 3 kích thước là a; 2a;3a bằng
A. 2a3 .
B. 6a2 .
C. a3 .
D. 6a3 .
Câu 19. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 4 và 3.
B. 5 và 3.
C. 10 và 4.
D. 5 và 4.
Câu 20. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. π.
B. 4π.
C. 3π.
D. 2π.
Câu 21. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 2.
B. 0.
C. 1.
D. −1.
z
Câu 22. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác nhọn.
B. Tam giác OAB là tam giác vuông.
C. Tam giác OAB là tam giác đều.
D. Tam giác OAB là tam giác cân.
z − z
=2?
Câu 23. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một đường tròn.
B. Một đường thẳng.
C. Một Elip.
D. Một Parabol.
√
Câu 24. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 3.
B. max |z| = 6.
C. max |z| = 4.
D. max |z| = 7.
Câu 25. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của
√ z1 , z2 và số phức w√ = x + iy trên mặt phẳng phức. Để
√ tam giác MNP đều
√ là số phức k là
A. w = −√ 27 − i hoặcw =√− 27 + i.
B. w = 1 + √27i hoặcw = 1 − √ 27i.
C. w = 27 − i hoặcw = 27 + i.
D. w = 1 + 27 hoặcw = 1 − 27.
z − z