Kiểm tra LATEX
ĐỀ KIỂM TRA THPT MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001
Câu 1. Tìm tất cả các giá trị của tham số m để hàm số y = mx − sin xđồng biến trên R.
A. m ≥ 1.
B. m ≥ 0.
C. m > 1.
D. m ≥ −1.
Câu 2. Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục
tung.
1
1
B. Không tồn tại m.
C. 0 < m < .
D. m < 0.
A. m < .
3
3
Câu 3. Cho tứ diện đều ABCD có cạnh bằng a. Tính diện tích xung quanh của hình trụ có đáy là đường
trịn ngoại
tam giác BCD và√có chiều cao bằng chiều cao của tứ diện.
√ tiếp
√
2
√ 2
π 3.a2
2π 2.a
π 2.a2
.
B.
.
C. π 3.a .
.
A.
D.
3
2
3
R
Câu 4. Tính nguyên hàm cos 3xdx.
1
1
A. −3 sin 3x + C.
B. 3 sin 3x + C.
C. sin 3x + C.
D. − sin 3x + C.
3
3
−z
x
y
Câu 5. Cho x, y, z là ba số thực khác 0 thỏa mãn 2 = 5 = 10 . Giá trị của biểu thức A = xy + yz +
zxbằng?
A. 1.
B. 2.
C. 0.
D. 3.
3
a
Câu 6. Cho hình chóp đều S .ABCD có cạnh đáy bằng a và thể tích bằng . Tìm góc giữa mặt bên và
6
mặt đáy của hình chóp đã cho.
A. 450 .
B. 600 .
C. 1350 .
D. 300 .
2x + 2017
Câu 7. Cho hàm số y =
(1). Mệnh đề nào dưới đây là đúng?
x
+ 1
A. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x = −1..
B. Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và khơng có tiệm cận
đứng.
C. Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y = 2 và khơng có tiệm cận đứng.
D. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng
x = −1, x = 1..
Câu 8. Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét. Khi đó hình thang đã cho
có diện√tích lớn nhất bằng?
√
√
3
3 2
3 3 2
(m ).
B. 1 (m2 ).
C. 3 3(m2 ).
D.
(m ).
A.
4
2
Câu 9. Cho khối chóp S .ABCD có đáy ABCD là hình vng với AB = a, S A⊥(ABCD) và S A = 2a.
Thể tích của khối chóp đã cho bằng
2a3
a3
A.
.
B. 6a3 .
C. .
D. 2a3 .
3
3
Câu 10. Cho đa giac đêu 12 đinh. Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac. Xac suât đê 3đinh
đươc chon tao thanh tam giac đêu la
1
1
1
1
A. P = .
B. P = .
C. P =
.
D. P = .
4
55
220
14
R
Câu 11. Biết f (x)dx = sin 3x + C. Mệnh đề nào sau đây là mệnh đề đúng?
cos 3x
cos 3x
A. f (x) = 3 cos 3x.
B. f (x) = −3 cos 3x.
C. f (x) =
.
D. f (x) = −
.
3
3
Trang 1/4 Mã đề 001
Câu 12. Cho cấp số nhân (un ) với u1 = 3 và công bội q = −2. Số hạng thứ 7 của cấp số nhân đó là
A. 192.
B. −192.
C. 384.
D. −384.
Câu 13. Cho hàm số y = f (x) xác định trên tập R và có f ′ (x) = x2 − 5x + 4. Khẳng định nào sau đây
đúng?
A. Hàm số đã cho nghịch biến trên khoảng (3; +∞).
B. Hàm số đã cho đồng biến trên khoảng (1; 4).
C. Hàm số đã cho nghịch biến trên khoảng (1; 4).
D. Hàm số đã cho đồng biến trên khoảng (−∞; 3).
Câu 14. Cho hàm số y = f (x) là hàm số bậc 3 và có đồ thị như hình vẽ Giá trị cực tiểu của hàm số đã
cho bằng
A. 1.
B. 2.
C. −2.
D. −1.
Câu 15. Trên mặt phẳng tọa độ, cho M(2; 3) là điểm biểu diễn số phức z. Phần thực của z bằng
A. 3.
B. −2.
C. 2.
D. −3.
Câu 16. Có bao nhiêu số nguyên ysao cho ứng với mỗi số nguyên ycó tối đa 100 số nguyên xthỏa mãn
3y−2x ≥ log5 (x + y2 )?
A. 18.
B. 20.
C. 17.
D. 13.
Câu 17. Biết phương trình z2 + mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo. Khi đó tham số thực
m gần giá trị nào nhất trong các giá trị sau?
A. −4.
B. −1.
C. 2.
D. 5.
Câu 18. Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2 − 4z + 29 = 0. Độ
dài MN bằng bao nhiêu?
√
√
A. MN = 10.
B. MN = 10.
C. MN = 5.
D. MN = 2 5.
Câu 19. Biết z = 1 − 3i là một nghiệm của phương trình z2 + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng
A. −12.
B. 8.
C. 12.
D. −8.
Câu 20. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z2 −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?
√
13
13
A. T = 9.
B. T = 3.
C. T = .
D. T =
.
4
2
Câu 21. Biết z = 1 + 2i là một nghiệm phức của phương trình z2 + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
3
7
3
7
B. − .
C. − .
D. .
A. .
4
4
4
4
Câu 22. Tổng nghịch đảo các nghiệm của phương trình z4 −z3 −2z2 +6z−4 = 0 trên tập số phức bằng
1
3
3
1
A. .
B. .
C. − .
D. − .
2
2
2
2
Câu 23. Tìm tất cả các giá trị thực của tham số m để phương trình mz2 + 2mz − 3(m − 1) = 0 khơng có
nghiệm thực là
3
3
3
A. 0 < m < .
B. m ≥ 0.
C. 0 ≤ m < .
D. m < 0 hoặc m > .
4
4
4
Câu 24. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z3 −z2 +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao nhiêu?
√
√
A. P = 5.
B. P = 5.
C. P = 2 5.
D. P = 13.
Câu 25. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. -1.
B. 2.
C. 1.
D. -3.
Trang 2/4 Mã đề 001
R 1
Câu 26. Cho
dx = F(x) + C. Khẳng định nào dưới đây đúng?
x
1
1
B. F ′ (x) = − 2 .
C. F ′ (x) = lnx.
A. F ′ (x) = .
x
x
D. F ′ (x) =
2
.
x2
800π
. Gọi A và B là hai điểm thuộc
3
đường tròn đáy sao cho AB = 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng
√
√
24
5
A. .
B. 4 2.
C. 8 2.
D. .
5
24
2
′
Câu 28. Cho hàm số y = f (x) có đạo hàm f (x) = (x − 2) (1 − x) với mọi x ∈ R. Hàm số đã cho đồng
biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (−∞; 1).
C. (1; +∞).
D. (1; 2).
Câu 29. Xét các số phức z thỏa mãn
z2 − 3 − 4i