TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB có độ dài bằng
√
A. 2 2.
B. 6.
C. 2.
D. 2 3.
m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
Câu 2. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 135.
C. S = 22.
D. S = 32.
Câu 1. [3-1214d] Cho hàm số y =
Câu 3. Tứ diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {4; 3}.
D. {3; 3}.
1
Câu 4. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 ≤ m ≤ −1.
C. (−∞; −2] ∪ [−1; +∞). D. −2 < m < −1.
Câu 5. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; 8).
C. A(4; 8).
D. A(−4; −8)(.
Câu 6. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng (AB0C)
và (A0C√0 D) bằng
√
√
√
a 3
2a 3
a 3
.
B.
.
C.
.
D. a 3.
A.
2
3
2
Câu 7. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vuông góc
với (S BC).
√
√ là
√
√ Thể tích khối chóp S 3.ABC
a 3
a3 3
a3 2
a3 3
.
B.
.
C.
.
D.
.
A.
4
12
6
12
Z 1
Câu 8. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
4
0
B. 1.
1 − n2
bằng?
Câu 9. [1] Tính lim 2
2n + 1
1
1
A. − .
B. .
2
3
n−1
Câu 10. Tính lim 2
n +2
A. 3.
B. 1.
C.
1
.
2
D. 0.
C.
1
.
2
D. 0.
C. 0.
D. 2.
Câu 11.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.
A.
Z
C.
1
dx = ln |x| + C, C là hằng số.
x
B.
Z
D.
xα dx =
xα+1
+ C, C là hằng số.
α+1
0dx = C, C là hằng số.
d = 120◦ .
Câu 12. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 2a.
B. 3a.
C.
.
D. 4a.
2
Trang 1/11 Mã đề 1
Câu 13. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số nghịch biến trên khoảng (0; 1).
√
Câu 14. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. Vô số.
D. 64.
Câu 15. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Hai cạnh.
C. Bốn cạnh.
x−3
Câu 16. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. −∞.
C. 1.
D. Năm cạnh.
D. 0.
Câu 17. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {3}.
C. {5}.
D. {5; 2}.
Câu 18.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Câu 19. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≥ .
C. m ≤ .
D. m > .
4
4
4
4
cos n + sin n
Câu 20. Tính lim
n2 + 1
A. 1.
B. +∞.
C. −∞.
D. 0.
Câu 21. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 2.
C. 0.
4
3
√3
D. 3.
Câu 22. [1-c] Cho a là số thực dương .Giá trị của biểu thức a : a2 bằng
7
2
5
5
B. a 3 .
C. a 3 .
D. a 8 .
A. a 3 .
Z 3
x
a
a
Câu 23. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = −2.
C. P = 16.
D. P = 28.
Câu 24. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng 2n+1.
Câu 25. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = 21.
C. P = −10.
D. P = 10.
Câu 26. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 32π.
C. 16π.
D. 8π.
Trang 2/11 Mã đề 1
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 27. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 3
a3 3
a3 2
2
D.
A.
.
B.
.
C. 2a 2.
.
12
24
24
Câu 28. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
Câu 29. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 1587 m.
C. 387 m.
D. 27 m.
Câu 30. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là −4.
√
Câu 31. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 63.
C. 62.
D. 64.
√
Câu 32. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 108.
C. 36.
D. 6.
Câu 33. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Năm tứ diện đều.
Câu 34. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 4 mặt.
C. 6 mặt.
D. 3 mặt.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 35. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−3; +∞).
C. [−3; +∞).
D. (−∞; −3).
q
2
Câu 36. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
Câu 37. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
2x + 1
Câu 38. Tính giới hạn lim
x→+∞ x + 1
A. −1.
B. 2.
Câu 39. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 30.
C. Khối 20 mặt đều.
D. Khối tứ diện đều.
C. 1.
D.
C. 12.
D. 8.
1
.
2
Câu 40. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 6).
C. (2; 4; 3).
D. (2; 4; 4).
Trang 3/11 Mã đề 1
Câu 41. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. −7, 2.
C. 7, 2.
D. 72.
Câu 42. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
A. −2.
B. −7.
C. −4.
Câu 43. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.
B. 1.
C. 4.
Câu 44. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = S h.
B. V = 3S h.
C. V = S h.
2
1 − 2n
Câu 45. [1] Tính lim
bằng?
3n + 1
2
2
A. − .
B. 1.
C. .
3
3
Câu 46. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 13.
C. 9.
!4x
!2−x
2
3
≤
là
Câu 47. Tập các số x thỏa mãn
#
" 3 ! 2
"
!
2
2
2
A. −∞; .
; +∞ .
B.
C. − ; +∞ .
5
5
3
D.
1
3|x−1|
67
.
27
= 3m − 2 có nghiệm duy
D. 3.
1
D. V = S h.
3
D.
1
.
3
D. 0.
#
2
D. −∞; .
3
Câu 48. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là
√
3
3
3
3
4a 3
8a 3
a 3
8a 3
.
B.
.
C.
.
D.
.
A.
9
3
9
9
!x
1
1−x
Câu 49. [2] Tổng các nghiệm của phương trình 3 = 2 +
là
9
A. 1 − log2 3.
B. log2 3.
C. − log3 2.
D. − log2 3.
Câu 50. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 10.
C. 6.
D. 4.
Câu 51. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 70, 128 triệu đồng. C. 50, 7 triệu đồng.
D. 20, 128 triệu đồng.
Câu 52. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 5}.
C. {3; 4}.
D. {4; 3}.
Câu 53. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (−∞; −1) và (0; +∞). C. (−∞; 0) và (1; +∞). D. (0; 1).
Câu 54. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 + i 3
−1 − i 3
.
C. P =
.
D. P = 2.
A. P = 2i.
B. P =
2
2
Câu 55. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là −1, phần ảo là 4.
Trang 4/11 Mã đề 1
Câu 56. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 6510 m.
C. 1202 m.
D. 1134 m.
Câu 57. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 5.
!
1
1
1
+
+ ··· +
Câu 58. Tính lim
1.2 2.3
n(n + 1)
3
A. 1.
B. .
2
Câu 59. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 4.
C. 3.
D. 4.
C. 2.
D. 0.
C. 24.
D. 2.
Câu 60. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
√
√
2 3
.
B. 3.
C. 1.
D. 2.
A.
3
x3 − 1
Câu 61. Tính lim
x→1 x − 1
A. +∞.
B. −∞.
C. 0.
D. 3.
Câu 62. Dãy số
!n nào có giới hạn bằng 0?
−2
.
B. un = n2 − 4n.
A. un =
3
!n
6
C. un =
.
5
D. un =
n3 − 3n
.
n+1
3
Câu 63. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e.
C. e3 .
D. e2 .
Câu 64. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.
C. 4 mặt.
D. 6 mặt.
Câu 65. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 8.
D. 20.
C. 12.
Câu 66. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
x−3 x−2 x−1
x
Câu 67. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (2; +∞).
C. [2; +∞).
D. (−∞; 2).
Câu 68. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 2, 25 triệu đồng.
C. 2, 20 triệu đồng.
D. 3, 03 triệu đồng.
Câu 69. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 2.
C. y(−2) = −18.
D. y(−2) = 22.
Trang 5/11 Mã đề 1
Câu 70. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−1; 3].
C. [−3; 1].
D. (−∞; −3].
Câu 71. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 1.
C. 0.
D. 2.
Câu 72. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 7.
B. 5.
D. 0.
C. 9.
1
5
Câu 73. [2] Tập xác định của hàm số y = (x − 1) là
A. D = R.
B. D = (1; +∞).
C. D = (−∞; 1).
D. D = R \ {1}.
Câu 74. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. 3.
C. Vô số.
D. 1.
Câu 75. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).
B. (II) và (III).
Câu 76. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối 12 mặt đều.
C. (I) và (II).
D. Cả ba mệnh đề.
C. Khối tứ diện đều.
D. Khối bát diện đều.
Câu 77. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. n3 lần.
D. 2n2 lần.
d = 30◦ , biết S BC là tam giác đều
Câu 78. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
16
13
9
26
log 2x
Câu 79. [3-1229d] Đạo hàm của hàm số y =
là
x2
1
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
D. y0 =
.
3
2x ln 10
x ln 10
x
2x3 ln 10
Câu 80. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√
√ N, P bằng
√
√
20 3
14 3
A.
.
B. 8 3.
C. 6 3.
D.
.
3
3
Câu 81. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 82. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 14.
C. ln 12.
D. ln 10.
Trang 6/11 Mã đề 1
Câu 83. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.
B. 3.
C. 1.
D. 2.
Câu 84. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 85. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
3
10a
.
C. 20a3 .
D. 40a3 .
A. 10a3 .
B.
3
Câu 86. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = x + ln x.
C. y0 = 1 + ln x.
D. y0 = ln x − 1.
Câu 87. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {0}.
C. D = (0; +∞).
D. D = R \ {1}.
Câu 88. Dãy
!n số nào sau đây có giới
!n hạn là 0?
5
5
B.
.
A. − .
3
3
!n
4
C.
.
e
!n
1
D.
.
3
Câu 89. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 6.
C. 8.
D. 12.
Câu 90. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
A. 34.
.
C. 5.
B.
D. 68.
17
Câu 91. Bát diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {3; 3}.
D. {5; 3}.
√
Câu 92. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √
√
√
a3 3
a3 3
a3
3
A.
.
B.
.
C. a 3.
D.
.
4
3
12
Câu 93. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 72cm3 .
C. 27cm3 .
D. 64cm3 .
Câu 94. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 64cm3 .
C. 48cm3 .
D. 91cm3 .
Câu 95. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e + 1.
B. .
C. 3.
D. 2e.
e
Câu 96. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 3.
D. 2.
Trang 7/11 Mã đề 1
Câu 97. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
C. 6.
D. .
A. 9.
B. .
2
2
log2 240 log2 15
Câu 98. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. 1.
C. 4.
D. −8.
Câu 99. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 100. [3] Cho hàm số f (x) = ln 2017 − ln
x
2017
2016
4035
A. 2017.
B.
.
C.
.
D.
.
2018
2017
2018
x = 1 + 3t
Câu 101. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi
z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x
=
−1
+
2t
x
=
−1
+
2t
x
=
1
+
3t
x = 1 + 7t
A.
D.
.
y = −10 + 11t . B.
y = −10 + 11t . C.
y = 1 + 4t .
y=1+t
z = −6 − 5t
z = 6 − 5t
z = 1 − 5t
z = 1 + 5t
x+1
bằng
x→+∞ 4x + 3
1
B. .
3
Câu 102. Tính lim
A. 1.
C. 3.
D.
1
.
4
Câu 103. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.
B. 4.
C. 3.
log 2x
là
Câu 104. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 log 2x
1 − 4 ln 2x
1
0
0
A. y0 =
.
B.
y
=
.
C.
y
=
.
x3
2x3 ln 10
2x3 ln 10
D. 2.
D. y0 =
1 − 2 ln 2x
.
x3 ln 10
Câu 105. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
A. (1; 2).
B. 2; .
C.
;3 .
D. [3; 4).
2
2
√
ab.
Câu 106. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 6 lần.
C. Tăng gấp 8 lần.
D. Tăng gấp 4 lần.
Trang 8/11 Mã đề 1
Câu 107. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
.
B. 1.
C. .
D. 2.
A.
2
2
Câu 108. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
1
Câu 109. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. .
B. − .
C. 3.
D. −3.
3
3
Câu 110. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 20.
C. 30.
D. 8.
Câu 111. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
√
A. y = log 14 x.
B. y = loga x trong đó a = 3 − 2.
C. y = log √2 x.
D. y = log π4 x.
Câu 112.
thức nào sau đây√không có nghĩa
√ Biểu
−3
0
A. (− 2) .
B.
−1.
C. 0−1 .
D. (−1)−1 .
Câu 113. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3 3
a3 3
a3 3
a3
.
B.
.
C.
.
D.
.
A.
4
12
4
8
√
√
Câu 114. Phần thực
và
phần
ảo
của
số
phức
z
=
2
−
1
−
3i lần lượt√l
√
√
√
A. Phần thực là √2 − 1, phần ảo là √3.
B. Phần thực là 2 −√1, phần ảo là − √3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Câu 115. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
24
36
6
Câu 116. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
1
2
9
A.
.
B. .
C. .
D.
.
10
5
5
10
√
Câu 117. [12215d] Tìm m để phương trình 4 x+
9
3
A. 0 ≤ m ≤ .
B. 0 < m ≤ .
4
4
1−x2
√
− 4.2 x+
1−x2
− 3m + 4 = 0 có nghiệm
3
D. 0 ≤ m ≤ .
4
x−1 y z+1
Câu 118. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 2x − y + 2z − 1 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 10x − 7y + 13z + 3 = 0.
Câu 119. Tính lim
x→5
A. −∞.
x2 − 12x + 35
25 − 5x
2
B. − .
5
C. m ≥ 0.
C.
2
.
5
D. +∞.
Trang 9/11 Mã đề 1
Câu 120. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
√
√
a 2
a 2
B. 2a 2.
C.
.
D.
.
A. a 2.
4
2
[ = 60◦ , S O
Câu 121. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ O đến (S
√ BC) bằng
√
√
2a 57
a 57
a 57
A. a 57.
B.
.
C.
.
D.
.
19
19
17
√
Câu 122. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là
√
√
√
πa3 6
πa3 3
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
2
6
3
Câu 123. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 12.
C. 3.
D. 27.
Câu 124. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B. a3 .
C.
.
D.
.
A.
12
24
6
2n + 1
Câu 125. Tính giới hạn lim
3n + 2
2
1
3
B. .
C. 0.
D. .
A. .
2
3
2
2
Câu 126. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 1 − log2 3.
C. 1 − log3 2.
D. 3 − log2 3.
Câu 127. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. 1 nghiệm.
C. 2 nghiệm.
D. Vô nghiệm.
p
1
ln x
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 128. Gọi F(x) là một nguyên hàm của hàm y =
x
3
8
1
8
1
A. .
B. .
C. .
D. .
3
9
9
3
Câu 129. [4-1245d] Trong tất cả
√ các số phức z thỏa mãn√hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
C. 2.
D. 1.
A. 2.
B. 10.
Câu 130. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 5.
C. 3.
D. 2.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2.
3.
D
4.
B
6.
B
5.
7.
C
B
9. A
11.
B
13.
D
D
8.
C
10.
C
12.
C
14. A
16.
15. A
D
17.
C
18. A
19.
C
20.
21.
C
22.
C
23. A
24.
C
25. A
27.
28. A
29.
30. A
31.
32. A
33.
34.
D
36.
D
B
D
C
B
35. A
C
37.
B
38.
B
39.
40.
B
41.
B
43.
B
42. A
C
44.
D
45. A
46.
D
47.
48.
D
49.
D
51.
D
50. A
52.
53. A
B
54.
56.
C
D
55. A
57.
B
58. A
D
59. A
60.
61.
D
62. A
D
63. A
65.
D
66.
67.
C
68. A
69.
C
70.
1
C
C
71.
73.
72.
C
B
74. A
75.
C
76. A
77.
C
78.
79.
B
80.
81.
B
82.
83.
D
C
85.
C
B
C
B
84.
C
86.
C
D
88.
87. A
89.
D
91. A
90.
B
92.
B
93.
C
94.
B
95.
C
96.
B
97.
99.
101.
C
100.
B
D
D
C
104.
105.
C
106.
107.
D
B
111.
D
108.
B
110.
B
114.
115. A
D
117.
C
112.
C
113.
B
102.
103.
109.
D
98.
B
C
B
116.
D
118.
D
119.
C
120.
D
121.
C
122.
D
123.
C
124. A
125.
127.
129.
B
126. A
128.
C
D
130.
2
C
D