Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
R5
dx
Câu 1. Biết
= ln T. Giá trị của T là:
2x − 1
1
√
A. T = 3.
B. T = 9.
C. T = 3.
D. T = 81.
1
; y = 0; x = 0; x =
Câu 2. Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y =
(x + 1)(x + 2)2
t(t > 0). Tìm lim S (t).
t→+∞
1
1
1
1
A. − ln 2.
B. − ln 2 − .
C. ln 2 + .
D. ln 2 − .
2
2
2
2
3
Câu 3. Cho hàm số y =
x
− mx + 5. Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực trị.
A. 2.
B. 1.
C. 4.
D. 3.
Câu 4. Giá trị nhỏ nhất của hàm số y = 2x + cos xtrên đoạn [0; 1] bằng?
A. 0.
B. −1.
C. 1.
D. π.
Câu 5. Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình vng.
Tính thể tích của khối trụ.
A. 2π.
B. 4π.
C. π .
D. 3π.
√
Câu 6. Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a 3. Tính khoảng cách giữa hai
đường thẳng BB′ và AC ′ .
√
√
√
√
a 3
a 2
a 3
A. a 3.
B.
.
C.
.
D.
.
2
2
4
Câu 7. Trong không gian Oxyz, cho đường thẳng d : x−1
= y−2
= z+3
. Điểm nào dưới đây thuộc d?
2
−1
−2
A. M(2; −1; −2).
B. Q(1; 2; −3).
C. N(2; 1; 2).
D. P(1; 2; 3).
Câu 8. Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với mọi x ∈ R. Hàm số đã cho đồng
biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. (1; +∞).
D. (1; 2).
Câu 9. Cho cấp số nhân (un ) với u1 = 2 và công bội q = 12 . Giá trị của u3 bằng
A. 41 .
B. 12 .
C. 27 .
D. 3.
Câu 10. Cho hàm số y = f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
A. (0; 2).
B. (1; 3).
C. (3; +∞).
D. (−∞; 1).
Câu 11. Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị
hàm số đã cho có tọa độ là
A. (0; 1).
B. (−1; 2).
C. (1; 0).
D. (1; 2).
Câu 12. Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời
tổng hai số ghi trên chúng là số chẵn bằng
A. 18
.
B. 354 .
C. 359 .
D. 71 .
35
Câu 13. Cho khối lăng trụ đứng ABC.A′ B′C ′ √
có đáy ABC là tam giác vuông cân tại A,AB = a. Biết
3
khoảng cách từ A đến mặt phẳng (A′ BC) bằng
a. Tính thể tích của khối lăng trụ ABC.A′ B′C ′
3
Trang 1/5 Mã đề 001
a3
A. .
2
a3
B. .
6
√
a3 2
C.
.
6
√
a3 2
D.
.
2
Câu 14. Có bao nhiêu số nguyên ysao cho ứng với mỗi số nguyên ycó tối đa 100 số nguyên xthỏa mãn
3y−2x ≥ log5 (x + y2 )?
A. 17.
B. 18.
C. 13.
D. 20.
Câu 15. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) và mặt phẳng (P) : 2x+2y−z+9 = 0.
Đường thẳng d đi qua A và có vectơ chỉ phương ⃗u = (3; 4; −4) cắt (P) tại B. Điểm M thay đổi trong (P)
sao cho M ln nhìn đoạn AB dưới góc 90o . Khi độ dài MB lớn nhất, đường thẳng MB đi qua điểm nào
trong các điểm sau?
A. J(−3; 2; 7).
B. I(−1; −2; 3).
C. H(−2; −1; 3).
D. K(3; 0; 15).
Câu 16. Choa,b là các số dương, a , 1sao cho loga b = 2, giá trị của loga (a3 b) bằng
3
A. .
B. 3.
C. 3a.
D. 5.
2
Câu 17. Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) và N( 3; 2; −1). Đường thẳng
MN có phương trình tham số là
A. x = 1 + ty = tz = 1 + t.
B. x = 1 + 2ty = 2tz = 1 + t.
C. x = 1 − ty = tz = 1 + t.
D. x = 1 + ty = tz = 1 − t.
Câu 18. Cho hàm số y = f (x) xác định trên tập R và có f ′ (x) = x2 − 5x + 4. Khẳng định nào sau đây
đúng?
A. Hàm số đã cho nghịch biến trên khoảng (3; +∞).
B. Hàm số đã cho đồng biến trên khoảng (−∞; 3).
C. Hàm số đã cho đồng biến trên khoảng (1; 4).
D. Hàm số đã cho nghịch biến trên khoảng (1; 4).
Câu 19. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 1)2 + (y − 4)2 = 125.
B. (x + 1)2 + (y − 2)2 = 125.
C. (x − 5)2 + (y − 4)2 = 125.
D. x = 2.
Câu 20. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 10 và 4.
B. 5 và 4.
C. 4 và 3.
D. 5 và 3.
Câu 21. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 5.
B. r = 22.
C. r = 20.
D. r = 4.
−2 − 3i
Câu 22. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1
= 1.
3 − 2i
√
A. max |z| = 3.
B. max |z| = 1.
C. max |z| = 2.
D. max |z| = 2.
z
Câu 23. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác đều.
B. Tam giác OAB là tam giác nhọn.
C. Tam giác OAB là tam giác cân.
D. Tam giác OAB là tam giác vuông.
Câu 24. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.
√
√
√
A. max T = 3 2.
B. max T = 2 10.
C. max T = 2 5.
D. max T = 3 5.
√
Câu 25. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
3
1
3
A. |z| > 2.
B. |z| < .
C. ≤ |z| ≤ 2.
D. < |z| < .
2
2
2
2
Trang 2/5 Mã đề 001
Câu 26. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó√ độ dài của MN là
√
A. MN = 4.
B. MN = 5.
C. MN = 5.
D. MN = 2 5.
Câu 27. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 1)2 + (y − 4)2 = 125.
B. (x + 1)2 + (y − 2)2 = 125.
C. x = 2.
D. (x − 5)2 + (y − 4)2 = 125.
Câu 28. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 22.
B. r = 5.
C. r = 4.
D. r = 20.
Câu 29. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 5 = 0.
B. x − y + 8 = 0.
C. x − y + 4 = 0.
D. x + y − 8 = 0.