Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
x−1
y+2
z
Câu 1. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
=
= . Viết phương
1
−1
2
trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vng góc với d.
A. (P) : x − y + 2z = 0. B. (P) : x − 2y − 2 = 0. C. (P) : x + y + 2z = 0. D. (P) : x − y − 2z = 0.
√
Câu 2. Tìm tất cả các khoảng đồng biến của hàm số y = x − 2 x + 2017.
1
1
A. (0; ).
B. (0; 1).
C. (1; +∞) .
D. ( ; +∞).
4
4
Câu 3. Giá trị nhỏ nhất của hàm số y = 2x + cos xtrên đoạn [0; 1] bằng?
A. π.
B. 1.
C. 0.
D. −1.
2x + 2017
(1). Mệnh đề nào dưới đây là đúng?
Câu 4. Cho hàm số y =
x
+ 1
A. Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y = 2 và không có tiệm cận đứng.
B. Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và khơng có tiệm cận
đứng.
C. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x = −1..
D. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng
x = −1, x = 1..
Câu 5. Đường cong trong hình bên là đồ thị của hàm số nào?
A. y = x4 + 1.
B. y = −x4 + 1 .
C. y = x4 + 2x2 + 1 .
D. y = −x4 + 2x2 + 1 .
Câu 6. Cho x, y, z là ba số thực khác 0 thỏa mãn 2 x = 5y = 10−z . Giá trị của biểu thức A = xy + yz +
zxbằng?
A. 2.
B. 3.
C. 1.
D. 0.
Câu 7. Có bao nhiêu số nguyên x thỏa mãn log3
A. 92.
B. 184.
x2 −16
343
< log7
C. 186.
x2 −16
?
27
D. 193.
Câu 8. Trên khoảng (0; +∞), đạo hàm của hàm số y = log3 x là:
A. y′ = 1x .
B. y′ = − x ln1 3 .
C. y′ = x ln1 3 .
D. y′ =
Câu 9. Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
A. ln a.
B. ln 23 .
C. ln 6a2 .
D. ln 23 .
Câu 10. Tiệm cận ngang của đồ thị hàm số y =
A. y = − 23 .
B. y = − 31 .
ln 3
.
x
2x+1
3x−1
là đường thẳng có phương trình:
C. y = 32 .
D. y = 13 .
Câu 11. Cho hàm số y = f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R.
Diện tích hình phẳng giới hạn bởi các đường y = f (x) và y = f ′ (x) bằng
A. 25 .
B. 14 .
C. 21 .
D. 43 .
Câu 12. Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π
. Gọi A và B là hai điểm thuộc
3
đường tròn đáy sao cho AB = 12,
√ khoảng cách từ tâm của√đường tròn đáy đến mặt24phẳng (S AB) bằng
5
A. 24 .
B. 4 2.
C. 8 2.
D. 5 .
√
√
a 2
Câu 13. Cho hình chóp đều S .ABCD có cạnh đáy bằng a 2 và đường cao S H bằng
. Tính góc
2
giữa mặt bên (S DC) và mặt đáy.
A. 90o .
B. 30o .
C. 45o .
D. 60o .
Trang 1/5 Mã đề 001
−
→
Câu 14. Trong không gian Oxyz, cho hai mặt phẳng
√ (P) và (Q) lần lượt có hai vectơ pháp tuyến là nP và
3
−
−
→ −
→
n→
Góc giữa hai mặt phẳng (P) và (Q) bằng.
Q . Biết cosin góc giữa hai vectơ nP và nQ bằng −
2
◦
◦
A. 30 .
B. 45 .
C. 60◦ .
D. 90◦ .
2
Câu 15. Trên tập số phức, cho phương trình z2 + 2(m − 1)z +
m
2 +
2m
2 = 0. Có bao nhiêu tham số m để
phương trình đã cho có hai nghiệm phân biệt z1 ; z2 thõa mãn
z1