Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (981)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.53 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

1 + 2 + ··· + n
Câu 1. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
B. lim un = 1.
A. lim un = .
2
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 0.
Câu 2. Dãy số nào sau đây có giới hạn khác 0?
sin n
n+1
A.
.
B.
.
n
n

1
C. √ .


n

D.

1
.
n


Câu 3. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên S A
vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng (S BD)
bằng



3a
3a 38
a 38
3a 58
A.
.
B.
.
C.
.
D.
.
29
29
29

29
x−2
Câu 4. Tính lim
x→+∞ x + 3
2
A. −3.
B. 2.
C. 1.
D. − .
3
0 0 0 0
Câu 5. [3] Cho hình lập phương ABCD.A B C D có cạnh bằng a. Khoảng cách giữa hai mặt phẳng (AB0C)
và (A0C 0√
D) bằng



2a 3
a 3
a 3
A.
.
B.
.
C. a 3.
D.
.
2
2
3

Câu 6. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
1
Câu 7. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. 2.
C. −2.
D. 1.
2n + 1
Câu 8. Tính giới hạn lim
3n + 2
3
1
2
A. .
B. 0.
C. .
D. .
2
2
3
Câu 9. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 30.
C. 8.
D. 20.

Câu 10. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = (0; +∞).

C. D = R \ {0}.

Câu 11. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (−∞; −1).
C. (1; +∞).
2,4

Câu 12. [1-c] Giá trị của biểu thức 3 log0,1 10
A. 0, 8.
B. 7, 2.

bằng
C. 72.

D. D = R.
D. (−1; 1).
D. −7, 2.

Câu 13. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là

3
3

2a 6
a 6
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
9
12
4
2
Trang 1/11 Mã đề 1


[ = 60◦ , S O
Câu 14. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ BC) bằng

√ Khoảng cách từ O đến (S

a 57
2a 57
a 57
B.

A. a 57.
.
C.
.
D.
.
19
17
19



x=t




Câu 15. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .

4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z − 3) = .
D. (x + 3) + (y + 1) + (z + 3) = .
4
4
Câu 16. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là −1, phần ảo là 4.
Câu 17. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lập phương.
C. Hình lăng trụ.

D. Hình chóp.

[ = 60◦ , S A ⊥ (ABCD).
Câu 18. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối chóp S .ABCD là



a3 2
a3 3
a3 2
3
.
B.
.
C. a 3.
.
D.
A.
12
4
6
x−1 y z+1
Câu 19. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 10x − 7y + 13z + 3 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x + y − z = 0.
Câu 20. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng

A. f 0 (0) = 1.

B. f 0 (0) = 10.

Câu 21. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.

1
.
ln 10

C. f 0 (0) = ln 10.

D. f 0 (0) =

C. Khối 12 mặt đều.

D. Khối tứ diện đều.

Câu 22. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp

√ S .ABCD là
3
3

a3 2
a
3

a
3
A.
.
B. a3 3.
C.
.
D.
.
2
2
4
Câu 23. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là



a3 15
a3 6
a3 5
3
A.
.
B. a 6.
C.
.
D.
.
3
3

3
Câu 24. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (2; 1; 6).
C. ~u = (1; 0; 2).
D. ~u = (3; 4; −4).
Trang 2/11 Mã đề 1


Câu 25. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
Câu 26. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.

C. Khối 12 mặt đều.

D. Khối tứ diện đều.

C. {4; 3}.


D. {3; 4}.

x2 −4x+5

= 9 là
C. 5.
D. 4.

Câu 28. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. Vô số.
D. 64.
2x + 1
Câu 29. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. 1.
C. −1.
D. .
2
2
2
Câu 30. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7

A. 6.
B. 9.
C. .
D. .
2
2
0 0 0
Câu 31. [3-1122h] Cho hình lăng trụ ABC.A B C có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.

A.
24
6
12
36
Câu 32. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. Vô số.
C. 1.
D. 3.
Câu 27. [2] Tổng các nghiệm của phương trình 3
A. 2.
B. 3.

Câu 33. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 3).
C. (1; 3; 2).
D. (2; 4; 4).
Câu 34. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 12 năm.
C. 13 năm.
D. 11 năm.
Câu 35. Cho hình chóp S .ABCD có √

đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
S
H

(ABCD),
S
A
=
a
5. Thể tích khối chóp √
S .ABCD là

3
3
3
2a 3
2a
4a 3
4a3
A.
.
B.
.
C.
.
D.
.
3
3

3
3
1
Câu 36. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e − 1.
B. xy = e + 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
x+2
Câu 37. Tính lim
bằng?
x→2
x
A. 0.
B. 1.
C. 2.
D. 3.
Câu 38. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 + 1; m = 1.
C. M = e−2 + 2; m = 1.
D. M = e−2 − 2; m = 1.
Trang 3/11 Mã đề 1



Câu 39. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
A. −2.
B. − .
C. 2.
2
Câu 40. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 27.
C. 3.

D.

1
.
2

D. 12.

Câu 41. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 3.
C. 8.
D. 4.
x−3
bằng?
Câu 42. [1] Tính lim
x→3 x + 3

A. +∞.
B. 0.
C. 1.
D. −∞.
Câu 43. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
D. log2 a =
.
A. log2 a = − loga 2.
B. log2 a = loga 2.
C. log2 a =
log2 a
loga 2
Câu 44. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4 − 2e
4e + 2

4e + 2
4 − 2e
1 − 2n
Câu 45. [1] Tính lim
bằng?
3n + 1
2
2
1
A. .
B. 1.
C. − .
D. .
3
3
3
Câu 46. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
1637
1728
23
A.
.
B.
.
C.
.
D.
.

4913
4913
4913
68
Câu 47. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 + ln x.
C. y0 = ln x − 1.
D. y0 = 1 − ln x.
Câu 48. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
.
B.
.
C.
.
D. a 6.
A.
6
3
2
3
2
Câu 49. Cho hàm số y = x − 2x + x + 1.

! Mệnh đề nào dưới đây đúng?
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3
!
!
1
1
C. Hàm số nghịch biến trên khoảng −∞; .
D. Hàm số nghịch biến trên khoảng ; 1 .
3
3
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m < 0 ∨ m = 4.
D. m ≤ 0.



x = 1 + 3t




Câu 51. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua





z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương


 trình là









x = 1 + 7t
x = −1 + 2t
x = −1 + 2t
x = 1 + 3t

















C. 
.
D. 
A. 
y = 1 + 4t .
y=1+t
y = −10 + 11t .
y = −10 + 11t . B. 

















z = −6 − 5t
z = 6 − 5t
z = 1 − 5t
z = 1 + 5t
Câu 50. [1226d] Tìm tham số thực m để phương trình

Trang 4/11 Mã đề 1


Câu 52. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
D. −7.
A. −2.
B. −4.
C.
27
Câu 53. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 54. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m ≥ 0.
C. m > 1.


D. m > −1.

Câu 55. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. −4.
C. 4.

D. −2.

Câu 56. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Chỉ có (I) đúng.

C. Cả hai câu trên đúng. D. Chỉ có (II) đúng.

Câu 57. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3

a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
8
4
12
Câu 58. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.
C. 6 mặt.
D. 4 mặt.
1
Câu 59. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.

Câu 60. Thể tích của khối lập phương có cạnh bằng a 2




2a3 2
3
3
3
A. V = a 2.
B. 2a 2.
C. V = 2a .
D.
.
3
Câu 61. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 6, 12, 24.
B. 2 3, 4 3, 38.
C. 8, 16, 32.
D. 2, 4, 8.
Câu 62. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
2mx + 1
1
Câu 63. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3

A. −5.
B. −2.
C. 0.
D. 1.
Câu 64. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 8.

C. 12.

D. 20.
q
Câu 65. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].
C. m ∈ [−1; 0].
D. m ∈ [0; 2].
Trang 5/11 Mã đề 1


Câu 66. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2

a 2
B.
D.
.
C. a 2.
.
A. 2a 2.
4
2
Câu 67. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 27.
B. 9.
C. 8.
D. 3 3.
Câu 68. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
1
1
2
B.
.
C.
.
D. .
A. .
5
10
10
5

 π
Câu 69. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


1 π3
3 π6
2 π4
A. 1.
B. e .
C.
D.
e .
e .
2
2
2
Câu 70. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Ba cạnh.
C. Bốn cạnh.
D. Hai cạnh.
x+3
nghịch biến trên khoảng
Câu 71. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 1.
B. 3.
C. 2.

D. Vô số.
π
Câu 72. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

B. T = 2.
C. T = 2 3.
D. T = 4.
A. T = 3 3 + 1.
Câu 73. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
8a
5a
a
A.
.
B.
.
C.
.
D. .
9
9
9
9

x
Câu 74. [1] Phương trình log2 4x − log 2 2 = 3 có bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.
D. 1 nghiệm.
Câu 75. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 12.

C. 6.

D. 8.

Câu 76. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 10.

C. 12.

D. 6.

Câu 77. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?

α

= aβ .
β
a
Câu 78. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các

mệnh đề sau

A. aα bα = (ab)α .

B. aαβ = (aα )β .

C. aα+β = aα .aβ .

D.

(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (I) và (II).

C. Cả ba mệnh đề.

D. (II) và (III).
Trang 6/11 Mã đề 1


Câu 79. Tính lim
x→3

A. 3.

x2 − 9

x−3

B. 6.

D. +∞.

C. −3.

Câu 80. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Khơng có.
C. Có một.
D. Có hai.
2

Câu 81. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
A. 2 .
B. 3 .
C. √ .
e
e
2 e

D.

1

.
2e3

Câu 82. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
9
13
5
B. −
.
C.
.
D.
.
A. − .
16
100
25
100
Câu 83. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 14.
C. ln 10.
D. ln 4.


Câu 84.

√ Tìm giá trị lớn nhất của hàm

√ số y = x + 3 + 6 − x
A. 2 3.
B. 2 + 3.
C. 3.
D. 3 2.
Câu 85. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 86. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (−1; −7).
C. (2; 2).
Câu 87.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.

f (x)dx = F(x) + C ⇒
!0
f (x)dx = f (x).

f (t)dt = F(t) + C. B.

Z
Z


D.

k f (x)dx = k

D. (0; −2).
Z

f (x)dx, k là hằng số.
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.

d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 88. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 2
a3 3
2
A.
.
B.
.
C. 2a 2.
.
D.

12
24
24
Câu 89. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 4 mặt.

D. 5 mặt.

Câu 90. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng 2n+1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng 2n.
Câu 91. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. Không tồn tại.
C. −5.

D. −3.

Câu 92. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 3.
C. 0.

D. 2.

Câu 93. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là

A. 2e4 .
B. 2e2 .
C. −e2 .
D. −2e2 .
Trang 7/11 Mã đề 1


Câu 94. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
.
D. .
A. 2.
B. 1.
C.
2
2
2
Câu 95. [3-1224d] Tìm tham số thực m để phương trình log3 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m < .
C. m ≤ .
D. m > .
4
4
4

4
2
4
3
Câu 96. Cho z là√nghiệm của phương trình√ x + x + 1 = 0. Tính P = z + 2z − z
−1 − i 3
−1 + i 3
A. P =
.
B. P =
.
C. P = 2.
D. P = 2i.
2
2


Câu 97. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3
3

a 3
3
a3
a
A.
.

B. a3 3.
.
D.
.
C.
12
3
4
x2
Câu 98. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
D. M = e, m = .
A. M = e, m = 0.
B. M = e, m = 1.
C. M = , m = 0.
e
e
Câu 99. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối 20 mặt đều.
D. Khối bát diện đều.
Câu 100. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −15.
B. −5.
C. −9.
D. −12.

Câu 101. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 4 lần.
C. Tăng gấp 8 lần.
D. Tăng gấp 6 lần.
5
Câu 102. Tính lim
n+3
A. 3.
B. 0.
C. 2.
D. 1.
√3
Câu 103. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. 3.
B. .
C. − .
D. −3.
3
3
x2 − 5x + 6
Câu 104. Tính giới hạn lim
x→2
x−2
A. −1.
B. 5.
C. 1.

D. 0.

Câu 105. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 46cm3 .
C. 72cm3 .
D. 27cm3 .
6
Câu 106. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
. Tính
3x
+
1
Z 1
f (x)dx.
0

A. −1.

B. 2.

C. 4.

D. 6.
2

2

sin x

Câu 107.
+ 2cos x lần lượt
√ [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm√số f (x) = 2
√ là
A. 2 và 3.
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 2 2.
d = 120◦ .
Câu 108. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A.
.
B. 2a.
C. 3a.
D. 4a.
2

Trang 8/11 Mã đề 1


Câu 109. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 12 cạnh.

C. 9 cạnh.
D. 10 cạnh.

Câu 110. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả

bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. 64.
D. Vô số.
1
Câu 111. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 4.
C. 3.
D. 1.
Câu 112. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 210 triệu.
C. 212 triệu.
D. 220 triệu.
Câu 113. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = (−2; 1).
C. D = R \ {1; 2}.
2

D. D = R.


Câu 114. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối lăng trụ tam giác.
Câu 115. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d nằm trên P hoặc d ⊥ P.
C. d ⊥ P.
D. d song song với (P).
Câu 116. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Tứ diện đều.
B. Thập nhị diện đều. C. Bát diện đều.
D. Nhị thập diện đều.
Câu 117. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 118. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; +∞).
C. (−∞; 0) và (2; +∞). D. (0; 2).
Câu 119. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m = 0.
C. m < 0.

D. m > 0.


Câu 120. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 3.

D. 5.

C. 2.

Câu 121. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 3, 5 triệu đồng.
C. 20, 128 triệu đồng. D. 70, 128 triệu đồng.
Câu 122. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a 3
a
a
A. .
B.
.
C. .
D. a.
3
2
2
Trang 9/11 Mã đề 1



mx − 4
Câu 123. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 45.
C. 34.
D. 26.
Câu 124. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√ hình chóp S .ABCD với
√tích là
√mặt phẳng (AIC) có diện
2
2
2
2
11a
a 2
a 7
a 5
A.
.
B.
.
C.
.
D.

.
32
4
8
16
Câu 125. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 120 cm2 .
d = 300 .
Câu 126. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.

3

3a 3
a3 3
3
3
A. V =
.
B. V = 6a .
C. V = 3a 3.
D. V =
.
2

2
Câu 127. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {4; 3}.
D. {3; 4}.




Câu 128. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3
9
A. m ≥ 0.
B. 0 ≤ m ≤ .
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
4
4
4
2
Câu 129. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x và y = x.
9
11
.
B. 5.
C. .
D. 7.
A.

2
2
Câu 130. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có một hoặc hai.
C. Có một.
D. Có hai.
2

2

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

B

3.

D


4.

C

5.

D

6.

C

7.

C

8.

D

9.

D

10.

D

11.


D

12.

D

13.

B

14.

B

15.

B

16.

B

18.

B

17. A
19.

B


21.

D

23.
25.

C
D

C

24.

C

C

B
D

32. A

33. A

34.

35.


D

37.

B

36. A
38.

C

39. A

D

40.
42.

B

43.

D

45.

C
B

44.


C

46.

C
B

48. A

B

49.

D

50.

51. A

C

52. A

53.

54.

C


55.

D

D

56.

B

C

58. A

59.

D

60.

61. A

B

62.

63.

C


64. A

65.

C

66.

67.

D

30.

31.

57.

22.

28.

29. A

47.

C

26.


B

27.

41.

20.

D

68.
1

C
D
B


69.

D

70.

71.

B

72.


73.

B

74.

75.

B

76. A

77.
79.

D

78.
82.

B

85.

C

87.

D


91.

D

95.

C

96.

97.

C

98. A

99.

C

100.

101.

C

102.

B


D
C
C
D
B

104. A
D

105.

106.

C
D

110. A

111.

D

112.

113.

D

114. A


B

116.

117.

C

108. A

109.

D

C
B

118.

119. A

C

120. A

121.

C

122.


123.

C

124.

125.

C

126. A

129.

B

92.
94. A

127.

B

86.

C

115.


D

90.

B

107.

B

D

93.

103.

C

84.
88.

C

89.

D

80.

B


81. A
83.

B

B
C

2

D
C

128.

B

130.

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×