UNIVERSITY OF TRANSPORT AND COMMUNICATIONS
INTERNATIONAL EDUCATION FACULTY
----------------
GRADUATION THESIS
Supervisor
: Assoc.Prof.Dr. Do Anh Tu
Examiner
:
Student
:
Class
: R&B Engineering K58
Ha Noi – 2022
DONG QUANG PHUC
R&B ENGINEERING K58
PREFACE
In the era of country development, we need to build more and more structures
to serve the demand of human life. In which, Transportation is one of the most
important fields that considered with large investment and concern of society. We
need to get much more skillful engineers to update modern technologies of the world
and build for us many modern structures with high quality and aesthetic.
Transportation is one of the most important sectors that contribute to the development
of a nation. Constructing structures such as bridges, tunnel, or highway helps to
connect all the areas, improves the development of socio-eco, politics, and defense.
The future of transportation sector is not only the increasing of transport systems,
transportation infrastructure… but also the education for new engineer generation. By
take into account in education for future generation, we will have a sustainable
development in human resource. That is the first condition for the development of
transportation sector in the future.
After 5 year learnt in the University of Transport and Communications, with the
willing of myself and the whole-heart teaching of my teachers, I have been grant many
experiences with help me in the future.
This graduation project is the result of 5 years studied in this University. It is
the summary of my studying process. My special thanks to my supervisor
Assoc.Prof.Dr. Do Anh Tu and also to PhD. Nguyen Van Hau, who helped me a lot to
finish my graduation thesis.
During the process to finish my graduation project, because of the time and my
limited knowledge, so there will be some mistakes. I hope I can get the advice of our
lecturers to make my graduation project finished.
Thank you for all
Hanoi, June 2022
1
DONG QUANG PHUC
R&B ENGINEERING K58
Dong Quang Phuc
COMMENT OF SUPERVISOR
1. EVALUATION OF CONTENT AND QUALITY OF REPORT:
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
2. EVALUATION OF WORKING ATTITUDE OF STUDENT:
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
3. CONCLUSION:
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
Hanoi, June 2022
MAIN SUPERVISOR
2
DONG QUANG PHUC
R&B ENGINEERING K58
COMMENT OF EXAMINER
1. EVALUATION OF CONTENT AND QUALITY OF REPORT:
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
2. CONCLUSION:
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
Hanoi, June 2022
EXAMINER
3
DONG QUANG PHUC
R&B ENGINEERING K58
TABLE OF CONTENTS
GENERAL INTRODUCTION.................................................................................................13
CHAPTER 1: PLAN 1..............................................................................................................14
CANTILEVER BALANCED BRIDGE CONSTRUCTION...................................................14
1.1.
OVERVIEW
OF
TECHNOLOGY
OF
BALANCED
CASTING
MANUFACTURING TECHNOLOGY................................................................................14
1.1.1. History.............................................................................................................................14
1.1.2. Advantages and disadvantages and scope of application...............................................14
1.2. GENERAL INTRODUCTION OF THE OPTION......................................................14
1.2.1. Design standards.............................................................................................................14
1.2.2. Natural conditions at the bridge construction site...........................................................14
1.2.2. Structural Diagram..........................................................................................................15
1.3. CALCULATION DATA.................................................................................................15
1.3.1. The gauge of the bridge..................................................................................................15
1.3.2. Boat clearance level........................................................................................................15
1.3.3. Design load.....................................................................................................................15
1.3.4. Geometrical elements of the bridge................................................................................16
1.3.5. Material Design...............................................................................................................16
1.4. CALCULATION FACTORS.........................................................................................16
1.4.1. Load factor......................................................................................................................16
1.4.2. Shock factor....................................................................................................................16
1.4.3. Lanes factor.....................................................................................................................16
1.5. DIMENSIONS OF THE MAIN GIRDER.....................................................................17
1.5.1. Main girder construction.................................................................................................17
1.5.4. Structure of the bridge deck coating...............................................................................20
1.6. DETERMINATION OF LOADING PROVINCE ACTING ON MAIN GIRDER. .20
1.6.1. Static load stage 1...........................................................................................................20
1.6.2. Static load stage 2...........................................................................................................21
1.7. CALCULATION OF INTERNAL FORCE..................................................................22
4
DONG QUANG PHUC
R&B ENGINEERING K58
1.7.1. Calculation principles.....................................................................................................22
1.7.2. Calculation of internal force...........................................................................................22
1.8. CALCULATION AND PLACEMENT OF STEEL REINFORCATION FOR MAIN
BEAM.......................................................................................................................................29
1.8.1. Calculation and arrangement of reinforcement for mid-span section.............................29
1.8.3. Calculation and arrangement of reinforcement for the section on the top of the cylinder
...................................................................................................................................................33
1.9. CALCULATION OF ABUTMENT...............................................................................36
1.9.1. Structural construction of the leading span.....................................................................36
1.9.3. Calculate the vertical pressure acting on the abutment base...........................................40
1.9.4. Arrange piles in the abutment foundation.......................................................................45
1.10. CALCULATION OF PIERS........................................................................................50
1.10.1. Structural dimensions of pier T5...................................................................................50
1.10.2. Cylindrical audit sections..............................................................................................51
1.10.2. Calculate the weight of the cylindrical parts.................................................................52
1.10.3. Calculation of vertical pressure weight due to span structure weight..........................52
1.10.4. Calculation of vertical pressure due to vertical live load on industrial zone................53
1.10.5. Calculate water pressure...............................................................................................53
1.10.6. Total load acting on the bottom section of the pedestal................................................54
1.10.7. Arrange piles in the pillar foundation...........................................................................54
CHAPTER 2: PLAN 2..............................................................................................................60
CONTINUOUS STEEL STANDARD BRIDGE.....................................................................60
2.1. GENERAL INTRODUCTION OF THE PLAN...........................................................60
2.1.1. General layout of the bridge...........................................................................................60
2.1.2. Structure of the upper part..............................................................................................60
2.1.3. Structure of the lower part..............................................................................................60
2.1.4. Calculating the preliminary plan:....................................................................................60
2.2. CALCULATION OF MAIN SPAN STRUCTURAL...................................................61
2.2.1. Determine truss geometry...............................................................................................61
2.2.2. Static load of truss bridge...............................................................................................62
5
DONG QUANG PHUC
R&B ENGINEERING K58
2.2.3. Static load phase II..........................................................................................................63
2.2.4. Horizontal distribution coefficient..................................................................................65
2.2.5. Calculation of staging:....................................................................................................65
2.3. CALCULATE M1:..........................................................................................................69
2.3.2. Size of abutment structure..............................................................................................70
2.3.3. Calculate the vertical pressure acting on the abutment base...........................................71
2.3.4. Arrange piles in the foundation.......................................................................................77
2.4. CALCULATION OF BRIDGE T5.................................................................................81
2.4.1. Bridge structure...............................................................................................................81
2.4.2. Determine the main load combination at the bottom cross section of the pedestal........82
2.4.3. Arrange piles in the foundation.......................................................................................83
Geological survey data of the area where the pier is located:.............................................84
2.5. CONSTRUCTION CONSTRUCTION STRATEGY..................................................88
2.5.1. Construction of abutment................................................................................................88
2.5.2. Construction of bridge piers............................................................................................89
2.5.3. Construction of main span structure...............................................................................90
CHAPTER 3.............................................................................................................................92
COMPARE AND CHOOSE THE BRIDGE OPTION............................................................92
3.1. PRINCIPLES FOR SELECTION OF BRIDGE ALTERNATIVES..........................92
3.2. COMPARISON THE ADVANTAGES OF EACH OPTION.....................................92
3.2.1. Option 1: Continuous girder bridge is built by balanced cantilever technology............92
3.2.2. Option 2: Steel truss bridge.............................................................................................93
3.3. CHOOSE THE OPTION................................................................................................93
CHAPTER 4.............................................................................................................................94
MAJOR BEAM CALCULATION...........................................................................................94
4.1. GENERAL INTRODUCTION OF THE OPTION......................................................94
4.1.1. Design standards.............................................................................................................94
4.1.2. Natural conditions at the bridge construction site...........................................................94
4.1.3. Structure diagram............................................................................................................94
6
DONG QUANG PHUC
R&B ENGINEERING K58
4.2. CALCULATION DATA.................................................................................................95
4.2.1. Suffering bridge..............................................................................................................95
4.2.2. Boat clearance.................................................................................................................95
4.2.3. Design load.....................................................................................................................95
4.2.4. Geometric elements of the bridge...................................................................................95
4.2.5. Design materials..............................................................................................................95
4.3. CALCULATION FACTORS.........................................................................................96
4.3.1. Load factor......................................................................................................................96
4.3.2. Shock coefficient............................................................................................................96
Shock coefficient for design vehicle load (1+IM) = 1,33.........................................................96
4.3.3. Lane factor......................................................................................................................96
4.4. SIZE OF STRUCTURE BEAM HOME........................................................................97
4.4.1. Main beam construction..................................................................................................97
y = -0.0014 x 2 + 0.12609 x + 0.8............................................................................................99
4.4.2. Calculation of the geometrical characteristics of the main girder section......................99
4.4.4. Construction of concrete bridge deck...........................................................................101
4.4.5. Construction of bridge deck coating.............................................................................101
4.5. DETERMINATION OF LOAD ACTIVITIES ON MAJOR BEAM.......................101
4.5.1. Static load phase I.........................................................................................................101
4.5.2. Static load phase II........................................................................................................102
4.5.3 . Construction load.........................................................................................................103
4.5.4. Active load....................................................................................................................103
4.6. WEIGHT LOAD COMBINATIONS...........................................................................103
4.6.1. Combination according to TTGH Intensity I................................................................103
4.6.2. Combination according to TTGH Use..........................................................................104
4.7. CALCULATION OF INTERNAL POWER...............................................................104
4.7.1. Calculation principles...................................................................................................104
4.7.2. Internal force calculation diagrams...............................................................................104
4.7.3. Diagram 1: Balanced cantilever construction of Ki castings........................................105
7
DONG QUANG PHUC
R&B ENGINEERING K58
Negative moment at cylindrical top section during cantilever construction:.........................106
4.7.4. Diagram 2: Diagram of live load and exploitation load...............................................108
4.8. CALCULATION AND PLACEMENT OF STEEL REINFORCATION FOR
HOME BEAM.......................................................................................................................108
4.8.1. Physical and mechanical parameters of the material....................................................108
4.8.2. Calculation and arrangement of reinforcement subjected to negative moments..........109
a.1. Dimensions of the converted cross-section of the box girder:......................................110
4.8.3. Calculation and arrangement of reinforcement subjected to positive moment.............114
4.8.4. Calculation Geometrical features at calculated sections...............................................115
4.8.5. Calculate stress loss......................................................................................................118
4.8.5.2. Calculation of stress loss............................................................................................120
4.9. MAJOR BEAM AUDIT BY STRENGTH I................................................................121
4.9.1. Auditing the bending resistance of sections subjected to negative moments through the
stages:......................................................................................................................................121
Auditing the bending resistance of sections subjected to negative moments during the
construction phase:.................................................................................................................123
4.9.2. Checking the bending resistance of sections subjected to positive moments:..............127
4.9.3. Check reinforcement limits...........................................................................................128
4.9.4. Calculating and checking shear bearing conditions of the main girder........................130
At cross-sections, the effective width is taken to be equal to the actual rib width of the beam
cross-section, b v = 1600mm...................................................................................................131
4.10. AUDIT OF MAJOR BEAM BY TTGH USING.......................................................135
4.10.1. Calculation of cross-section according to anti-cracking condition:............................135
CHAPTER 5...........................................................................................................................141
CALCULATION OF ABUMENT.........................................................................................141
5.1. DETAIL OF THE TOTAL DESIGN OF THE ABUMENT.....................................141
5.1.1. The level of the river is clear........................................................................................141
5.1.2. Design span structure length.........................................................................................141
5.1.3. Design load...................................................................................................................141
5.1.5. Materials Concrete abutment........................................................................................142
8
DONG QUANG PHUC
R&B ENGINEERING K58
5.1.6. Materials Concrete beams.............................................................................................142
5.1.7. Materials Concrete cross beam + slab..........................................................................142
5.1.8 . Ordinary steel reinforcement.......................................................................................142
5.1.9. Asphalt concrete+ water...............................................................................................142
5.1.10. Soil behind the abutment............................................................................................142
5.2. STRUCTURAL STRUCTURAL LEADING SPAN OF BRIDGE...........................143
5.2.1. Cross section construction............................................................................................143
5.2.3. Dimensions of concrete slab (Slab)..............................................................................144
5.2.4. Transverse beam...........................................................................................................144
5.2.6. Construction of bridge deck coating.............................................................................145
5.2.7. Handrail construction....................................................................................................145
5.3. ABUMENT STRUCTURE...........................................................................................145
5.3.1. Basic dimensions of the abutment................................................................................145
5.4. CALCULATION OF LOAD ACTING ON THE AUTOMOTIVE..........................147
5.4.1. Abutment audit sections.............................................................................................147
5.4.2. Loads acting on the abutment.......................................................................................147
5.4.3. Weight of parts of the abutment....................................................................................148
5.4.4. Vertical pressure on abutment due to weight span.......................................................149
5.4.5. Vertical pressure from span structure...........................................................................149
5.4.6. Vertical pressure when live load is standing on transient plate....................................151
5.4.7. Calculate the horizontal pressure of the earth...............................................................152
5.4.8. Calculate the braking force acting on the abutment......................................................159
5.4.9. Calculate the braking force acting on the abutment......................................................159
5.4.10. Centrifugal force (CE):...............................................................................................160
5.4.11. Internal force due to water load WA:.........................................................................160
5.5. CALCULATION OF BASE BENEFITS II.................................................................160
5.5.1. Loads acting on the bottom section of the pedestal......................................................160
5.5.1. Combination of loads acting on the bottom section of the platform (section II)..........161
5.5.2. Combination of loads acting on the base wall section (section II-II)...........................172
9
DONG QUANG PHUC
R&B ENGINEERING K58
5.5.3. Combination of loads acting on the top footwall section (section III-III)....................183
7.5.4. Combination of loads acting on the wing wall mount section (section IV-IV)............188
5.6. OVERALL CALCULATIONS.....................................................................................193
5.6.1. Calculating nature.........................................................................................................193
5.6.2. Calculating internal forces on the transition version....................................................193
5.7. AUDITING THE LOAD RESISTANCE OF LOADING BOARDS........................196
5.7.1. Arrangement of piles in the foundation of Abutment M 0............................................196
5.7.2. Calculation of axial resistance of single pile................................................................196
5.7.3. Axial resistance of pile group.......................................................................................197
5.7.4. Calculation of the axial internal force in the piles........................................................199
5.7.5. Auditing by status limits Intensity I..............................................................................200
CHAPTER 6...........................................................................................................................202
CALCULATION OF PILE.....................................................................................................202
6.1. DESIGN DATA..............................................................................................................202
6.1.1. Boat clearance...............................................................................................................202
.1.2. Span structure length.......................................................................................................202
6.1.3. Design load...................................................................................................................202
6.1.4. Load factor....................................................................................................................202
6.1.5. Pillar concrete...............................................................................................................202
6.1.6. Beam concrete...............................................................................................................203
6.1.7 . Concrete cross beam + Plate........................................................................................203
6.1.8. Pile concrete..................................................................................................................203
6.1.9. Asphalt concrete + Water..............................................................................................203
6.1.10. Ordinary steel reinforcement......................................................................................203
6.2. STRUCTURE STRUCTURE SPAN............................................................................204
6.2.1. Bridge cross section construction.................................................................................204
6.3.3. STRUCTURE STRUCTURE PILE..........................................................................204
6.3.1. Basic dimensions of the cylinder..................................................................................204
6.4. CALCULATION OF LOAD ACTION ON THE PILE.............................................205
10
DONG QUANG PHUC
R&B ENGINEERING K58
6.4.1. Cylindrical audit sections..............................................................................................205
6.4.2. Calculate the weight of the cylindrical parts.................................................................206
6.4.3. Calculation of vertical pressure due to span structure weight......................................206
6.4.4. Calculation of vertical pressure due to live load on span structure..............................207
6.4.5. Calculate the braking force acting on the cylinder.......................................................208
6.4.6. Centrifugal force (CE):.................................................................................................209
6.4.7. Calculate the friction force of the ball bearing.............................................................209
6.4.8. Calculate water pressure...............................................................................................209
6.4.9. Calculate the wind pressure acting on the pier.............................................................210
6.5. CALCULATION OF BASE BENEFITS (CREATIVE SECTION II):....................212
6.5.1. Loads acting on the bottom section of the pedestal......................................................212
6.5.2. Combination of loads acting on the bottom section of the pedestal.............................214
6.5.3. Combination of loads acting on the cross section of the cylinder body (Section II-II) 222
8.5.4. Combination of loads acting on the mounting cross-section of the pier (Section III-III)
.................................................................................................................................................232
6.5.5. Combination of loads acting on the mounting cross-section of the pier (Section IV-IV)
.................................................................................................................................................236
6.6. AUDITING THE LOAD RESISTANCE OF LOADING PIER...............................240
6.6.1. Arrangement of piles in the foundation of T4 Pillar.....................................................240
6.6.2. Calculation of axial resistance of single pile................................................................241
6.6.3. Axial resistance of pile group:......................................................................................241
6.6.4. Adverse load combinations in terms of foundation bottom section:............................244
6.6.5. Check the working condition of the pile foundation....................................................244
8.6.6. Calculation of internal forces in the piles of the foundation.........................................245
8.6.7. Auditing by STATUS LIMITS Intensity I....................................................................250
CHAPTER 7...........................................................................................................................251
DETAILS DESIGN AND CONSTRUCTION.......................................................................251
7.1. CALCULATION OF STABLE ANTI-FLIP WHEN CONSTRUCTION OF
CASTING CANTILEVEL BRIDGE..................................................................................251
7.1.1. General principles.........................................................................................................251
11
DONG QUANG PHUC
R&B ENGINEERING K58
7.1.2. Calculation parameters..................................................................................................251
7.1.4. Overturning moments due to adverse load combinations in construction....................252
7.1.5. Calculation of the required number of High Strength bars...........................................254
7.2. CALCULATION OF THE BASE CONCRETE CLASS THICKNESS..................258
7.3. CALCULATION AND DESIGN OF STEEL Pile fin wall........................................259
7.3.1. Calculation according to the stability condition of the sheet pile enclosure.................259
7.3.2. Select steel sheet pile enclosure....................................................................................259
7.3.3. Calculate the coefficient of horizontal pressure of the soil...........................................259
7.3.4. Determine the depth of the steel sheet piles..................................................................260
- Calculation formula..............................................................................................................260
7.3.5. Calculate the circle of sheet piles according to diagram 1............................................261
7.3.6. Calculate the circle of sheet piles according to diagram 2............................................261
7.3.6. Calculate the circle of sheet piles according to diagram 3............................................262
7.3.7. Calculate the circle of sheet piles according to diagram 4............................................263
7.3.8. Calculate the circle of sheet piles according to diagram 5............................................265
7.4. CALCULATION AND DESIGN OF EXTENSION SHOCKET..............................267
7.4.1. Structure of scaffolding to expand T5 pillar.................................................................267
7.4.2. Loads acting on the scaffolding....................................................................................267
7.4.3. Calculation of internal force.........................................................................................268
12
DONG QUANG PHUC
R&B ENGINEERING K58
GENERAL INTRODUCTION
1. Technical standards
- Standard 11823-2017 of the Ministry of Transport
- Design load: HL93
2. Scale works
Permanent bridge works have a life > 100 years.
3. Boat clearance level : Level III
- Clearance for navigation:
H= 7 m
- Clearance for navigation Width: B= 50m
4. Design Dimensions
The bridge cross section is designed with 2 lanes.
Dimension : 2x3.5+2x2+2 x0,5+0.2x2+0.6= 13 (m)
5. Đặc điểm địa chất, thuỷ văn
Hydrological conditions have not changed much:
- MNCN: 25.26 m
- MNTT : 24.45m
- MNTN:
16.65m
Geological features:
- Layer 1: Powdered sand, small-grained, medium-tight state, average thickness of 13.2m
- Layer 2: Hard plastic clay, Thickness 9.9 m
- Layer 3: Semi-hard clay 12.8
- Layer 4: Coarse-grained sand of gray-white color, tight blue-gray, infinitely thick.
13
DONG QUANG PHUC
R&B ENGINEERING K58
CHAPTER 1: PLAN 1
CANTILEVER BALANCED BRIDGE CONSTRUCTION
1.1. OVERVIEW OF TECHNOLOGY OF BALANCED CASTING MANUFACTURING
TECHNOLOGY
1.1.1. History
Among many construction technologies of reinforced concrete bridges, cantilever
construction technology emerges with many advantages and has been widely applied all over the
world as well as in Vietnam. Since 1977 cantilever and cantilever methods have been used.
applied to construct a number of bridges in Vietnam such as: Rao, Niem, An Duong bridges in
Hai Phong (cantilevered), T-beam-frame bridges worn according to the multi-span static scheme
at Binh bridge construction site in Quang Ninh, Nong Tien Bridge in Tuyen Quang, Phu Luong
Bridge on National Highway 5, recently Bar Tri Bridge and Vinh Tuy Bridge crossing the Red
River in Hanoi, etc.
1.1.2. Advantages and disadvantages and scope of application
The cantilever method is the process of building a span structure step by segment according
to the cantilever diagram until it is connected to a complete span structure. Cantilever
construction from piers symmetrically to 2 sides (called balanced cantilever) or cantilever
construction from the shore. The outstanding advantage of this type of bridge is that the
cantilevering of each beam on the scaffolding reduces the cost of the scaffolding. On the other
hand, for beams with variable cross-sectional height, only the formwork height adjustment is
required. The cantilever construction method does not depend on river conditions and the space
under the bridge... This type of bridge is often used for spans from 80 - 130 m and larger.
In our country, many cantilevered precast concrete bridges have been built such as Phu
Dong bridge, Non Nuoc bridge, Hoa Binh bridge, Tan De bridge, Yen Lenh bridge...
From the above analysis, we choose the option of continuous bridge of prestressed
reinforced concrete according to the balanced cantilever technology.
1.2. GENERAL INTRODUCTION OF THE OPTION
1.2.1. Design standards
- The bridge is designed according to bridge design standard 11823-2017 and highway design
standard TCVN 4054 – 05.
1.2.2. Natural conditions at the bridge construction site
a. Socio-economic characteristics
The bridge is located on the national highway connecting the economic centers of the region.
b. Hydraulic and hydrological characteristics
Hydrological conditions have not changed much:
- MNCN: 25.26 m
- MNTT: 24.45m
14
DONG QUANG PHUC
- MNTN:
R&B ENGINEERING K58
16.65m
c. Features of topography - geology
Geological features:
- Layer 1: Powdered sand, small-grained, medium-tight state, average thickness of 13.2m
- Layer 2: Hard plastic clay, Thickness 9.9 m
- Layer 3: Semi-hard clay 12.8
- Layer 4: Coarse-grained sand of gray-white color, tight blue-gray, infinitely thick.
1.2.2. Structural Diagram.
a. Structure of the upper part
- The main span that crosses the main stream is a three-span continuous girder structure made
of precast concrete. Span diagram 55 + 90 + 55 (m)
- The span leading on both sides uses a simple span bridge, I-beam cross-section with aperture
33m
b. Structure of the lower part
- Main bridge piers use wide-body reinforced concrete pillars
- Bridge piers use narrow-body piers made of reinforced concrete
- Two abutments using reinforced concrete U-shaped abutment
- Foundations using reinforced concrete bored pile foundation
1.3. CALCULATION DATA
1.3.1. The gauge of the bridge
- Width of running:
Bxe = 2x3.5 (m)
- Width of walking margin:
b
- Width of balustrade foot:
blc = 2x0,50 (m)
- Width of paint line:
bvs = 2x0,2+0.6 (m)
- Width of the entire bridge:
B = 2x3.5+2x2+2x0.5+0.2x2+0.6 = 13 (m)
1.3.2. Boat clearance level
- Level III:
+ Clearance for navigation: H = 7 (m)
+ Clearance for navigation Width: B = 50 (m)
1.3.3. Design load
- Design flood frequency P = 1%
- Active load design: HL93
15
= 2x2,0 (m)
DONG QUANG PHUC
R&B ENGINEERING K58
1.3.4. Geometrical elements of the bridge
- On the ground, the bridge lies on a straight line
- On the vertical plane, the bridge lies on a vertical curve, radius of curvature R = 5000 m,
slope along the bridge id = 4%
- Horizontal slope of the bridge in = 2%
1.3.5. Material Design
a. The main beam fabricated concrete
- The concrete for fabricating the main span structure and the guide beams using concrete has a
compressive strength at 28 days old is
= 45 MPa
b. Concrete for manufacturing horizontal beams and deck slabs
- The concrete for fabricating cross beams and deck slabs of the span structure using concrete has
a compressive strength at 28 days old is
= 35 MPa
c. Fabricated concrete Abutments - Pillars - Bored piles
- Fabricated concrete Abutment - Pillar - Drilled piles using concrete with compressive strength
at 28 days old is
= 30 MPa
d. Prestressed steel reinforcement
- Prestressed reinforcement using 7 strand A416 spiral strand grade 270 grade 270, low
elongation.Nominal diameter 15.2 mm.
1.4. CALCULATION FACTORS
1.4.1. Load factor
Serial
Load Type
1
Dead load state I DC
1.250
2
Dead load state II DW
1.500
3
Active load
1.750
1.4.2. Shock factor
- Shock factor for design vehicle load (1+IM) = 1,33
1.4.3. Lanes factor
Lane
1
2
3
>3
m
1.2
1
0.85
0.65
With 2 design lanes, we have m = 1.0
16
Sign Value
DONG QUANG PHUC
R&B ENGINEERING K58
1.5. DIMENSIONS OF THE MAIN GIRDER
1.5.1. Main girder construction
a. General structure
- The main girder of the main span structure has a closed box-shaped cross-section with 2 ribs.
- Main girder is made of prestressed reinforced concrete
= 45 MPa
- The girder height changes along the bridge longitudinal direction. At the top position of the
main pillar is 5.3m high; in the middle of the high span h = 2,0 (m)
500 2000
Vạch sơn
13000
2x4000=8000
00
R5
Vạch sơn
R5
00
5180
5180
5300
600 Vát 200x200
2000 500
5500
Cu to Section ngang cầu
b. Equation of beam bottom curve
- Equation of beam bottom curve:
The girder bottom curve changes according to the rule of 2nd order Parabolic curves with the
general equation
, The parameters a, b, c are defined as follows: :
Select the cylindrical coordinate system at the point on the top of the main cylinder:
Coordinate system for calculating beam bottom curve.
The curve passes through 3 points A, B, C, based on the coordinates of these 3 points we will
determine the parameters a, b, c of the equation.
17
DONG QUANG PHUC
R&B ENGINEERING K58
+ Point A coincides with the origin, so the coordinates of point A (0 ; 0) => c=0
+ Point coordinates B(87 ; 0)
+ Point coordinates C(43.5 ; 4.0)
From the coordinates of two points B, C, we have the following system of equations to
determine a and b:
From the above system of equations, we have:
Equation of beam bottom curve:
c. Curve equation for change of bottom plate thickness
- The equation of the curve is a quadratic parabola of the form: y = ax2 + bx + c
- Origin at the horizontal point from the center of the pillow 1.0m.
- Equation passing through 2 points: C(43,5; 3.55), B(86,0.932)
- Substitute the numbers, and solve the system of equations, we have:
a = -0.0014
b = 0.12609
- So the bottom plate thickness change curve equation has the form:
y = -0.0014x2 + 0.12609x + 0.8
d. Casting segment of main span structure
- The work of dividing and burning the beam depends on the capacity of the casting vehicle. We
divide it as follows:
+ The K0 burner has a length is 14m.
+ The K1-K7 segments have a length is 4m.
+ The K8-K9 segments have a length is 4.5m.
+ Burning long chords with a marginal beat, the middle span has a length is 2.0m.
+ Burned on the edge of a spear with a length of 9m.
- Structural casting diagram of span:
18
DONG QUANG PHUC
9000
2000
2x4500=9000
R&B ENGINEERING K58
7x4000=28000
14000
3000
7x4000=28000
2x4500=9000
5500
2000
5500
Hình 1.2. Structural casting diagram of span
e. Cross section details
Sectio
n
Y1
(Beam
x (m)
botto
m - m)
Y2
(Bridge
surface
-m)
Y3
(The
bottom)
S0
Beam
height
H (m)
Thick
bottom
(Tđ)
wall
thicknes
s (T)
Width of
beam
bottom (B)
5.300
0.80
5.300
0.932
0.600
5.500
S1
0
0.000
5.300
S2
5.50
0.782
5.300
1.457
4.518
0.675
0.500
5.743
S3
9.50
13.5
0
17.5
0
21.5
0
25.5
0
29.5
0
33.5
0
38.0
0
42.5
0
1.284
5.300
1.874
4.016
0.590
0.500
5.899
1.730
5.300
2.246
3.570
0.515
0.500
6.037
2.121
5.300
2.570
3.179
0.449
0.500
6.159
2.456
5.300
2.848
2.844
0.393
0.500
6.263
2.735
5.300
3.080
2.565
0.345
0.500
6.349
2.958
5.300
3.266
2.342
0.308
0.500
6.419
3.126
5.300
3.405
2.174
0.279
0.500
6.471
3.247
5.300
3.506
2.053
0.259
0.500
6.508
3.298
5.300
3.549
2.000
0.250
0.500
6.500
S4
S5
S6
S7
S8
S9
S10
S11
f. Converting to T cross section
- Principle of conversion:
+ The cross-sectional height remains unchanged.
+ The cross-sectional area remains unchanged.
19
2000