Tải bản đầy đủ (.pdf) (13 trang)

ĐỀ ôn TOÁN THPT (816)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.91 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 10.
Câu 2. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n
C. lim qn = 0 (|q| > 1).

C. 8.

D. 6.

1
= 0.
n
D. lim un = c (un = c là hằng số).

B. lim

Câu 3. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.


B. Trục thực.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục ảo.
3

Câu 4. Cho I =

x


dx =

4+2 x+1
P = a + b + c + d bằng?
A. P = 16.
B. P = 28.
0

a
a
+ b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá trị
d
d

Câu 5. [2] Tổng các nghiệm của phương trình 31−x
A. 1 − log2 3.

B. log2 3.

C. P = −2.

x
1
=2+

9
C. − log2 3.

D. P = 4.

D. − log3 2.

Câu 6. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh AC, AB. Tọa độ hình chiếu của A lên BC là
5
8
7
; 0; 0 .
; 0; 0 .
; 0; 0 .
A. (2; 0; 0).
B.
C.
D.
3
3
3
5
Câu 7. Tính lim
n+3
A. 0.


B. 3.

C. 1.

D. 2.

Câu 8. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
A. 2n2 lần.
B. n3 lần.
C. 2n3 lần.
D. n3 lần.
Câu 9. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD = 60◦ , S A ⊥ (ABCD). Biết
rằng khoảng
√ cách từ A đến cạnh 3S√C là a. Thể tích khối chóp
√S .ABCD là
3
3

a 2
a 2
a 3
.
B.
.
C.
.
D. a3 3.
A.
4

12
6
Câu 10. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−1; 3].
C. (−∞; −3].
D. [−3; 1].
Câu 11. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số đồng biến trên khoảng

1
;1 .
3

B. Hàm số nghịch biến trên khoảng −∞;
D. Hàm số nghịch biến trên khoảng

Câu 12. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 8 mặt.
C. 9 mặt.

1
.
3

1
;1 .

3

D. 6 mặt.
Trang 1/10 Mã đề 1


Câu 13. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 8 mặt.

D. 10 mặt.

Câu 14. [2] Đạo hàm của hàm số y = x ln x là
A. y = ln x − 1.
B. y = 1 − ln x.

D. y = x + ln x.

C. y = 1 + ln x.

Câu 15. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≤ 3.
D. m ≥ 3.
2

Câu 16. Cho

A. −3.

1

ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
B. 1.
C. 3.

D. 0.

Câu 17. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f (0) bằng
1
.
B. f (0) = 10.
C. f (0) = ln 10.
D. f (0) = 1.
A. f (0) =
ln 10
Câu 18. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là 3 √

a3 3
2a3 3
a 3
A.
.

B.
.
C.
.
D. a3 3.
3
3
6
1
Câu 19. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.
Câu 20. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 91cm3 .
C. 48cm3 .
D. 64cm3 .
Câu 21. Cho hai đường thẳng d và d cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d?
A. Có vơ số.
B. Khơng có.
C. Có hai.
D. Có một.
Câu 22. Cho hàm số f (x), g(x) liên tục trên R. Trong các mệnh đề sau, mệnh đề nào sai?
A.


k f (x)dx = f

C.

f (x)g(x)dx =

f (x)dx, k ∈ R, k
f (x)dx

0.

g(x)dx.

B.

( f (x) + g(x))dx =

f (x)dx +

g(x)dx.

D.

( f (x) − g(x))dx =

f (x)dx −

g(x)dx.

Câu 23. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.


D. |z| = 17.
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
Câu 24. Cho khối lăng trụ đứng ABC.A B C có đáy ABC là tam giác vuông tại A. BC = 2a, ABC = 300 .
Độ dài cạnh bên CC = 3a. Thể tích V √của khối lăng trụ đã cho. √

a3 3
3a3 3
A. V = 3a3 3.
B. V =
.
C. V =
.
D. V = 6a3 .
2
2
Câu 25. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 12.

C. 20.

D. 30.

Câu 26. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 6.

C. V = 3.
D. V = 4.
Câu 27. [1] Đạo hàm của hàm số y = 2 x là
1
.
A. y = 2 x . ln 2.
B. y =
ln 2

C. y =

1
2 x . ln

x

.

D. y = 2 x . ln x.
Trang 2/10 Mã đề 1


Câu 28. Cho z là√nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 − i 3
−1 + i 3
.
B. P =
.
C. P = 2.
D. P = 2i.

A. P =
2
2
Câu 29. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 6 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp 8 lần.
Câu 30. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị nhỏ nhất trên K.

B. f (x) xác định trên K.
D. f (x) có giá trị lớn nhất trên K.

Câu 31. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {5; 3}.

D. {3; 3}.

Câu 32. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3
a3 5

A.
.
B.
.
C.
.
D.
.
4
6
12
12
Câu 33. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
4

4
12
8
Câu 34. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.

2
Câu 35. √Xác định phần ảo của số
√ phức z = ( 2 + 3i)
A. −6 2.
B. 6 2.
C. 7.
D. −7.
Câu 36. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số mặt của khối chóp bằng 2n+1.
Câu 37. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
D. 12.
A. 18.
B. 27.
C.
2


Câu 38. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


3
πa 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
2
3
6
6
x−1
Câu 39. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB

√ đều ABI có hai đỉnh A, √
√ có độ dài bằng
A. 6.
B. 2 3.
C. 2 2.
D. 2.

2
3
Câu 40. [2] Phương trình log4 (x + 1) + 2 = log √2 4 − x + log8 (4 + x) có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. 2 nghiệm.
C. Vô nghiệm.
D. 3 nghiệm.
Câu 41. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
Trang 3/10 Mã đề 1


ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
(1, 01)3
100.(1, 01)3
A. m =
triệu.
B.
m
=
triệu.

(1, 01)3 − 1
3
100.1, 03
120.(1, 12)3
C. m =
triệu.
D. m =
triệu.
3
(1, 12)3 − 1
Câu 42.√Biểu thức nào sau đây khơng có nghĩa
B. (−1)−1 .
A. (− 2)0 .
Câu 43. Tính lim
A. 1.

2n − 3
bằng
+ 3n + 1
B. −∞.

2n2


−1.

−3

C. 0−1 .


D.

C. +∞.

D. 0.

x3 −3x+3

Câu 44. [2-c] Giá trị lớn nhất của hàm số f (x) = e
trên đoạn [0; 2] là
5
3
A. e .
B. e.
C. e .

D. e2 .

Câu 45. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC = 30◦ , biết S BC là tam giác đều
cạnh a √
và mặt bên (S BC) vuông √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.

.
C.
.
D.
.
26
13
16
9
Câu 46. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.

C. {3; 4}.

D. {4; 3}.

Câu 47. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
A.
.
B.
.
C. a 2.
D. a 3.

2
3
Câu 48. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m ≥ 0.
C. m > −1.
Câu 49. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 4.
1 − n2
Câu 50. [1] Tính lim 2
bằng?
2n + 1
1
A. .
B. 0.
3

D. m > 0.

C. 144.

D. 24.

1
C. − .
2

D.


Câu 51. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 8.

C. 12.

D. 30.

Câu 52. Khối lập phương thuộc loại
A. {5; 3}.
B. {3; 4}.

C. {3; 3}.

D. {4; 3}.

1
.
2

Câu 53. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 46cm3 .
C. 64cm3 .
D. 72cm3 .
Câu 54. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.

D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 55. Cho lăng trụ đều ABC.A B C có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A B C là


a3 3
a3
a3 3
3
A. a .
B.
.
C.
.
D.
.
2
6
3
Trang 4/10 Mã đề 1


Câu 56. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Bốn mặt.
C. Ba mặt.

D. Hai mặt.

Câu 57. Khối đa diện loại {3; 3} có tên gọi là gì?

A. Khối tứ diện đều.
B. Khối bát diện đều.

D. Khối lập phương.

C. Khối 12 mặt đều.
2

Câu 58. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 5.
C. 6.

D. 8.

Câu 59. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim− f (x) = f (a) và lim+ f (x) = f (b).
Câu 60. Khối đa diện đều loại {3; 3} có số mặt
A. 4.

B. 5.

x→a

x→b

x→a

x→b

D. lim− f (x) = f (a) và lim− f (x) = f (b).
C. 3.

D. 2.

Câu 61. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vơ số.
C. 64.
D. 63.
m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
Câu 62. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 32.

C. S = 22.
D. S = 24.
1 + 2 + ··· + n
Câu 63. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 1.
B. lim un = 0.
1
D. Dãy số un khơng có giới hạn khi n → +∞.
C. lim un = .
2
Câu 64. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a3 3
a3 2
a 3
A.
.
B.
.
C.
.
D.

.
6
12
4
12
1
Câu 65. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. −3.
B. − .
C. .
D. 3.
3
3
Câu 66. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 30.

C. 12.

D. 20.

Câu 67. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.

B. 18 tháng.
C. 15 tháng.
D. 17 tháng.
Câu 68. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 3.
C. 7.
D. 2.
Câu 69. [1] Đạo hàm của làm số y = log x là
ln 10
1
A. y =
.
B.
.
x
10 ln x

1
C. y = .
x

D. y =

1
.
x ln 10
Trang 5/10 Mã đề 1



1
1
1
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 1.
B. .
C. 0.
D. 2.
2
Câu 71. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

D. aα bα = (ab)α .
A. aαβ = (aα )β .
B. aα+β = aα .aβ .
C. β = a β .
a
x−1 y z+1
Câu 72. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.

A. −x + 6y + 4z + 5 = 0.
B. 2x + y − z = 0.
C. 10x − 7y + 13z + 3 = 0.
D. 2x − y + 2z − 1 = 0.
Câu 70. Tính lim

Câu 73. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 12 năm.
C. 11 năm.
D. 10 năm.
Câu 74. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC√là
vng góc

√ với đáy và S C = a 3.3 √
a3 3
a 3
a3 6
2a3 6
A.
.
B.
.
C.
.

D.
.
2
4
12
9
Câu 75. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (−1; −7).
C. (0; −2).

D. (1; −3).

ln x
1
Câu 76. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
A. .
B. .
C. .
D. .
9
9
3

3

Câu 77. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. Vô số.
D. 64.
Câu 78. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều sai.

C. Cả hai đều đúng.

D. Chỉ có (II) đúng.

8
Câu 79. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 82.
C. 96.
D. 64.

Câu 80. [1] Cho a > 0, a 1. Giá trị của biểu thức loga 3 a bằng
1
1

A. −3.
B. 3.
C. .
D. − .
3
3
1
Câu 81. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy = ey + 1.
B. xy = −ey − 1.
C. xy = ey − 1.
D. xy = −ey + 1.
Trang 6/10 Mã đề 1


Câu 82. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
u (x)
D.
dx = log |u(x)| + C.
u(x)
Câu 83.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC

√ bằng
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
2
7
2
3
Câu 84. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −15.
C. −5.
D. −9.
Câu 85. [1233d-2] Mệnh đề nào sau đây sai?
A.

f (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.

B.


k f (x)dx = k

C.

[ f (x) − g(x)]dx =

f (x)dx −

g(x)dx, với mọi f (x), g(x) liên tục trên R.

D.

[ f (x) + g(x)]dx =

f (x)dx +

g(x)dx, với mọi f (x), g(x) liên tục trên R.

f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

Câu 86. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+


log23 x + 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].

C. m ∈ [0; 2].


D. m ∈ [−1; 0].

Câu 87. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 8.

C. 12.

D. 6.

Câu 88. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tứ giác.
D. Hai hình chóp tam giác.
Câu 89. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Bốn mặt.
C. Ba mặt.

D. Hai mặt.

Câu 90. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

2

a 7
11a2
a2 5
a2 2
.
B.
.
C.
.
D.
.
A.
8
32
16
4
Câu 91. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 92. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 5}.

D. {3; 4}.
Trang 7/10 Mã đề 1



Câu 93. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 3, 55.
C. 24.
D. 15, 36.

Câu 94. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 6.
C. 4.
D. 36.
3a
Câu 95. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
a
a 2
2a
A. .
B. .
C.
.
D.
.

4
3
3
3
Câu 96. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 3
a 6
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
48
48
16
24
3n + 2
Câu 97. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a2 − 4a = 0. Tổng các phần tử

n+2
của S bằng
A. 3.
B. 5.
C. 4.
D. 2.
Câu 98. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
.
B. a 6.
.
D.
.
C.
A.
2
3
6
Câu 99. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {2}.
C. {5}.
D. {5; 2}.
Câu 100. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là

A. ln 10.
B. ln 12.
C. ln 4.
D. ln 14.
Câu 101. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A.
.
B. 7.
C. .
D. 5.
2
2
Câu 102. Các khẳng định nào sau đây là sai?
A.

f (x)dx = F(x) +C ⇒

C.

k f (x)dx = k

f (u)dx = F(u) +C. B.

f (x)dx, k là hằng số.

D.

f (x)dx = f (x).

f (x)dx = F(x) + C ⇒

f (t)dt = F(t) + C.

Câu 103. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
A. 2.
B.
.
C. 2 13.
D. 26.
13
Câu 104. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
sin n
1
A.
.
B. .
C.
.
D. √ .
n
n

n
n
Câu 105. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
1
2
9
A.
.
B. .
C. .
D.
.
10
5
5
10
Trang 8/10 Mã đề 1


Câu 106. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
A. −7.

B. −4.

x+1
bằng
Câu 107. Tính lim
x→−∞ 6x − 2

1
1
A. .
B. .
2
6

C. −2.

C.

1
.
3

D.

67
.
27

D. 1.

Câu 108. Phát biểu nào sau đây là sai?
1
B. lim √ = 0.
n

A. lim qn = 1 với |q| > 1.
C. lim


1
= 0 với k > 1.
nk

D. lim un = c (Với un = c là hằng số).

Câu 109. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó không rút tiền ra?
A. 14 năm.
B. 12 năm.
C. 11 năm.
D. 10 năm.



x=t




Câu 110. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t

lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
Câu 111. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
2
3

D. V = 3S h.


Câu 112. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

x→a

x→a

C. lim+ f (x) = lim− f (x) = a.

Câu 113. Giá trị lớn nhất của hàm số y =
A. −5.

B. 0.

D. lim f (x) = f (a).
x→a

1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
C. 1.
D. −2.


1

xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b

Câu 114. Cho
0

1
1
.
C. .
2
4
Câu 115. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
A. 0.

B.

Câu 116. [1] Tập xác định của hàm số y = log3 (2x + 1) là
1
1
1
A. −∞; .
B. − ; +∞ .
C. −∞; − .
2

2
2

D. 1.

D.

1
; +∞ .
2
Trang 9/10 Mã đề 1


Câu 117. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (1; +∞).
7n2 − 2n3 + 1
3n3 + 2n2 + 1
2
A. 1.
B. - .
3
x2 − 9
Câu 119. Tính lim
x→3 x − 3
A. +∞.
B. −3.


Câu 118. Tính lim

7
.
3

C. 0.

D.

C. 3.

D. 6.

Câu 120. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. −e2 .
C. 2e4 .
D. 2e2 .
Câu 121. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 3.
C. 2.
D. 4.
4x + 1
Câu 122. [1] Tính lim
bằng?
x→−∞ x + 1
A. −1.
B. −4.

C. 2.
D. 4.
x2 − 12x + 35
Câu 123. Tính lim
x→5
25 − 5x
2
2
A. −∞.
B. .
C. +∞.
D. − .
5
5
Câu 124. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 125. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 126.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 9.
C. 27.
D. 8.

Câu 127. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 1.

C. 0.

D. 2.

Câu 128. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 129. Trong các khẳng định sau, khẳng định nào sai?
A.

0dx = C, C là hằng số.

B.

C.

dx = x + C, C là hằng số.

D.


1
dx = ln |x| + C, C là hằng số.
x
xα+1
xα dx =
+ C, C là hằng số.
α+1
Trang 10/10 Mã đề 1


Câu 130. [3-1122h] Cho hình lăng trụ ABC.A B C có đáy là tam giác đều cạnh a. Hình chiếu vng góc
của A lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.

.
D.
.
12
6
36
24
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.

C

4.

3. A
5.

8.

9. A


10.

11.

D
B
D

15.
19.

C
B
D

12.

C

14.

C

16. A

C

17.

D


6.

C

7. A

13.

C

18. A
20.

D

D

21.

C

22.

C

23.

C


24.

C

25.
27. A

D

30. A
32.

C

31.

D

33.
B
B

38.

B

40.

B


42.

43.

D
B

46.

C

48.

C
C

49.

C

50.

51.

C

52.

53. A
B


56.

C

58. A
B

60. A

61. A
63.
65.

D

54. A

57. A
59.

C

44. A

47. A

55.

C


36. A

41. A
45.

D

34.

37. A
39.

C

28.

29.

35.

D

26.

B

C
B


67. A
1

62.

B

64.

B

66.

D

68.

D


69.

D

71.
73.

C
B


75.
77.

70. A
74.

C

78.

B

D

80.

81.

D

D

84. A

B
D

87.

C


82.

C

83.

89.

C

76. A

C

79. A

85.

72.

86.

D

88.

D

90. A


B

91. A

92.

C
C

93.

D

94.

95.

D

96. A

97.

C

98.

D


99.

C

100.

D

101.

C

102. A

103.

104. A

B
D

105.
107.

106.

B

108. A


109.

C

110. A

111.

C

112.

113.

B

115.

C

117. A

B

116.

B

118.


B
B

D

120.

121.

D

122.

125.

124.

B

D

114.

119.
123.

C

D
C


126. A

C

127.

D

128.

129.

D

130. A

2

D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×