Ch ng I: ươ Đ NG L C H C CH T Đi MỘ Ự Ọ Ấ Ể
GVHD: PGS. TS. TR NG TÍCH THI NƯƠ Ệ
Ch ng II: ươ Đ NG L C H C C HỘ Ự Ọ Ơ Ệ
BÀI T P C H C Ậ Ơ Ọ
T p Hai: Đ NG L C H Cậ Ộ Ự Ọ
Chương I: ĐỘNG LỰC HỌC CHẤT ĐiỂM
!"#$%&$'()) *!+,-"."./!*%,!01'!#213#
4546
)
78#9!!+,*:-;.<.=,>?@@13#45."AB"!+,*:-C$';D4E@
F>*G!$HIC.=,>?$J!+,*:-1'$JKG!L4.M$+#N#=,OP@"Q!-,8
*R$'ST);)61'$JQ#U!+,!B4.V*:-
6
)
y
x
N
P
T
v
c
F
hình 1.2
∗
W<#2*:*$H!/*#84
( )
4
1
. 1
k
k
c
T Na P Fm F
=
+ += = +
∑
rr r rr
r
∗
%X!&?
+
#2*:Y!'!
+
Z!#[-?!%\]!$2^,
+
+
Z!#[-$2^
+
F!-,8*!0*:-2
0a =
r
r
( )
0 2
c
TP N F+ += +
r
r r rr
0 cos
.cos . .cos
P
N P m
N
g
α
α α
= − +
⇒ = =
0 .sin
.sin . .sin . . .cos
c
c
P F
T P F m g f m g
T
α
α α α
= − + +
⇒ = − = −
. . . .cos
c
F f N f m g
α
= =
∗
%X!&?
( )
( )
( )
. . sin .cos
700.9,81 sin15 0,15.cos15
1677,8
T m g f
N
α α
⇔ = −
= −
≈
+
F!-,8*!0!B4.V*:-
( )
a const=
1 0
.v a t v= +
1
0
0 ; 4
1,6
v m s t s
v m s
= =
=
2
0
1,6
0, 4 0
4
v
a m s
t
⇒ = − = − = − <
+
Z!#[-$2^;,
. .sin
0 .cos
c
m a P FT
NP
α
α
= − + +
= − +
. . . .cos
c
f N f m g
F
α
= =
⇔
( )
sin .cos
. .sin
.
c
a g f
T m a P F
m
α α
α
⇒
+ −
= + −
=
( )
( )
700 0, 4 9,81 sin15 0,015.cos15
1957,8 N
= + −
=
'#B?
Z!_`-$HQC !a !b1' !"#$%&$F>*G!`-#$-B!-,8*C1B
c
0 0
, , ,lk m x
k
A
O
x
0
x
0
l
P
hình 1
t
δ
'#@d
∗
F>*G!$-&#L$ !#!P=KU*#Le!
∗
Z!/^"+#1Gb=KUC1Bc;?!%\!0*f1'!#:-.%\!%3
-"
Ox
s
F
uur
P
ur
( )
0 1
sjx
FF P= − =
∑
.
s
F P m g⇒ = =
'
.
s t
F k
δ
=
.
s
t
F
m g
k k
δ
⇒ = =
∗
Z!/$J*$KG#L!244$%&
0t s=
0
x
( )
( )
0 0
0
0
0
= =
= =
&
v m s x
x t x
hình 1.1
∗
!Q@>!-,8*C1Bc+#41GbKg h
+
i?.^#2*:*$H!/
+
Z!#[-$2^j
( )
2
1
. 2
=
= = +
∑
r r r
r
k S
k
m a F P F
( )
. . .
. . .
. . 0
s
t
m x P F m g k
m x m g k x k x
m x k x
δ
δ
= − = −
⇔ = − + = −
⇔ + =
&&
&&
&&
( )
2
. 0 3x x
α
⇔ + =
&&
A3#
k
m
α
=
W+!#P4R`->
AB,1B.**#:-!'
( )
0
.sinx A t
α ϕ
= +
c1'*%&]4M>*#:- #2
k
K*V-
0
ϕ
( )
0
0 0
0
0
.sin
0 :
. .cos 0
. .cos 0
x x A
t
A t
A
x
s
t
ϕ
α α ϕ
α ϕ
= =
=
= + =
= =
&
0 0
cos 0
2
π
ϕ ϕ
⇔ = ⇔ =
0
A x⇒ =
0
.sin
2
x x t
π
α
= +
÷
'#6
a
k
aa!Y!' !"#$%&$'Dg!+,-"4a
k
!#[?!'13#"*a
k
$';D 4E#XM
$J-"?!'*[$J.M!0?!Q#!+,!244a
k
`-L*%X$')4;!U !#g,aa
!-,8*a
k
!=
k
4.V*:-b!$HI4l#.=,>?!#.=,>?K-a
k
#9?!';#U.=,
>?$-a$-aI
a
r
v
r
2T
r
10s m=
P
r
!]!6
'#@d
∗
!Q@>!-,8*C
+
d.^#2*:*$H!/
!]!6
ms
F
r
P
r
1
a
r
1
v
r
1
N
r
x
y
( )
1 1 1
1
ms
m a P FN= + +
uur uur uur
r
+
Z!#[-$2
,x y
∗
!Q@>@H=KUC?!'
( )
( )
1
1
1
2
0 3
ms
P
F
N
m a
− =
= +−
−
( )
1
3 N P⇒ =
+
2 2
0 1
1
2
0 36 2 .10
v v a s
a
− =
⇔ − =
2
1
1,8 0a m s⇒ = − <
+
!,
( )
2
1,8 2 :a m s=
1'
( )
1 1
6000.1,8
10800
⇒ = =
=
mst
F m a
N
x
y
Q
ur
1
N
uur
2.T
r
N
uur
ms
F
r
!]!6
( )
*
2 0 5= − + =
∑
jx mst
F T F
( )
*
10800
5400
2 2
⇒ = = =
mst
F
T N
Z!%\7mnopZOqZZrOs
'#=
k
?Z!!!!0;4Q!;*t!g#[.#P*:-c!"#$%&C'!!$'4;!#:-
.'#!!cu^z+#*#84"j1'!&?^z 4α!%!]!1vZ!K#[
OL,>*G!44`->b!C!!c*"#13#^;,;z 1'=4j!!cU4
45?!0j,z
, , , , .= =lm OA a OB b
α
A
B
z
O
α
K
u
du
u
k
d
z
O]!K
x
ky
d
y
A
B
z
O
α
O]!
x
y
'#@d
∗
!"#$%C!!
( )
( )
2 2 2 2 2
1
. . . .sin sin
∞
=
− −
= = =
∑
∫ ∫
b b
k k
k
a a
J m d du u u du
ρ α ρ α
z z
,=
l
m
kg m
ρ
∗
!Q@>4!g*#842!!
+
Z!#:-.'#
+
!"#$%&*#84
du
.
k
m du
ρ
=
.sin
.cos
α
α
=
⇒ =
=
k
ky
kx
d u
d u
d u
z
∗
4`->b!C'!!*"#13#^z
∗
WH!P^j,z@!!!U4j,zWH^j-?!%\<c1'!#:-
!%!]!1v
( )
( )
( )
( )
3
2 2 3 3
2 2 2
2 2 2
sin . sin
3 3
sin
3
sin
3
= = +
−
= + − +
= − +
l l
l
b
m u m
J b a
a
m
a b a ab b
m
a ab b
α α
α
α
z
( ) ( )
2 2 2
y
1
2 2
. . . .cos
cos
ρ α
ρ α
∞
=
−
−
= =
=
∑
∫
∫
b
k ky
k
a
b
a
J m d du u
u du
∗
4`->b!C'!!*"#13#^,
( )
( )
( )
( )
3
2 2 3 3
y
2 2 2
2 2 2
cos . cos
3 3
cos
3
cos
3
α α
α
α
= = +
−
= + − +
= − +
l l
l
b
m u m
J b a
a
m
a b a ab b
m
a ab b
( ) ( )
( )
2 2 2
x
1
3
3 3 2 2
2 2
. . .
3 ( )( )
3 3
( )
3
ρ ρ
ρ
ρ ρ
∞
=
− −
−
= = =
= = + = + − +
= − +
∑
∫ ∫
b b
k kx
k
a a
b
a
J m d du u u du
u
b a a b a ab b
m
a ab b
∗
4`->b!C'!!*"#13#^
( )
( )
2 2
O
1
2 3
= + + = − +
x y
m
J J J J a ab b
z
∗
4`->b!C'!!*"#13#=4j
AB,w
j
Tw
'#=
k
?
Z!4\!Pt41Bu.+!]!$I^#[.#P4#>1-a*5!t$2!-13#1G
bK*V-!%!]!1v#[.#PC1B$'4#>1-a*t.+!"#$%&C1B$V
$%&$'4
c
;4
ABH !a4@>245!#2C45cABcH !a4@>*"#13#
45"*G!Z>+!C1B@@13#K:45"*G!$';KxK*V-'!P
*f,2OL,>*G!*+*%X!-,8*C1Bc !#1B%&![45!#2C1Bc
$J1M!+4*g
a b>
A
B
b
O]!
'#@d
j
0
Z
K
c
Z
Z
,
0
c
Z
0
Z
0
c
Z
c
@
c
Z
Z
c
r
n
r
r
/ 3
3
K
O]!
∗
WH!2
k
^j,!%!]!1v
∗
/#
+
!"#=4C1=
k
c;1=
k
1''!2
k
Z
c
;Z
;Z
+
7+*%X!-,8*C1=
k
c !#!+44I
k
?!0"*G!@
c
+
/*a
k
C> !"#=4
0 0
; ; ;
c
c
Z Z
Z Z
∗
0 0
2
= ; = ;
3 3
= ; =
3 3
c
c
Z Z
Z c Z c
K
K
@ @ + + −
∗
*V-'!2
k
*f,2
( )
( )
0
0
0
= 0
= 0
= 0
⇔
&
r
r
&
c
c
c
Z
Z
Z
4
@
1
4
,
@
( )
( )
0
0
0
= 0
= 0
= 0
⇔
&
r
r
&
Z
Z
Z
4
@
1
4
,
@
∗
!Q@>!-,8*a
k
'!P1=
k
+
O2
k
+#$H>*a
k
$2!P
; ;
c
n
r r r
+
W<*G!$y!-,8*a
k
!"#=4
( )
3
=1
. = = ; 1
Z z c
z
{ n+ +
∑
r r r r
r
+
Z!#[-$2^
( )
2
. = 0 = 0
=
Z Z
Z
4
@
@
⇔
⇒
&& &&
&
0
=
Z
Z
⇒
& &
∗
!*G!!e !"#=4!2
k
;