Tải bản đầy đủ (.pdf) (28 trang)

Mini-Project Construction Engineering 2 Thiết Kế Biện Pháp Kĩ Thuật Thi Công Nhà Công Nghiệp.pdf

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (3.05 MB, 28 trang )

<span class="text_page_counter">Trang 1</span><div class="page_container" data-page="1">

<b>Department of Construction Technology and Management</b>

<b>: 63XE2: 176263</b>

</div><span class="text_page_counter">Trang 2</span><div class="page_container" data-page="2">

T r ờ n g Đ ạ i h ọ c x â y d ự n g•U n i v e r s i t y o f c i v i l e n g i n e e r i n g

<small>bộ môn: công nghệ</small>

<small>và quản lý xây dựng</small> No 55 Giai Phong Road - Ha Noi - Viet Nam Tel: (84.4) 869 9403 869 1302– Fax: (84.4) 869 1684 Website: www.bmthicong.com.vn

Đ ồ á N K ỹ T H U ậ T T H I C Ô N G 2

T HI CÔ NG lắp g hép n hà cô ng ng hiệ p

<i><b>Đề số: 04</b></i>

<b><small>N ộ i d u n g : </small>Th iết kế b iệ n phá p kỹ t huậ t thi cô ng lắ p g hé p n hà côn g ngh iệp</b>

<small>Phạm Nguyễn Võn Phương</small>

Giáo viên hướng dẫn: ………...Ký tên:Ngày giao đồ án

Thời gian làm đồ án : .………<sup>: ………....</sup><small>Quàng Văn Sỏng</small>

Họ và tên sinh viên : .………<small>17626363XE2</small>

Ngày thông quaChữ ký của giáoviên HD

<small>C TỘ Bấ TễNGH(m) h(m)</small>

<small>D MẦ MÁI Bấ TễNGDÀN MÁI THẫPTT</small>

<small>10.5D MẦ C UẦ CH YẠ Bấ TễNGC AỬ TR IỜ B NGẰ THẫP</small>

<small>HàngA & B</small>

<small>n (S lố ượng)15 + n</small>

<small>Kớch thướ (m)cp(T)0.7</small>

</div><span class="text_page_counter">Trang 3</span><div class="page_container" data-page="3">

DIVISION OF CONSTRUCTION TECHNOLOGY AND MANAGEMENT

<b>CONSTRUCTION ENGINEERING II</b>

THE CONSTRUCTION OF PREFABRICATED INDUSTRIAL BUILDINGS

<b>Content: Design prefabricated costruction method of an industrial building</b>

PHAM NGUYEN VAN PHUONGQUANG VAN SANG

63XE21762634ID Number:Code:

</div><span class="text_page_counter">Trang 4</span><div class="page_container" data-page="4">

CHAPTER 1. GENERAL PROJECTINFORMATION ...1

1. Buildinginformation...1

CHAPTER 2. DESIGNOF CONSTRUCTION EQUIPMENT AND MACHINE...2

2. The selection of equipment...2

22222222.1. Columns:...2

.2. End sidecolumns:...2

.3. Middlecolumns:...3

.4. Crane run-waybeam...3

.5. Trusses and Roofmonitor...6

.6. Rafters of exteriorspan...7

.7. Roofpanel...9

.8. Concretewallpanels:...10

3.2. The calculation parameters for erection...11

33333333.2.1. For columns...11

.2.2. For middlecolumns...12

.2.3. For endside columns...13

.2.4. Cranerun-waybeamcalculation:...14

.2.5. Truss and Roof monitorcalculation ...17

.2.6.Rafters calculation...20

.2.7. Wall panel calculation...22

.2.8. Roof panel calculation...24

CHAPTER 3. THE SELECTION OF CONSTRUCTION METHOD...28

444.1. Columns installation...33

.1.1. Constructiontechnique...35

.2. Crane run-waybeaminstallation...36

.2.1. Constructiontechnique...39

.3. Roof rafters...40

.3.1. Constructiontechnique...40

4444.4. Rooftrusses installation...41

</div><span class="text_page_counter">Trang 5</span><div class="page_container" data-page="5">

Roof panelsinstallation. ...45

.8. Wallpanels installation...45

.2. Roof trusses, rafters, roof monitorsandroof panels installation....59

</div><span class="text_page_counter">Trang 6</span><div class="page_container" data-page="6">

<b>. Building information1</b>

Table 1 Project informationNumber of storeys

Number of spansNumber of columns

13General information

Concrete columns

Exterior columns h(m)p(T)H(m)h(m)p(T)

h(m)p(T)Concrete Roof

l (m)<small>2</small>e(m)p(T)

18

</div><span class="text_page_counter">Trang 7</span><div class="page_container" data-page="7">

<small>+15.0m+13.0 m</small>

<small>+9.8 m</small>

<small>-0.3 m1.5 m-</small>

STRUCTURE CROSS SECTION(SC: 1/250)

</div><span class="text_page_counter">Trang 8</span><div class="page_container" data-page="8">

<small>Crane Runway beams (CRB)Roof Rafters (RR)</small>

<small>Columns (CCrane Runway beams (CRB)</small>

<small>Crane Runway beams (CRB)</small>

<small>Roof Trusses (RT)</small>

<small>Crane Runway beams (CRB)</small>

<small>Crane Runway beams (CRB)</small>

<small>Roof Rafters (RR)</small>

<small>Crane Runway beams (CRB)</small>

STRUCTURAL PLAN (SC: 1/250)

</div><span class="text_page_counter">Trang 9</span><div class="page_container" data-page="9">

Table 2 Technical information of element

</div><span class="text_page_counter">Trang 10</span><div class="page_container" data-page="10">

<b>. The selection of equipment.1. Columns:</b>

The columns have bracket, therefore friction belt and steel cable will be used.

Figure 1 Rigging tool for columns

(1)- Concrete Column(5)- Friction belt

(4)- U-shaped steel

<b>2.2. End side columns:</b>

The tensile force is calculated by the following formula:

m

<sub>.</sub>

K

<sub>.Q</sub>

<small>tt</small>

n cosβS =

K – Safety ratio, K = 4.5Q<small>tt = </small>1.1 x 6.4 = 7.04 (T)

m - Ratio related to the difference in the value of tensile force within the two branches ofcable, m=1

</div><span class="text_page_counter">Trang 11</span><div class="page_container" data-page="11">

1 × 4.5 × 7.04=> S = 2 × 푐표 = 15.84 (T)

K – Safety ratio, k = 4.5Q<small>tt = </small>1.1 x 8.5 = 9.35 (T)

m - Ratio related to the difference in the value of tensile force within the twobranches of cable, m=1

n - Number of steel cable, n=21 × 4.5 × 9.35=> S = = 21.04(T)

2 × 푐표푠 0

Selecting cable 6x37x1 with diameter D=22 mm, tensile strength (150kg/cm2), failureforce F= 21500 (kg)

 Weight of hanging and tying equipment:q = q 10% 9.35 10%= = 0.935( )T

<b>2.4. Crane run-way beam</b>

Because the crane run-way beam has no hook, therefore an ordinary equipment forhanging and tying with semi-automatic lock will be chosen. The configuration of hanging

</div><span class="text_page_counter">Trang 12</span><div class="page_container" data-page="12">

Figure 2 Rigging tool for runway beam

</div><span class="text_page_counter">Trang 13</span><div class="page_container" data-page="13">

. Twin lifting cable. Semi-automatic lock. Pile section for inserting cable

Tensile force of cable is determined by the below formula:

K.Qn cosS =

K – Safety ratio, k = 6Qtt = 1.1 3 = 3.3T

∝ - Inclined angle between cable and vertical direction, ∝=45<small>0</small>n - Number of steel cable, n=2

6 3.3=> S = =14 T

</div><span class="text_page_counter">Trang 14</span><div class="page_container" data-page="14">

<b>a, Trusses</b>

Figure 3: steel truss and monitorTools used for rigging are semi-automatic lock and self-balancing ring.The tensile force in each branch of two cables is determined by the below formula:

K.Q<small>tt</small>

n cosS =

K – Safety ratio, k = 8Q<small>tt</small>= 1,1.P= 1.1 x 24.5= 26.95 (T)n: Number of steel cable = 2

∝: Inclined angle of cable and vertical direction =0<small>o</small>8

2 26.95

cos 0<small>0</small>=> S = = 107.8T

Selecting cable 6x37x1 (IWRC) with diameter D=14 mm, tensile strength (157 kg/cm<small>2</small>),failure force F= 109000 (kg)

=>Weight of rigging equipmentq = q x 10%= 26.95 x 10%= 2.7(T)<small>ett</small>

</div><span class="text_page_counter">Trang 15</span><div class="page_container" data-page="15">

The tensile force in each branch of two cables is determined by the below formula:K.Q<sub>tt</sub>

n cosS =

K – Safety ratio, k = 8Q<small>tt</small>= 1,1.P= 1.1 x 3.1= 3.41 (T)n: Number of steel cable = 2

∝: Inclined angle of cable and vertical direction =0<small>o</small>3.1

cos 0<small>0</small>8

=> S = = 12.4T2

Selecting cable 6x37x1 (IWRC) with diameter D=14 mm, tensile strength (157 kg/cm<small>2</small>),failure force F= 109000 (kg)

=>Weight of rigging equipmentq = q x 10%= 3.41 x 10%= 0.34(T)<small>ett</small>

<b>2.6. Rafters of exterior span</b>

The roof beams have L=15m in length, hence, two steel cables with a balancing ring will

</div><span class="text_page_counter">Trang 16</span><div class="page_container" data-page="16">

Figure 4: Rigging tool for raftersTensile force in each cable is calculated by:

K.Q<small>tt</small>n.sinS =Where:

K – Safety ratio, k = 6Qtt = 1.1 5.1= 5.61 Tn: Number of steel cable =2

∝: Inclined angle of cable and vertical direction = 45<small>0</small>5.61

(for safety purpose, choose =45 )<small>0</small>∝6

> S

=

=

16.83 (T)=

2 cos45

Selecting cable 6x37x1 with diameter D=19.5 mm, tensile strength (160 kg/cm2), failureforce F= 18450 (kg)

</div><span class="text_page_counter">Trang 17</span><div class="page_container" data-page="17">

K – Safety ratio, k = 4.5Qtt = 1.1 2.4 = 2.64 Tn: Number of steel cable =4

∝: Inclined angle of cable and vertical direction = 45<small>0</small>.5 2.64

(for safety purpose, choose =45 )∝ <small>0</small>4

> S = = 4.2 T=

4 cos45

Selecting cable 6x37x1 with diameter D=11.0 mm, tensile strength (140kg/cm2), failureforce F= 4990 (kg)

</div><span class="text_page_counter">Trang 18</span><div class="page_container" data-page="18">

<b>2.8. Concrete wall panels:</b>

Panels have 2 dimesions 1.2x6 (m) with the weight of 1.2(T), therefore slings with 2hooks could be used.

Figure 6: Rigging tool for wall panels

Tensile force in each cable is calculated by:K.Q

<small>tt</small>

n cosS =

K – Safety ratio, k = 4.5Qtt =1.1 1.2 1.32 T=n: Number of steel cable =2

= 45<small>0</small>(acctually does not equal to 45<small>0</small>, but higher. However, for safety reason,

calculate with β=45 )<small>0</small>4.5 1.32

cos 45=> S = = 4.2T

Selecting cable 6x37x1 with diameter D=11.0 mm, tensile strength (140kg/cm2), failure

</div><span class="text_page_counter">Trang 20</span><div class="page_container" data-page="20">

<b>.1. Columns installation5</b>

Crane XKG-30 (L=20m) will be used for erecting exterior and interior columns.For erecting end side column and middle column:

Figure 22: Working way of crane for installing column

</div><span class="text_page_counter">Trang 21</span><div class="page_container" data-page="21">

Figure 23: Arranging columns on the layout

</div><span class="text_page_counter">Trang 22</span><div class="page_container" data-page="22">

Figure 24: Working way for installing crane runway beam

</div><span class="text_page_counter">Trang 23</span><div class="page_container" data-page="23">

Figure 25: Arranging crane runway beams on the layout

</div><span class="text_page_counter">Trang 24</span><div class="page_container" data-page="24">

Figure.26: Working way for installing roof trusses, rafters,roof monitors and roof panels

Figure.27: Arranging roof trusses, rafters, roof monitorsand roof panels on the layout

</div><span class="text_page_counter">Trang 25</span><div class="page_container" data-page="25">

Table 6: Schedule for machine and labour of plan 2

quantityNo. Components Weight(T) Quan. Machine Man- Machine Man- Shift Lab

hour60.04 4.0064.2236.941

End side ColumnsMiddle Columns

run-Exterior spanInterior spanTrusses3

837.90 3591.88357.56 24

111Roof monitors

6Interior Flying <sub>AG.415.11</sub> <sub>2.4</sub> <sub>480</sub> <sub>0.018</sub> <sub>0.09</sub> <sub>8.64</sub> <sub>43.20</sub> <sub>9</sub> <sub>1</sub>Roof span jib

panels Exterior Flying

Wall panelsjib

</div><span class="text_page_counter">Trang 26</span><div class="page_container" data-page="26">

MOVING DIRECTION (SC: 1/250)Legend:

1-Column 2-Crane run-way beam 3-Roof rafters + Roof trusses + Roof monitors+ Roof panels 4-Wall panel

</div><span class="text_page_counter">Trang 27</span><div class="page_container" data-page="27">

2 <sub>8</sub><small>11</small>

Figure 28: Schedule and resource diagram

</div><span class="text_page_counter">Trang 28</span><div class="page_container" data-page="28">

Table 5 Cost for plan 2

Number Unit price Price(VNĐ)53,100,236No.

of shift (VNĐ)

M102.0304 XKG30-20 28 1,896,437SCX1000A-3 -Flying jib

2 M102.0301M102.0302

2,973,986 148,699,30022m

SCX1000A-3 -Flying jib6m

G 6, 078(VND)Man-power per 1 ton of element:

C 113.88N

8Cost for fabricating 1 ton:

G 233, 276, 078.08

 Conclusion: Plan 2 will be selected because of the lower construction duration.

</div>

×