Tải bản đầy đủ (.pdf) (10 trang)

Sáng kiến kinh nghiệm - Phát huy tính tích cực, sáng tạo của học sinh lớp 10B5 ppt

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (213.25 KB, 10 trang )


Phát huy tính tích cực, sáng tạo của học sinh lớp
10B
5
Trường TTH Như


I. Mở đầu : Bài 4
C
ôn tậ
chương 2 hình học 10 là bài :
Chứng minh rằng trong ABC ta có:

(1)
Đa số học sinh trung bình trong lớ
giải được bài này, tuy vậy, việc khai thác bài tậ
này trong học toán 10 lại khá thú vị ; nó giú
họ tiế
cận sớm hơn với một loạt các bài tậ
hay mà lẽ ra 1 năm sau họ mới giải được, làm cho học sinh trong lớ
có một số “công cụ hợ
lý” để tiế
SinA = SinBCosC +
CosBSinC

cận sớm với các bài toán thi đại học và cao đẳng.
Việc khai thác đẳng thức (1) được tiến hành theo hai hướng :
1. Xây dựng các công thức cộng trong
hạm vi các góc của một tam giác, trên nền kiến thức hình học 10
2. Các bài tậ
có thể á


dụng được vào thực tế dạy học.
II. Nội dung chính của việc khai thác bài 4
c
ôn tậ
chương 2 hình học 10 (gọi tắt là bài 4
c
)
1. Xây dựng các công thức cộng trong
hạm vi các góc của một tam giác.
a/ Công thức cộng thứ nhất:
Vì : B+C = 180
o
– A nên :
(1)  (2)
A



Sin(B+C) = SinBCosC +
CosBSinC

C

B

b/ Công thức cộng thứ 2 : trong ABC ta có :
(3)
chứng minh :
vì : B+C = 180
o

- A nên :
Cos(B+C) = - CosA  Cos(B+C) = -
bc
acb
2
222


 Cos(B+C) =
SinBSinC
R
CSinRBSinRASinR
2
222222
4
.
2
444 
(Định lý sin)
 Cos(B+C) =
SinBSinC
CSinBSinASin
2
222

(*)
á
dụng bài 4
c
vào (*) ta được :

(*) 
SinBSinC
CSinBSinCosBSinCSinBCosC
CBCos
2
)(
)(
222


 Cos(B+C) =
SinBSinC
sBCosCSinBSinCCoBCosCSinCCosBSin
2
2)1()1(
2222



SinBSinC
SinBSinCCosBCosCSinBSinC
CBCos
2
)(2
)(



 Cos(B+C) = CosBCosC – SinBSinC
a) Công thức cộng thứ 3 : trong ABC với điều kiện BC, ta có :

Cos(B+C) = CosBCosC -
SinBSinC

(4)
Chứng minh:
Dễ thấy : 0
o
 B-C  180
o
ta có:
Sin(B-C) =Sin[(180
o
-B )+C] (**)
Trường hợ
1 : B=C, khi này (4) hiển nhiên đúng.
Trường hợ
2: BC, đặt :








CC
BB
CBA
'
180'

'
o

Thì :





0
180'''
0',','
CBA
CBA
vậy A’, B’,C’ là 3 góc của A’B’C’ khi này (**)
 Sin(B-C) = Sin(180
o
-B )CosC + Cos(180
o
-B )SinC(á
dụng (2) trong A’B’C’)
 Sin(B-C) = SinBCosC – CosBSinC (đ
cm).
d/ Công thức cộng thứ 4:
Hoàn toàn tương tự ta thu được:
Sin(B-C) = SinBCosC -
CosBSinC

Cos(B
-

C) = CosB.CosC +
(5),B

e/ Công thức cộng thứ 5, 6 : Trong ABC, có ngay các công thức cộng
thứ 5 và 6 sau đây :
tg(B+C) =
tgCtgB
tgCtgB


1
(6) (với B+C  90
0
)

tg(B-C) =
tgCtgB
tgCtgB


1
(7) với





0
90
B

CB
C

như vậy 6 công thức cộng trong
hạm vi tam giác đã được xây dựng hoàn toàn bằng á
dụng 4
c
và kiến thức hình học 10.
2. Các bài tậ
có thể á
dụng vào thực tế dạy học:
Nhóm 1 : Các bài tậ
có tính chất lý thuyết :
a. Xây dựng các công thức nhân đôi, hạ bậc trong
hạm vi không vượt quá góc vuông.
b. Xây dựng một số công thức biến đổi tích thành tổng, tổng thành tích
trong
hạm vi các góc không quá góc vuông.
Nhóm 2 : Các bài tậ
giáo khoa giải tích 11 có thể giải được ở lớ
10 :
a) Bài 5 trang 49 ; bài 8b
trang 49. (bài 4)
b) Bài 15a, b trang 51 (bài
4)
Nhóm 3 : Một bài tậ
luyện tậ
sau đây:
Bài 1 : Tam giác ABC có :
CosB

b
+
CosC
c
=
SinBSinC
a
(8)
Chứng minh ABC là tam giác vuông (Đề thi ĐH Ngoại Ngữ 2000).
Giải :
(8)
CosBCosC
cCosBbCosC

=
SinBSinC
a
(9)
theo định lý Sin ta có: bCosC +cCosB = 2R(SinBCosC + CosBSinC)
= 2RsinA = a (đã á
dụng 4
c
).
vậy :
(9) 






0CosBCosC
SinBSinCCosBCosC






0
0)(
CosBCosC
CBCos

 A =90
0
. (đã á
dụng công thức 3).
Bài 2: Cho tam giác ABC có 3 góc nhọn. Chứng minh rằng :
tga + tgB + tgC = tgA.tgB.tgC
Từ đó tìm giá trị nhỏ nhất của công thức :
E = tgA + tgB + tgC
(đề thi cao đẳng cộng đồng tiền giang 2003)
Giải : á
dụng công thức :
tg(B+C) =
tgCtgB
tgCtgB
.1

(10) (Do B+C > 90

0
)
Mà A = 180
0
-(B+C) nên tg(B+C) = - tgA (Suy ra trực tiế
từ định lý trang 35 bài 2 SGKHH10).
Do vậy :
(10)  -tgA =
tgBtgC
tgCtgB


1
 tgA +tgB + tgC = tgAtgBtgC.
Do ABC có 3 góc nhọn nên tgA, tgB, tgC > 0, á
dụng bất đẳng thức cosi, ta có :
tgA +tgB +tgC 3
3
tgAtgBtgC
(11)
Mà : tgA +tgB + tgC = tgAtgBtgC nên
(11) tgAtgBtgC  3
3
tgAtgBtgC

 tgAtgBtgC  3
3
. Có dấu “ = “ khi A=B=C=60
0
.

vậy minE = 3
3

Bài 3: Tính góc C của ABC nếu :
(1+ CotgA)(1+CotgB) =2 (12).
(đề thi cao đẳng kinh tế kỹ thuật thái bình 2002).
Giải :
(12)  (1 +
SinA
CosA
)(1+
SinB
CosB
) =2
 (SinA + CosA)(SinB + CosB) =2SinASinB
SinACosB + CosASinB = -(CosACosB – SinASinB) (13)
á
dụng các công thức cộng ta có:
(13)  Sin(A+B) = -Cos(A+B)
 SinC = CosC
 tgC =1
 C = 45
0
.
III. Lời kết :
Việc xây dựng các công thức cộng nhờ việc khai thác bài 4
C
, ôn tậ
chương 2 hình học 10 mà điểm nhấn là việc chứng minh công thức cộng thứ
2, có tác dụng tích cực đến việc học tậ

toán của học sinh lớ
10B
5
, giú
các em có thêm công cụ để giải các bài toán mà lẽ ra một năm sau các em
mới giải được, từ đó kích thích các em mày mò tìm hiểu, sáng tạo nhằm đạt kết quả
học tậ
khả quan hơn.
Tầm á
dụng của các công thức đã xây dựng khá rộng các ví dụ nêu trên chỉ là một
hần nhỏ -Tin rằng các em học sinh khối 10 trường ta và các đồng nghiệ
sẽ tìm được nhiều á
dụng hay hơn, làm
hong
hú thêm việc dạy và học hình học 10 tại trường Như Thanh.



Tài liệu tham khảo : 1. SGK Hình Học 10
2. Giới thiệu đề thi tuyển sinh 2000-2003.

×