RÌn kü n¨ng gi¶i ph¬ng tr×nh cho häc sinh - m«n §¹i sè 8
Trêng T H CS Phíc ChØ
A/. MỞ ĐẦU
A/. MỞ ĐẦU
1. Lý do chọn đề tài:
Bộ môn Toán học được coi là một trong những môn chủ lực nhất, nó được
vận dụng và phục vụ rộng rãi trong đời sống hằng ngày của chúng ta. Bởi
trước hết Toán học hình thành ở các em học sinh tính chính xác, hệ thống,
khoa học, logic và tư duy cao,… do đó nếu chất lượng dạy và học toán ở trường
THCS được nâng cao thì có nghóa là chúng ta đưa các em học sinh tiếp cận với
nền tri thức khoa học hiện đại, có ý nghóa giàu tính nhân văn của nhân loại.
Đổi mới chương trình, tăng cường sử dụng thiết bò dạy học, ứng dụng
công nghệ thông tin trong dạy học, đổi mới phương pháp dạy học toán hiện
nay ở trường THCS đã và đang làm tích cực hoá hoạt động tư duy học tập của
học sinh, khơi dậy và phát triển khả năng tự học, tự tìm tòi, tự sáng tạo, …
nhằm nâng cao năng lực phát hiện và giải quyết vấn đề, rèn luyện và hình
thành kỹ năng vận dụng kiến thức một cách khoa học, hợp lý, sáng tạo vào
thực tế cuộc sống.
Trong chương trình Đại số lớp 8, thì dạng bài tập về giải phương trình là
nội dung quan trọng, là trọng tâm của chương trình đại số lớp 8, việc áp dụng
của dạng toán này rất phong phú, đa dạng và phức tạp. Vì vậy để giúp học
sinh nắm được khái niệm về phương trình, giải thành thạo các dạng phương
trình là yêu cầu hết sức cần thiết đối với người giáo viên. Qua thực tế giảng
dạy nhiều năm, cũng như qua việc theo dõi kết quả bài kiểm tra, bài thi của
học sinh lớp 8 (các lớp đang giảng dạy), thì việc giải phương trình là không
khó, nhưng vẫn còn nhiều học sinh mắc phải các sai lầm không đáng có, giải
phương trình còn nhiều sai sót, rập khuôn máy móc hoặc chưa làm được, do
chưa nắm vững chắc các cách giải, vận dụng kỹ năng biến đổi chưa linh hoạt
vào từng dạng toán về phương trình.
Nhằm đáp ứng yêu cầu về đổi mới phương pháp giảng dạy, giúp học sinh
tháo gỡ và giải quyết những khó khăn, vướng mắc trong học tập đồng thời
nâng cao chất lượng bộ môn toán nên bản thân đã chọn đề tài: “RÌn kü
n¨ng gi¶i ph¬ng tr×nh cho häc sinh - m«n §¹i sè 8”.
2. Đối tượng nghiên cứu:
Rèn kỹ năng giải phương trình cho học sinh.
3. Phạm vi nghiên cứu:
Đề tài nghiên cứu trong phạm vi học sinh lớp 8
1
, 8
3
ở trường THCS Phước
Chỉ, năm học 2009 - 2010.
Ngêi thùc hiƯn: Ngun Hoµi Ph¬ng Trang 1
RÌn kü n¨ng gi¶i ph¬ng tr×nh cho häc sinh - m«n §¹i sè 8
Trêng T H CS Phíc ChØ
Đề tài có ý tưởng phong phú, đa dạng, nên bản thân chỉ nghiên cứu qua
ba dạng phương trình “phương trình đưa về dạng ax + b = 0, phương trình
tích, phương trình chứa ẩn ở mẫu” trong chương trình toán 8 hiện hành.
4. Phương pháp nghiên cứu:
Nghiên cứu qua tài liệu: SGK, SGV, SBT toán 8, tài liệu có liên quan.
Nghiên cứu qua thực tế giải bài tập của học sinh.
Nghiên cứu qua theo dõi các bài kiểm tra.
Nghiên cứu qua thực tế giảng dạy, học tập của từng đối tượng học sinh.
B/.
B/.
NỘI DUNG
NỘI DUNG
1. Cơ sở lý luận
Với sự phát triển mạnh mẽ nền kinh tế tri thức khoa học hiện đại, bùng
nổ công nghệ thông tin, đẩy mạnh ứng dụng công nghệ thông tin trong dạy
học và quản lý giáo dục, toàn cầu hóa như hiện nay, đã và đang tạo điều kiện
thuận lợi cho nền giáo dục và đào tạo của nước ta trước những thời cơ và
thách thức mới. Để hòa nhập tiến độ phát triển mạnh mẽ đó thì giáo dục và
đào tạo trước hết và luôn luôn đảm nhận vai trò hết sức quan trọng trong việc
“đào tạo nhân lực, nâng cao dân trí, bồi dưỡng nhân tài” mà Đảng, Nhà nước
đã đề ra, đó là “đổi mới giáo dục phổ thông theo Nghò quyết số
40/2000/QH10 của Quốc hội”. Hiện nay ngành Giáo dục tích cực xây dựng
nhiều chương trình hành động, đa dạng hóa các loại hình học tập, trong đó
việc đẩy mạnh sử dụng công nghệ hiện đại trong dạy học và quản lý là một
trong những biện pháp của quá trình đổi mới giáo dục theo hướng tích cực phù
hợp với xu thế hiện nay.
Để đáp ứng được mục tiêu giáo dục một cách toàn diện cho học sinh, con
đường duy nhất là nâng cao có hiệu quả chất lượng học tập của học sinh ngay
từ nhà trường phổ thông. Muốn vậy trước hết giáo viên là người đònh hướng
và giúp đỡ học sinh của mình lónh hội kiến thức một cách chủ động, rèn luyện
tính tự học, tính cần cù, siêng năng, chòu khó, … tạo điều kiện khơi dạy lòng
ham học, yêu thích bộ môn, phát huy tư duy sáng tạo của học sinh, thì môn
toán là môn học đáp ứng đầy đủ những yêu cầu đó.
Học toán không phải chỉ là học như sách giáo khoa, không chỉ làm những
bài tập hoặc những cách giải do Thầy, Cô đưa ra mà là quá trình nghiên cứu
đào sâu suy nghó, tìm tòi vấn đề, khai thác tổng quát vấn đề và rút ra được
những cách giải hay, những điều gì bổ ích. Do đó dạng toán giải phương trình
của môn đại số 8 đáp ứng yêu đầy đủ cầu này, là nền tảng, làm cơ sở để các
Ngêi thùc hiƯn: Ngun Hoµi Ph¬ng Trang 2
RÌn kü n¨ng gi¶i ph¬ng tr×nh cho häc sinh - m«n §¹i sè 8
Trêng T H CS Phíc ChØ
em học tiếp các chương trình sau này, như giải bất phương trình, chương trình
lớp 9 sau này, … Tuy nhiên, vì lý do sư phạm và khả năng nhận thức của học
sinh đại trà nên đề tài chỉ đề cập đến ba dạng phương trình và các phương
pháp giải thông qua các ví dụ cụ thể.
Vấn đề đặt ra là làm thế nào để học sinh giải được các dạng phương trình
một cách nhanh chóng và chính xác. Để thực hiện tốt điều này, đòi hỏi giáo
viên cần xây dựng cho học sinh những kỹ năng như quan sát, nhận xét, đánh
giá, đặc biệt là kỹ năng phân tích đa thức thành nhân tử, kỹ năng giải phương
trình, kỹ năng vận dụng vào thực tiễn. Tuỳ theo từng đối tượng học sinh, mà ta
xây dựng cách giải cho phù hợp để giúp học sinh học tập tốt bộ môn.
2. Cơ sở thực tiễn
Về học sinh: Còn nhiều hạn chế trong tính toán, kỹ năng quan sát nhận
xét, nhận dạng phương trình và biến đổi trong thực hành giải toán yếu kém,
phần lớn do mất kiến thức căn bản ở các lớp dưới, nhất là chưa chủ động học
tập ngay từ đầu chương trình lớp 8, do chay lười học tập, ỷ lại, chưa nỗ lực tự
học, tự rèn, tự ý thức học tập, trong nhờ vào kết quả người khác. Đa số các em
sử dụng các loại sách bài tập có đáp án để tham khảo, nên khi gặp bài tập,
các em thường lúng túng, không tìm được hướng giải thích hợp.
Về giáo viên: Chưa thật sự đònh hướng, xây dựng, giúp đỡ ở học sinh thói
quen học tập và lòng yêu thích môn học, chưa xây dựng phương pháp học tập
tốt và kỹ năng giải toán cho học sinh, dạy học đổi mới chưa triệt để, ngại sử
dụng đồ dùng dạy học, phương tiện dạy học, ứng dụng công nghệ thông tin.
Về phụ huynh: Chưa thật sự quan tâm đúng mức đến việc học tập của
con em mình như theo dõi, kiểm tra, đôn đốc nhắc nhở sự học tập ở nhà. Giữ
mối liên lạc với nhà trường chưa thường xuyên, việc theo dõi nắm bắt thông
tin kết quả học tập của con em hầu như không có.
3. Nội dung vấn đề
3.1. Những giải pháp mới của đề tài
Đề tài đưa ra các giải pháp như sau:
- Sắp xếp các dạng phương trình theo các mức độ.
- Xây dựng các phương pháp giải cơ bản theo từng dạng phương trình.
- Sửa chữa các sai lầm thường gặp của học sinh trong giải toán.
- Củng cố các phép biến đổi và hoàn thiện các kỹ năng giải phương trình.
- Tìm tòi những cách giải hay, khai thác bài toán.
Đối với học sinh yếu, kém: Củng cố kiến thức cơ bản
+ Phương pháp giải phương trình đưa được về dạng ax + b = 0.
Ngêi thùc hiƯn: Ngun Hoµi Ph¬ng Trang 3
RÌn kü n¨ng gi¶i ph¬ng tr×nh cho häc sinh - m«n §¹i sè 8
Trêng T H CS Phíc ChØ
+ Phương pháp giải phương trình tích.
+ Phương pháp giải phương trình chứa ẩn ở mẫu.
Đối với học sinh đại trà: Phát triển tư duy, kỹ năng giải phương trình
+ Phát triển kỹ năng giải các dạng phương, khai thác bài toán.(nâng cao)
+ Đưa ra cách giải hay, sáng tạo, cho các dạng phương trình.
3.2. Các phương trình thường gặp
A. Củng cố kiến thức cơ bản về phương trình
Phương trình đưa được về dạng ax + b = 0 (hoặc ax = c).
Dạng1: Phương trình chứa dấu ngoặc:
Phương pháp chung:
- Thực hiện bỏ dấu ngoặc.
- Thực hiện phép tính ở hai vế và chuyển vế đưa phương trình về dạng ax =
c.
Chú ý: Nếu a
≠
0, phương trình có nghiệm x =
c
a
Nếu a = 0, c
≠
0, phương trình vô nghiệm
Nếu a = 0, c = 0, phương trình có vô số nghiệm
Ví dụ 1: Giải phương trình: 5 – (x – 6) = 4(3 – 2x) (BT-11c)-SGK-tr13)
Gợi ý: Bỏ dấu ngoặc, chuyển vế, thu gọn, tìm nghiệm.
Giải: 5 – (x – 6) = 4(3 – 2x)
⇔
5 – x + 6 = 12 – 8x
⇔
– x + 8x = 12 – 11
⇔
7x = 1
⇔
x =
1
7
Vậy phương trình đã cho có nghiệm x =
1
7
Ví dụ 2: Giải phương trình: (x – 1) – (2x – 1) = 9 – x (2) (BT-17f)-SGK-tr14)
Gợi ý: Bỏ dấu ngoặc, chuyển vế, thu gọn, tìm nghiệm.
Lời giải sai: (x – 1) – (2x – 1) = 9 – x
⇔
x – 1 – 2x – 1 = 9 – x (bỏ dấu ngoặc sai)
⇔
x – 2x – x = 9 – 2 (chuyển vế không đổi dấu)
⇔
–2x = 7 (sai từ trên)
⇔
x = 7 – 2 = 5 (tìm nghiệm sai)
Sai lầm của học yếu kém thường gặp ở đây là:
Thực hiện bỏ dấu ngoặc sai: không đổi dấu hạng tử trong dấu ngoặc
Thực hiện chuyển vế sai: không đổi dấu hạng tử đã chuyển vế
Ngêi thùc hiƯn: Ngun Hoµi Ph¬ng Trang 4
RÌn kü n¨ng gi¶i ph¬ng tr×nh cho häc sinh - m«n §¹i sè 8
Trêng T H CS Phíc ChØ
Tìm nghiệm sai: số ở vế phải trừ số ở vế trái
Lời giải đúng: (2)
⇔
x – 1 – 2x + 1 = 9 – x
⇔
x – 2x + x = 9
⇔
0x = 7
Vậy phương trình đã cho vô nghiệm
Qua ví dụ này, giáo viên củng cố cho học sinh:
Quy tắc bỏ dấu ngoặc, quy tắc nhân, quy tắc chuyển vế, phương pháp thu
gọn và chú ý về cách tìm nghiệm của phương trình.
Dạng 2: Phương trình chứa mẫu là các hằng số:
Phương pháp chung:
- Thực hiện quy đồng mẫu ở hai vế rồi khử mẫu, đưa phương trình về dạng
1.
- Thực hiện cách giải như dạng 1.
Ví dụ 3: Giải phương trình:
1 1 1
2
2 3 6
x x x− − −
+ − =
(3) (ví dụ 4 Sgk-tr12)
Gợi ý: Quy đồng-khử mẫu, bỏ dấu ngoặc, chuyển vế, thu gọn, tìm nghiệm.
Lời giải sai:
1 1 1
2
2 3 6
x x x− − −
+ − =
⇔
3( 1) 2( 1) 1 12
6 6
x x x− + − − −
=
(sai ở hạng tử thứ ba)
⇔
3( 1) 2( 1) 1 12x x x− + − − − =
(sai từ trên)
⇔
4 18x
=
(sai từ trên)
⇔
4,5x =
(sai từ trên)
Sai lầm của học ở đây là:
Sai lầm ở trên là cách đưa dấu trừ của phân thức lên tử thức chưa đúng.
Lời giải đúng:
1 1 1
2
2 3 6
x x x− − −
+ − =
⇔
3( 1) 2( 1) ( 1) 12
6 6
x x x− + − − −
=
⇔
3 3 2 2 1 12x x x
− + − − + =
⇔
4 16x
=
⇔
4x
=
Vậy: S =
{ }
4
Qua ví dụ trên, giáo viên củng cố cho học sinh:
Cách quy đồng mẫu, cách chuyển dấu trừ của phân thức lên tử hoặc xuống
mẫu khi tử và mẫu của phân thức là những đa thức.
Chú ý: Ở ví dụ trên học sinh có thể giải theo cách khác như sau:
Ngêi thùc hiƯn: Ngun Hoµi Ph¬ng Trang 5
RÌn kü n¨ng gi¶i ph¬ng tr×nh cho häc sinh - m«n §¹i sè 8
Trêng T H CS Phíc ChØ
Cách 1: (3)
⇔
1 1 1
( 1) 2
2 3 6
x
− + − =
÷
⇔
4
( 1) 2
6
x − =
⇔
1 3x
− =
⇔
x = 4
Vậy: S =
{ }
4
Cách 2: Đặt t = x -1
(3)
⇔
2
2 3 6
t t t
+ − =
⇔
3 2 2.6t t t
+ − =
⇔
3t =
⇒
1 3x
− =
⇔
x = 4 Vậy: S =
{ }
4
Ví dụ 4: Giải phương trình:
2 1 2
0,5 0,25
5 4
x x
x
+ −
− = +
(4) (BT-18b)-SGK-tr14)
Gợi ý: Quy đồng-khử mẫu, bỏ dấu ngoặc, chuyển vế, thu gọn, tìm nghiệm.
Cách giải 1: (4)
⇔
4(2 ) 20 0,5 5(1 2 ) 20 0,25x x x+ − × = − + ×
⇔
8 4 10 5 10 5x x x+ − = − +
⇔
4x = 2
⇔
x = 0,5
Vậy: S =
{ }
0,5
Ở ví dụ trên học sinh có thể giải theo cách khác như sau:
Cách 2: Chuyển phương trình về phân số
(4)
⇔
2 1 2 1
5 2 4 4
x x x+ −
− = +
⇔
2 1
5 2 2
x x x+ −
− =
⇔
2 1
5 2
x+
=
Cách 3: Chuyển phương trình về số thập phân
(4)
⇔
0,2 (2 ) 0,5 0,25 (1 2 ) 0, 25x x x× + − = × − +
⇔
0,4 0, 2 0,5 0,5 0,5x x x+ − = −
⇔
0,2 0,1x =
Phương trình tích
Phương pháp chung:
Dạng tổng quát A(x).B(x).C(x) … = 0, với A(x), B(x), C(x) là các biểu thức.
Cách giải: A(x).B(x).C(x) … = 0
⇔
A(x) = 0 hoặc B(x) = 0 hoặc C(x) = 0
Chú ý: Để có dạng A(x).B(x).C(x) … = 0. Ta thường biến đổi như sau:
Bước 1: Đưa phương trình về dạng tích.
- Chuyển tất cả các hạng tử sang vế trái khi đó vế phải bằng 0.
- Thu gọn, tìm cách phân tích vế trái thành nhân tử.
Bước 2: Giải phương trình tích nhận được và kết luận.
Ví dụ 5: Giải phương trình (3x – 2)(4x + 5)
= 0 (BT- 21a)-Sgk-tr17)
Ngêi thùc hiƯn: Ngun Hoµi Ph¬ng Trang 6
RÌn kü n¨ng gi¶i ph¬ng tr×nh cho häc sinh - m«n §¹i sè 8
Trêng T H CS Phíc ChØ
Lời giải: (3x – 2)(4x + 5)
= 0
⇔
3x – 2 = 0 hoặc 4x + 5
= 0
⇔
3x = 2 hoặc 4x
= – 5
⇔
x =
2
3
hoặc x
=
5
4
−
Vậy S =
2 5
;
3 4
−
Chú ý: Ở ví dụ trên Giáo viên hướng dẫn học sinh làm quen với kí hiệu sau:
(3x – 2)(4x + 5)
= 0
⇔
3 2 0
4 5 0
x
x
− =
+ =
(
ky ùhiệu thay cho chư õhoặc)
* Tuy nhiên trong giải toán ta thường gặp phải những phương trình bắt buộc ta
phải biến đổi để đưa phương trình đã cho về phương trình tích.
Ví dụ 6: Giải phương trình x
2
– x = –2x + 2 (6) (BT-23b)-Sgk-tr17)
- Trong ví dụ trên học sinh thông thường biến đổi như sau:
(6)
⇔
x
2
– x + 2x – 2 = 0
⇔
x
2
+ x – 2 = 0 đây là phương trình rất khó chuyển
về phương trình tích đối với học sinh trung bình và yếu kém. Vì vậy giáo viên
cần đònh hướng cho học sinh cách giải hợp lý.
Chuyển vế các hạng tử rồi nhóm
Cách 1: (6)
⇔
x
2
– x + 2x – 2 = 0
⇔
x(x – 1) + 2(x – 1) = 0
⇔
(x – 1)(x + 2) = 0
⇔
1 0 1
2 0 2
x x
x x
− = =
⇔
+ = = −
Vậy S =
{ }
1 ; 2 −
Nhóm các hạng tử rồi chuyển vế
Cách 2: (6)
⇔
x(x – 1) = – 2(x – 1)
⇔
x(x – 1) + 2(x – 1) = 0
⇔
(x – 1)(x + 2) = 0
⇔
1 0 1
2 0 2
x x
x x
− = =
⇔
+ = = −
Vậy S =
{ }
1 ; 2 −
Ví dụ 7: Giải phương trình (x + 2)(3 – 4x) = x
2
+ 4x + 4 (7) (BT-28f)-Sgk-tr7)
- Trong ví dụ trên học sinh thông thường biến đổi như sau: Bỏ dấu ngoặc, chuyển
vế các hạng tử, thu gọn hai vế phương trình.
(7)
⇔
–4x
2
– 5x + 6 – x
2
– 4x – 4 = 0
⇔
–5x
2
– 9x + 2 = 0 đây là phương trình rất khó chuyển về phương
trình tích. Giáo viên đònh hướng gợi ý cách phân tích hợp lý.
Giải: (7)
⇔
(x + 2)(3 – 4x) = (x + 2)
2
⇔
(x + 2)(3 – 4x) – (x + 2)
2
= 0
⇔
(x + 2)(3 – 4x – x – 2) = 0
⇔
2
2 0
1
5 1 0
5
x
x
x
x
= −
+ =
⇔
− + =
=
Ngêi thùc hiƯn: Ngun Hoµi Ph¬ng Trang 7
RÌn kü n¨ng gi¶i ph¬ng tr×nh cho häc sinh - m«n §¹i sè 8
Trêng T H CS Phíc ChØ
Vậy S =
1
2 ;
5
−
Giáo viên củng cố cho học sinh kinh nghiệm khi đưa phương trình về dạng tích:
Nếu nhận thấy hai vế phương trình có nhân tử chung thì ta biến đổi phương
trình và đặt ngay nhân tử chung ấy.
Nếu nhận thấy một trong hai vế của phương trình có dạng hằng đẳng thức
thì ta sử dụng ngay phương pháp hằng đẳng thức để phân tích thành nhân tử.
Khi đã chuyển vế mà ta thấy không thể phân tích vế trái thành nhân tử thì
nên rút gọn rồi tìm cách phân tích thành nhân tử.
Phương trình chứa ẩn ở mẫu
Phương pháp chung
Bước 1: Tìm điều kiện xác đònh của phương trình.
Bước 2: Quy đồng mẫu hai vế của phương trình và khử mẫu.
Bước 3: Giải phương trình vừa nhận được.
Bước 4: (Kết luận). Trong các giá trì tìm được ở bước 3, các giá trò thỏa
mãn điều kiện xác đònh chính là nghiệm của phương trình đã cho.
Ví dụ 8: Giải phương trình
2 1 2
2 ( 2)
x
x x x x
+
− =
− −
(8) (BT 52b)-Sgk-tr33)
Khi giải phương trình chứa ẩn ở mẫu học sinh thường mắc các sai lầm sau:
Lời giải sai: ĐKXĐ: x
≠
2 ; x
≠
0
(8)
⇔
( 2) 1( 2) 2
( 2) ( 2)
x x x
x x x x
+ − −
=
− −
⇔
x(x + 2) – 1(x – 2) = 2 (dùng ký hiệu
⇔
là không chính xác)
⇔
x
2
+ 2x – x + 2 = 2
⇔
x
2
+ x = 0
⇔
x(x + 1) = 0
⇔
0
0 (
1 0
1
x
x
x
x
=
=
⇔
+ =
= −
không kiểm chứng với điều kiện)
Vậy S =
{ }
0 ; 1 −
(kết luận dư nghiệm)
Sai lầm của học sinh là: Dùng ký hiệu “
⇔
”không chính xác
Không kiểm tra các nghiệm tìm được với điều kiện
Lời giải đúng: ĐKXĐ: x
≠
2 ; x
≠
0
(8)
⇔
( 2) 1( 2) 2
( 2) ( 2)
x x x
x x x x
+ − −
=
− −
⇒
x(x + 2) – 1(x – 2) = 2 (8’)
⇔
x
2
+ 2x – x + 2 = 2
⇔
x
2
+ x = 0
Ngêi thùc hiƯn: Ngun Hoµi Ph¬ng Trang 8
RÌn kü n¨ng gi¶i ph¬ng tr×nh cho häc sinh - m«n §¹i sè 8
Trêng T H CS Phíc ChØ
⇔
x(x + 1) = 0
⇔
0 0 (
1 0
1 (
x x
x
x
= =
⇔
+ =
= −
không thỏa điều kiện)
thỏa điều kiện)
Vậy S =
{ }
1 −
Giáo viên cần củng cố ở học:
Khi khử mẫu ta chỉ thu được phương trình hệ quả của phương trình đã cho,
nên ta dùng ký hiệu “
⇒
” hay nói cách khác tập nghiệm của phương trình (8’)
chưa chắc là tập nghiệm của phương trình (8).
Kiểm tra các nghiệm tìm được với điều kiện rồi mới kết luận.
Ví dụ 9: Giải phương trình
1 3
3
2 2
x
x x
−
+ =
− −
(9) (BT 30a)-Sgk-tr23)
- Trước hết cho học sinh nhận xét mẫu thức của phương trình trước, tìm mẫu thức
chung của phương trình, rồi tìm ĐKXĐ.
- Lưu ý quy tắc đổi dấu, bước khử mẫu của phương trình và kiểm tra nghiệm.
Giải: ĐKXĐ: x
≠
2
(9)
⇔
1 3( 2) 3
2 2
x x
x x
+ − −
=
− −
⇒
1 + 3(x – 2) = 3 – x
⇔
1 + 3x – 6 = 3 – x
⇔
4x = 8
⇔
x = 2 (không thỏa mãn điều kiện)
Vậy phương trình vô nghiệm
Qua ví dụ này giáo viên củng cố lại ở học sinh và rèn các kỹ năng sau:
- Tìm ĐKXĐ của phương trình:
* Tìm các giá trò của ẩn để các mẫu đều khác 0. (Cho các mẫu thức khác 0)
* Tìm các giá trò của ẩn để các mẫu bằng 0, rồi loại giá trò đó. (Cho các
mẫu thức bằng 0)
- Khi giải phương trình chứa ẩn ở mẫu để không sót điều kiện của phương trình
nên cho học sinh tìm trước mẫu thức chung (MTC) và cho MTC khác 0, đây là
điều kiện xác đònh (ĐKXĐ) của phương trình.
- Rèn cho học sinh về kỹ năng thực hiện ở các bước giải phương trình, kỹ năng
về phân tích đa thức thành nhân tử để tìm MTC, các quy tắc dấu như quy tắc đổi
dấu, quy tắc dấu ngoặc và việc triển khai tích có dấu trừ ở đàng trước.
- Rèn ở học sinh về kỹ năng nhận dạng các phương trình có mẫu là các đa thức
dạng x
2
+ 1; 3x
2
+ 2; x
2
+ x + 3;… hoặc là bình phương thiếu của một tổng, một
Ngêi thùc hiƯn: Ngun Hoµi Ph¬ng Trang 9
RÌn kü n¨ng gi¶i ph¬ng tr×nh cho häc sinh - m«n §¹i sè 8
Trêng T H CS Phíc ChØ
hiệu luôn luôn dương với mọi giá trò của x. Do đó khi gặp phải các mẫu thức có
dạng này ta không cần phải đặt điều kiện cho mẫu thức đó khác 0.
Ví dụ 10: Giải phương trình
2
3 2
1 2 5 4
1 1 1
x
x x x x
−
+ =
− − + +
(10) (BT 41c)-SBT-tr10)
Lời giải: ĐKXĐ: x
≠
1 ; x
2
+ x + 1 > 0
(10)
⇔
2 2
2 2
1 2 5 4( 1)
( 1)( 1) ( 1)( 1)
x x x x
x x x x x x
+ + + − −
=
− + + − + +
⇒
3x
2
+ x – 4 = 4x – 4
⇔
3x
2
– 3x = 0
⇔
3x(x – 1) = 0
⇔
3 0 0 (
1 0
1 (khơng
x x
x
x
= =
⇔
− =
=
thỏa điều kiện)
thỏa điều kiện)
Vậy S =
{ }
0
B. Phát triển tư duy và kỹ năng giải phương trình
Ví dụ 11: Giải phương trình
3 4
3
5
5
2
1
15 5
x
x
x
x
x
−
−
−
−
= − +
(11) (Sách Bổ trợ-Nâng cao)
- Đối với bài tập này gợi ý cách giải: Thực hiện quy đồng khử mẫu hai lần.
Lần 1: Mẫu chung là 15
Lần 2: Mẫu chung là 10
Hướng dẫn: (11)
⇔
3 4 9 3
15 15 15
5 2
x x
x x x
− −
− = − − +
⇔
10 2(3 4) 5(9 3 ) 150x x x− − = − − +
(học sinh giải tiếp)
Ví dụ 12: Giải phương trình
1 2 3 4
9 8 7 6
x x x x+ + + +
+ = +
(12) (BT 53-Sgk-tr34)
- Thông thường học sinh thực cách giải quy đồng khử mẫu như sau:
Cách 1: (12)
⇔
56.( 1) 63.( 2) 72.( 3) 84.( 4)x x x x+ + + = + + +
⇔
56x + 56 + 63x + 126 = 72x + 216 + 84x + 336
⇔
37x = –370
⇔
x = –10
Vậy S =
{ }
10 −
- Với cách giải này thì ta không thể khai thác được gì ở bài toán này, đôi khi gặp
phải bài toán có mẫu lớn thì học sinh sẽ lúng túng, việc quy đồng khó khăn hơn.
Do đó giáo viên cần đònh hướng cách giải mới hay hơn, trên cơ sở đó ta có thể rút
ra cách giải tổng quát cho các bài tập có dạng tương tự.
Ta có nhận xét: Nhận thấy rằng các phân thức có tính chất đặc biệt sau:
x + 1 + 9 = x + 10 Tử thức cộng mẫu thức của các phân thức đều
Ngêi thùc hiƯn: Ngun Hoµi Ph¬ng Trang 10
RÌn kü n¨ng gi¶i ph¬ng tr×nh cho häc sinh - m«n §¹i sè 8
Trêng T H CS Phíc ChØ
x + 2 + 8 = x + 10
x + 3 + 7 = x + 10
x + 4 + 6 = x + 10
Khi đó ta có cách giải như sau:
Phương pháp thêm vào hai vế của phương trình cho cùng một hạng tử:
Cách 2: (12)
⇔
1 2 3 4
1 1 1 1
9 8 7 6
x x x x+ + + +
+ + + = + + +
÷ ÷ ÷ ÷
⇔
10 10 10 10
9 8 7 6
x x x x+ + + +
+ = +
⇔
1 1 1 1
( 10) 0
9 8 7 6
x
+ + − − =
÷
⇔
x + 10 = 0
⇔
x = –10 Vậy S =
{ }
10 −
- Với cách giải này thì ta có thể có cách giải tổng quát cho các bài toán tương tự.
Do đó giáo viên cần hướng học sinh có cách nhìn tổng quát đối với bài toán, trên
cơ sở đó ta đề xuất các bài tập có dạng tương tự, phức tạp hơn.
-Khai thác bài toán:
* Thay các mẫu 9; 8; 7; 6 bởi mẫu 2009; 2008; 2007; 2006 ta có bài toán hay sau:
1)
1 2 3 4
2009 2008 2007 2006
x x x x+ + + +
+ = +
* Thay đổi cả tử và mẫu ta có bài toán rất hay sau:
2)
1 2 3 4
2006
2011 2012 2013 2014
x x x x
x
− − − −
+ + + = +
3)
1 2 3 2009 2010
2010
2010 2009 2008 2 1
x x x x x+ + + + +
+ + + + + = −
Hướng dẫn: 2)
1 2 3 4
1 1 1 1 2006 4
2011 2012 2013 2014
x x x x
x
− − − −
+ + + + + + + = + +
⇔
2010 2010 2010 2010 ( 2010)
0
2011 2012 2013 2014 1
x x x x x+ + + + +
+ + + − =
3)
1 2 3 2009 2010
2010
2010 2009 2008 2 1
x x x x x+ + + + +
+ + + + + = −
⇔
2011 2011 2011 2011 2011
0
2010 2009 2008 2 1
x x x x x+ + + + +
+ + + + + =
Phương pháp nhóm, thêm bớt, tách hạng tử:
Ví dụ 13: Giải phương trình (x + 2)(2x
2
– 5x) – x
3
= 8 (13) (Sách Bổ trợ-Nâng cao)
Gợi ý phân tích: Chuyển số 8 về vế trái, nhóm x
3
và 8
Hướng dẫn: (13)
⇔
(x + 2)(2x
2
– 5x) – (x
3
+ 8) = 0
⇔
(x + 2)(2x
2
– 5x) – (x + 2)(x
2
– 2x + 4) = 0
⇔
(x + 2)(2x
2
– 5x – x
2
+ 2x – 4) = 0
Ngêi thùc hiƯn: Ngun Hoµi Ph¬ng Trang 11
RÌn kü n¨ng gi¶i ph¬ng tr×nh cho häc sinh - m«n §¹i sè 8
Trêng T H CS Phíc ChØ
⇔
(x + 2)(x
2
+ x – 4x – 4) = 0
⇔
(x + 2)(x + 1)(x – 4) = 0 (học sinh giải tiếp)
- Trong bài tập này giáo viên cần củng cố ở học sinh phương pháp phân tích đa
thức thành nhân tử và cho học sinh nhắc lại về Phương pháp tách một hạng tử
thành nhiều hạng tử khác để đưa về dạng tích mà các em đã học.
Bài toán tổng quát:
Để phân tích đa thức dạng ax
2
+ bx + c thành nhân tử, ta tách hạng tử bx
thành b
1
x + b
2
x sao cho b
1
b
2
= ac
Trong thực hành ta làm như sau:
Bước 1: Tìm tích ac.
Bước 2: Phân tích ac thành tích của hai thừa số nguyên bằng mọi cách.
Bước 3: Chọn hai thừa số mà tổng bằng b.
Chú ý trường hợp đặc biệt: Xét tổng a + b + c = 0 hoặc a – b + c = 0
Ví dụ 14: Giải phương trình
3 2 1
( 1)( 2) ( 3)( 1) ( 2)( 3)x x x x x x
+ =
− − − − − −
(14) (BT.31.b/23)
Hướng dẫn: ĐKXĐ: x
≠
1; x
≠
2; x
≠
3
(14)
⇒
3(x – 3) + 2(x – 2) = x – 1 (học sinh giải tiếp)
- Với bài tập này việc giải phương trình đối với các em là dễ dàng. Nhưng vấn đề
ở đây không phải là việc giải được mà là việc nhìn nhận bài toán ở góc độ khác,
khía cạnh khác thì việc giải phương trình của chúng ta sẽ lý thú hơn.
-Khai thác bài toán:
* Bài toán (14) trên chính là bài toán sau phức tạp sau:
1) Ta có: (14)
⇔
2 2 2
3 2 1
3 2 4 3 6 5x x x x x x
+ =
− + − + − +
* Ta có bài toán tương tự như sau:
2)
4 3 2 1
0
( 1)( 2)( 3) ( 1)( 2)( 4) ( 1)( 3)( 4) ( 2)( 3)( 4)x x x x x x x x x x x x
+ + + =
− − − − − − − − − − − −
3)
1 1 1 1 1 1
( 1)( 2) ( 2)( 3) ( 3)( 4) ( 4)( 5) ( 5)( 6) 10x x x x x x x x x x
+ + + + =
− − − − − − − − − −
(*)
Hướng dẫn:
1 1 1
( 1)( 2) 2 1x x x x
= −
− − − −
;
1 1 1
( 2)( 3) 3 2x x x x
= −
− − − −
; …
(*)
⇔
1 1 1
6 1 10x x
− =
− −
Phương pháp đặt ẩn phụ:
Ví dụ 15: Giải phương trình
2
2
3 1
3 4 0x x
x x
− + − + =
(15) (Sách Bổ trợ-Nâng cao)
Ngêi thùc hiƯn: Ngun Hoµi Ph¬ng Trang 12
RÌn kü n¨ng gi¶i ph¬ng tr×nh cho häc sinh - m«n §¹i sè 8
Trêng T H CS Phíc ChØ
- Đối với bài tập này nếu học sinh thực hiện quy đồng rồi khử mẫu thì việc giải
phương trình là vô cùng khó khăn (phương trình bậc 4). Vì vậy giáo viên cần
hướng dẫn học sinh có cách nhìn tổng quát tìm hướng giải thích hợp hơn.
Giải: ĐKXĐ: x
≠
0
(15)
⇔
2
2
1 1
3( ) 4 0x x
x x
+ − + + =
Đặt
1
x y
x
+ =
⇒
2 2
2
1
2x y
x
+ = −
Phương trình trở thành y
2
– 3y + 2 = 0
⇔
(y – 1)(y – 2) =0
⇔
y = 1 hoặc y = 2
Khi đó
1
1x
x
+ =
⇔
x
2
– x + 1 = 0 (vô nghiệm)
1
2x
x
+ =
⇔
x
2
– 2x + 1 = 0
⇔
(x – 1)
2
⇔
x = 1 (nhận)
Vậy S =
{ }
1
Trên đây là một vài ví dụ điển hình giúp các em học sinh giải quyết những
mắc mứu trong quá trình giải phương trình. Vì thời gian có hạn nên không đi sâu
vào một số phương trình khác như phương trình chứa dấu giá trò tuyệt đối,…
3.3. Biện pháp và kết quả thực hiện
Biện pháp
Để thực hiện tốt kỹ năng giải phương trình của học sinh, giáo viên cần
cung cấp cho học sinh các kiến thức cơ bản sau:
Củng cố lại các phép tính, các phép biến đổi, quy tắc dấu và quy tắc dấu
ngoặc ở các lớp 6, 7.
Ngay từ đầu chương trình Đại số 8 giáo viên cần chú ý dạy tốt cho học sinh
nắm vững chắc kiến thức về nhân, chia đa thức, các hằng thức đáng nhớ, việc
vận dụng thành thạo cả hai chiều của các hằng đẳng thức, đặc biệt là kỹ năng
phân tích đa thức thành nhân tử nhằm mục đích thực hiện các phép tính ở hai vế
của phương trình, đưa phương trình về dạng tích không sai sót.
Khi học về phân thức ở chương II, giáo viên cần chú ý cho học sinh nắm
vững các tìm giá trò của ẩn để phân thức chứa mẫu thức được xác đònh nhằm giúp
học sinh tìm được ĐKXĐ của phương trình chứa mẫu thức sau này không sót và
chính xác. Cần chú ý khi giải phương trình chứa ẩn ở mẫu có thể nên cho học
sinh tìm mẫu thức chung trước để việc tìm ĐKXĐ của phương trình sẽ tiện hơn và
không sót điều kiện.
Cần xây dựng học sinh thói quen học tập, biết quan sát, phân tích nhận
dạng phương trình, tìm phương trình có dạng đặc biệt, sử dụng thành thạo kỹ
năng giải toán trong thực hành, rèn luyện khả năng tự học, tự tìm tòi sáng tạo.
Khuyến khích học sinh tham gia học tổ, nhóm, học sáng tạo, tìm những cách giải
hay, cách giải khác.
Ngêi thùc hiƯn: Ngun Hoµi Ph¬ng Trang 13
RÌn kü n¨ng gi¶i ph¬ng tr×nh cho häc sinh - m«n §¹i sè 8
Trêng T H CS Phíc ChØ
Một số lưu ý khi giải phương trình, học sinh cần nhận xét:
Quan sát đặc điểm của phương trình:
Nhận xét quan hệ giữa các biểu thức trong trong phương trình từ đó đưa ra
cách biến đổi thích hợp.
Nhận dạng phương trình:
Xét xem phương trình đã cho thuộc dạng nào?, áp dụng phương pháp cho
phù hợp từng dạng phương trình đó.
Kinh nghiệm trong biến đổi phương trình:
Khi đã thu gọn hai vế của phương trình, nếu biến có số mũ từ hai trở lên thì
ta cố gắng tìm cách chuyển phương trình đó về dạng phương trình tích.
Khi biến đổi phương trình nếu nhận thấy hai vế của phương có nhân tử
chung hoặc hằng đẳng thức thì ta nên sử dung đặt nhân tử chung hoặc hằng đẳng
thức ấy.
Khi khử mẫu hai vế của phương trình ta cần lưu ý đây là phương trình hệ quả
của phương trình ban đầu do đó ta dùng dấu suy ra.
Khi biến đổi phương trình cần chú ý tính chất đặc biệt của tử và mẫu của
phương trình từ đó suy ra cách phân tích hợp lý như nhóm, tách, thêm bớt, đặt ẩn
phụ, … cho thích hợp.
Kết quả
Kết quả áp dụng kỹ năng giải phương trình này đã góp phần nâng cao chất
lượng học tập của bộ môn đối với học sinh đại trà.
Kết quả kiểm tra về giải phương trình được thông kê, đánh giá qua hai lớp
8
1
, 8
3
ở năm học 2009 – 2010 như sau:
a) Chưa áp dụng giải pháp
Kết quả khảo sát
Thời gian học kỳ II TS
HS
Trung bình trở lên
Số lượng Tỉ lệ (%)
Khảo sát (chưa áp dụng giải pháp) 63 27 42,85%
*
Nhận xét: Đa số học sinh chưa nắm được kỹ năng phân tích, nhận dạng
phương trình, kỹ năng thu gọn, chuyển vế, biến đổi sai sót về dấu, chưa áp dụng
được các hằng đẳng thức, phân tích đa thức thành nhân tử,
b) Áp dụng giải pháp
Lần 1: Kết quả khảo sát
Thời gian học kỳ II TS
HS
Trung bình trở lên
Số lượng Tỉ lệ (%)
Ngêi thùc hiƯn: Ngun Hoµi Ph¬ng Trang 14
RÌn kü n¨ng gi¶i ph¬ng tr×nh cho häc sinh - m«n §¹i sè 8
Trêng T H CS Phíc ChØ
Kết quả áp dụng giải pháp (lần 1) 63 40 63,49%
*
Nhận xét: Học sinh đã hệ thống, nắm được các dạng phương trình, kỹ năng
biến đổi hợp lý, việc vận dụng các hằng đẳng thức đáng nhớ, quy tắc dấu, quy
tắc dấu ngoặc, phân tích đa thức thành nhân tử có hiệu quả, biết nhận xét đánh
giá bài toán trong các trường hợp, trình bày khá hợp lý.
Lần 2: Kết quả khảo sát (kiểm tra 1 tiết)
Thời gian học kỳ II TS
HS
Trung bình trở lên
Số lượng Tỉ lệ (%)
Kết quả áp dụng giải pháp (lần 2) 63 58 92,06%
*
Nhận xét: Học sinh nắm vững chắc về các dạng phương trình, vận dụng
thành thạo các kỹ năng biến đổi, phân tích, biết dựa vào các yếu tố quan trọng,
đặc điểm của phương trình, linh hoạt biến đổi và vận dụng hằng đẳng thức, phân
tích đa thức thành nhân tử, trình bày bài giải hợp lý hơn có hệ thống, chỉ còn một
số ít học sinh quá yếu, kém chưa thực hiện tốt.
Học sinh hứng thú, tích cực tìm hiểu kỹ phương pháp giải, phân loại từng dạng
toán, chủ động lónh hội kiến thức, có kỹ năng xử lý nhanh các bài toán có dạng
tương tự, đặt ra nhiều vấn đề mới, nhiều bài toán mới.
Tóm lại:
Từ thực tế giảng dạy khi áp dụng phương pháp này tôi nhận thấy học sinh
nắm vững kiến thức hơn, hiểu rõ các dạng phương trình, đặc điểm của từng cách
giải cho các dạng phương trình. Kinh nghiệm này đã giúp học sinh trung bình,
học sinh yếu nắm chắc về cách giải phương trình, vận dụng và rèn luyện kỹ năng
thực hành theo hướng tích cực hoá hoạt động nhận thức ở những mức độ khác
nhau thông qua một chuỗi bài tập về phương trình được sắp xếp theo các mức độ
nhận thức của học sinh. Bên cạnh đó còn giúp cho học sinh khá giỏi có điều kiện
tìm hiểu thêm một số phương pháp giải khác, các dạng toán khác nâng cao hơn,
nhằm phát huy tài năng toán học, phát huy tính tự học, tìm tòi, sáng tạo của học
sinh trong học toán.
C/. KẾT LUẬN
C/. KẾT LUẬN
Bài học kinh nghiệm
Thông qua việc nghiên cứu đề tài và những kinh nghiệm từ thực tiễn giảng dạy,
cho phép tôi rút ra một số kinh nghiệm sau:
Ngêi thùc hiƯn: Ngun Hoµi Ph¬ng Trang 15
RÌn kü n¨ng gi¶i ph¬ng tr×nh cho häc sinh - m«n §¹i sè 8
Trêng T H CS Phíc ChØ
Đối với học sinh yếu kém: Là quá trình liên tục được củng cố và sửa chữa
sai lầm, khuyết điểm, cần rèn luyện ở học sinh các kỹ năng thực hành theo trình
tự các bước giải phương trình. Từ đó học sinh có khả năng nắm được phương
pháp vận dụng tốt các cách giải phương trình, cho học sinh thực hành theo mẫu
với các bài tập tương tự, bài tập từ đơn giản nâng dần đến phức tạp, không nên
dẫn các em đi quá xa nội dung sách giáo khoa.
Đối với học sinh đại trà: Giáo viên cần chú ý cho học sinh nắm chắc các
dạng phương trình phương pháp giải cho từng dạng, rèn kỹ năng biến đổi, linh
hoạt trong việc vận dụng các hằng đẳng thức, phân tích đa thức thành nhân tử,
luyện tập khả năng tự học, gợi sự suy mê hứng thú niềm vui trong học tập, kích
thích và khơi dậy óc tìm tòi, chủ động chiếm lónh kiến thức.
Đối với học sinh khá giỏi: Ngoài việc nắm chắc các phương pháp giải cơ
bản, ta cần cho học sinh tìm hiểu thêm các phương pháp phân tích nâng cao khác,
các bài tập dạng mở rộng giúp các em biết mở rộng vấn đề, cụ thể hoá vấn đề,
tương tự hoá vấn đề để việc giải phương trình tốt hơn. Qua đó tập ở học sinh thói
quen tự học, tự tìm tòi sáng tạo, khai thác cách giải, khai thác bài toán khác
nhằm phát triển tư duy một cách toàn diện cho quá trình tự nghiên cứu của các
em.
Đối với giáo viên: Giáo viên thường xuyên kiểm tra mức độ tiếp thu và vận
dụng của học sinh trong quá trình cung cấp các thông tin mới có liên quan trong
chương trình đại số 8 đã đề cập ở trên.
Nếu thực hiện tốt phương pháp trên trong quá trình giảng dạy và học tập thì
chất lượng học tập bộ môn của học sinh sẽ được nâng cao hơn, đào tạo được
nhiều học sinh khá giỏi, đồng thời tạo sự hứng thú và niềm vui trong học tập.
Hướng phổ biến áp dụng
Đề tài được triển khai phổ biến và áp dụng rộng rãi trong chương trình đại số
lớp 8, cho các năm học sau, cho những đơn vò trường cùng loại hình.
Hướng nghiên cứu phát triển
Đề tài sẽ được nghiên cứu tiếp tục ở các phương pháp giải khác, phương pháp
giải phương trình chứa dấu giá trò tuyệt đối, việc vận dụng giải phương trình vào
các bài toán thực tế.
Ngêi thùc hiƯn: Ngun Hoµi Ph¬ng Trang 16