Chuyên đề 1: DÃY CÁC SỐ NGUYÊN – PHÂN SỐ VIẾT THEO QUY LUẬT
= = = = = = = = = = = = &*&*& = = = = = = = = = = = = =
(1). Dãy 1: Sử dụng công thức tổng quát
na
1
a
1
n)a.(a
n
+
−=
+
- - - Chứng minh - - -
naanaa
a
naa
na
naa
ana
naa
n
+
−=
+
−
+
+
=
+
−+
=
+
11
).().().(
)(
).(
∗ Bài 1.1 : Tính
a)
2009.2006
3
14.11
3
11.8
3
8.5
3
++++=A
b)
406.402
1
18.14
1
14.10
1
10.6
1
++++=B
c)
507.502
10
22.17
10
17.12
10
12.7
10
++++=C
d)
258.253
4
23.18
4
18.13
4
13.8
4
++++=D
∗ Bài 1.2 : Tính:
a)
509.252
1
19.7
1
7.9
1
9.2
1
++++=A
b)
405.802
1
17.26
1
13.18
1
9.10
1
++++=B
c)
405.401
3
304.301
2
13.9
3
10.7
2
9.5
3
7.4
2
−++−+−=C
∗ Bài 1.3 : Tìm số tự nhiên x, thoả mãn:
a)
8
5
120
1
21
1
15
1
10
1
2008
=−−−−−
x
b)
45
29
45.41
4
17.13
4
13.9
4
9.5
47
=+++++
x
c)
93
15
)32)(12(
1
9.7
1
7.5
1
5.3
1
=
++
++++
xx
∗ Bài 1.4 : Chứng minh rằng với mọi số tự nhiên n khác 0 ta đều có:
a)
46)23)(13(
1
11.8
1
8.5
1
5.2
1
+
=
+−
++++
n
n
nn
b)
34
5
)34)(14(
5
15.11
5
11.7
5
7.3
5
+
=
+−
++++
n
n
nn
∗ Bài 1.5 : Chứng minh rằng với mọi
2; ≥∈ nNn
ta có:
15
1
)45)(15(
3
24.19
3
19.14
3
14.9
3
<
+−
++++
nn
∗ Bài 1.6 : Cho
403.399
4
23.19
4
19.15
4
+++=A
chứng minh:
80
16
81
16
<< A
∗ Bài 1.7 : Cho dãy số :
;
25.18
2
;
18.11
2
;
11.4
2
a) Tìm số hạng tổng quát của dãy
b) Gọi S là tổng của 100 số hạng đầu tiên của dãy. Tính S.
∗ Bài 1.8 : Cho
2222
9
1
4
1
3
1
2
1
++++=A
. Chứng minh
9
8
5
2
<< A
∗ Bài 1.9 : Cho
2222
2007
2
7
2
5
2
3
2
++++=A
. Chứng minh:
2008
1003
<A
∗ Bài 1.10 : Cho
2222
2006
1
8
1
6
1
4
1
++++=B
. Chứng minh:
2007
334
<B
∗ Bài 1.11 : Cho
222
409
1
9
1
5
1
+++=S
. Chứng minh:
12
1
<S
∗ Bài 1.12 : Cho
2222
305
9
17
9
11
9
5
9
++++=A
. Chứng minh:
4
3
<A
1
∗ Bài 1.13 : Cho
2
201
202.200
49
48
25
24
9
8
++++=B
. Chứng minh:
75,99>B
∗ Bài 1.14 : Cho
1764
1766
25
27
16
18
9
11
++++=A
. Chứng minh:
21
20
40
43
20
40 << A
∗ Bài 1.15 : Cho
100.98
99
6.4
5
5.3
4
4.2
3
3.1
2
22222
+++++=B
. Tìm phần nguyên của B.
∗ Bài 1.16 : Cho
2500
2499
16
15
9
8
4
3
++++=C
. Chứng minh C > 48
∗ Bài 1.17 : Cho
59 321
1
4321
1
321
1
++++
++
+++
+
++
=M
. Chứng minh
3
2
<M
∗ Bài1.18 : Cho
100.99
101.98
5.4
6.3
4.3
5.2
3.2
4.1
++++=N
. Chứng minh 97 < N < 98.
• Mở rộng với tích nhiều thừa số:
)2)((
1
)(
1
)2)((
2
nananaananaa
n
++
−
+
=
++
Chứng minh:
)2)((
1
)(
1
)2)(()2)((
2
)2)((
)2(
)2)((
2
nananaananaa
a
nanaa
na
nanaa
ana
nanaa
n
++
−
+
=
++
−
++
+
=
++
−+
=
++
)3)(2)((
1
)2)((
1
)3)(2)((
3
nananananaanananaa
n
+++
−
++
=
+++
∗ Bài 1.19 : Tính
39.38.37
2
4.3.2
2
3.2.1
2
+++=S
∗ Bài 1.20 : Cho
20.19.18
1
4.3.2
1
3.2.1
1
+++=A
. Chứng minh
4
1
<A
∗ Bài 1.21 : Cho
29.27.25
36
7.5.3
36
5.3.1
36
+++=B
. Chứng minh B < 3
∗ Bài 1.22 : Cho
308.305.302
5
14.11.8
5
11.8.5
5
+++=C
. Chứng minh
48
1
<C
∗ Bài 1.23 : Chứng minh với mọi n
∈
N; n > 1 ta có:
4
11
4
1
3
1
2
1
3333
<++++=
n
A
∗ Bài 1.24 : Tính
30.29.28.27
1
5.4.3.2
1
4.3.2.1
1
+++=M
∗ Bài 1.25 : Tính
100.99
1
6.5
1
4.3
1
2.1
1
100
1
52
1
51
1
++++
+++
=P
Bài 1.26: Tính:
2007.2005
1004.1002
)12)(12(
)1)(1(
9.7
5.3
7.5
4.2
5.3
3.1
++
+−
+−
++++=
nn
nn
Q
Bài 1. 27: Tính:
2007.2005
2006
5.3
4
4.2
3
3.1
2
2222
++++=R
Bài 1.28: Cho
12005
2
12005
2
12005
2
12005
2
12005
2
20052
2
2006
2
1
2
3
2
2
+
++
+
++
+
+
+
+
+
=
+
n
n
S
So sánh S với
1002
1
Hướng dẫn:
1k
m2
1k
m
1k
m
1k
m2
)1k)(1k(
mmkmmk
1k
m
1k
m
22
−
−
−
=
+
⇒
−
=
+−
+−+
=
+
−
−
Áp dụng vào bài toán với m ∈ {2; 2 , …., 2 } và k ∈ { 2005, 2005 , …
2006
2
2005
} ta
có:
2
12005
2
12005
2
12005
2
2
2
−
−
−
=
+
12005
2
12005
2
12005
2
2
2
3
2
2
2
2
−
−
−
=
+
………………
(2). Dãy 2: Dãy luỹ thừa
n
a
1
với n tự nhiên.
Bài 2.1: Tính :
10032
2
1
2
1
2
1
2
1
++++=A
Bài 2.2: Tính:
10099432
2
1
2
1
2
1
2
1
2
1
2
1
−++−+−=B
Bài 2.3: Tính:
9953
2
1
2
1
2
1
2
1
++++=C
Bài 2.4: Tính:
581074
2
1
2
1
2
1
2
1
2
1
−+−+−=D
Bài 2.5: Cho
n
n
A
3
13
27
26
9
8
3
2 −
++++=
. Chứng minh
2
1
−> nA
Bài 2.6: Cho
98
98
3
13
27
28
9
10
3
4 +
++++=B
. Chứng minh B < 100.
Bài 2.7: Cho
9932
4
5
4
5
4
5
4
5
++++=C
. Chứng minh:
3
5
<C
Bài 2.8: Cho
22222222
10.9
19
4.3
7
3.2
5
2.1
3
++++=D
. Chứng minh: D < 1.
Bài 2.9: Cho
10032
3
100
3
3
3
2
3
1
++++=E
. Chứng minh:
4
3
<E
Bài 2.10: Cho
n
n
F
3
13
3
10
3
7
3
4
32
+
++++=
với n
∈
N
*
. Chứng minh:
4
11
<F
Bài 2.11: Cho
10032
3
302
3
11
3
8
3
5
++++=G
. Chứng minh:
2
1
3
9
5
2 << G
Bài 2.12: Cho
10032
3
601
3
19
3
13
3
7
++++=H
. Chứng minh:
5
9
7
3 << H
Bài 2.13: Cho
10032
3
605
3
23
3
17
3
11
++++=I
. Chứng minh: I < 7
Bài 2.14: Cho
10132
3
904
3
22
3
13
3
4
++++=K
. Chứng minh:
4
17
<K
Bài 2.15: Cho
10032
3
403
3
15
3
11
3
7
++++=L
. Chứng minh: L < 4,5.
(3). Dãy 3: Dãy dạng tích các phân số viết theo quy luật:
Bài 3.1: Tính:
2500
2499
25
24
.
16
15
.
9
8
=A
.
Bài 3.2: Cho dãy số:
,
35
1
1,
24
1
1,
15
1
1,
8
1
1,
3
1
1
a) Tìm số hạng tổng quát của dãy.
b) Tính tích của 98 số hạng đầu tiên của dãy.
Bài 3.3: Tính:
−
−
−
−
−=
780
1
1
15
1
1
10
1
1
6
1
1
3
1
1B
.
Bài 3.4: Cho
200
199
6
5
.
4
3
.
2
1
=C
. Chứng minh:
201
1
2
<C
3
Bài 3.5: Cho
100
99
6
5
.
4
3
.
2
1
=D
. Chứng minh:
10
1
15
1
<< D
Bài 3.6: Tính:
+
+
+
+= 1
99
1
1
4
1
1
3
1
1
2
1
E
Bài 3.7: Tính:
−
−
−
−= 1
100
1
1
4
1
1
3
1
1
2
1
F
.
Bài 3.8: Tính:
2222
30
899
4
15
.
3
8
.
2
3
=G
.
Bài 3.9: Tính:
64
31
.
62
30
10
4
.
8
3
.
6
2
.
4
1
=H
.
Bài 3.10: Tính:
1000 001 100000001.10001.101
/12
sc
n
I
−
=
Bài 3.11: Cho
−
−
−
−= 1
100
1
1
4
1
1
3
1
1
2
1
2222
K
. So sánh K với
2
1−
Bài 3.12: So sánh
−
−
−
−=
20
1
1
4
1
1
3
1
1
2
1
1L
với
21
1
Bài 3.13: So sánh
−
−
−
−=
100
1
1
16
1
1
9
1
1
4
1
1M
với
19
11
Bài 3.14: Tính:
51.49
50
5.3
4
.
4.2
3
.
3.1
2
2222
=N
Bài 3.15: Tính
−
−
−
−=
7
10
1
7
3
1
7
2
1
7
1
1P
.
Bài 3.16: Tính:
−
−
−
−=
2007
2
1
7
2
1
5
2
1
3
2
1Q
Bài 3.17: Tính:
−
−
−
−=
99
1
2
1
7
1
2
1
5
1
2
1
3
1
2
1
T
Bài 3.18: So sánh:
40 23.22.21
39 7.5.3.1
=U
và
12
1
20
−
=V
Bài 3.19: Cho
+
+
+
+=
101.99
1
1
5.3
1
1
4.2
1
1
3.1
1
1V
. Chứng minh V < 2.
Bài 3.20: Cho
199
200
5
6
.
3
4
.
1
2
=S
. Chứng minh:
400201
2
<< S
Bài 3.21: Cho
210
208
12
10
.
9
7
.
6
4
.
3
1
=A
. Chứng minh:
25
1
<A
Bài 3.22: Tính:
101.100
100
4.3
3
.
3.2
2
.
2.1
1
2222
=B
Bài 3.23: Tính:
+
+
+
+
+
+
+
+
=
1999
1000
1
3
1000
1
2
1000
1
1
1000
1
1000
1999
1
3
1999
1
2
1999
1
1
1999
1
C
Bài 3.24: Tính:
−
−
−
−
−=
2
)12(
1
1
25
4
1
9
4
1
1
4
1
n
D
, với n
∈
N,
1≥n
Bài 3.25: Cho
++++
−
++
−
+
−=
n
E
321
1
1
321
1
1
21
1
1
và
n
n
F
2+
=
với n
∈
N
*
. Tính
F
E
Bài 3.26: Cho
+
+
+
+
+=
1024
2
1
1
256
1
1
16
1
1
4
1
1
2
1
1G
và
2047
2
1
=H
4
Tính: G + H.
Bài 3.27: Cho
n
nn
I
2
22
2
2)12)(12(
65536
2257.255
.
256
217.15
.
16
25.3
.
4
23.1 ++−++++
=
với n
∈
N.
Chứng minh:
3
4
<I
Bài 3.28: Cho dãy số:
;
3
1
1;
3
1
1;
3
1
1;
3
1
1;
3
1
1
16842
a) Tìm số hạng tổng quát của dãy.
b) Gọi A là tích của 11 số hạng đầu tiên của dãy. Chứng minh
A23
1
−
là số tự nhiên.
c) Tìm chữ số tận cùng của
A
B
23
3
−
=
Bài 3.29: Cho
n
nn
A
2
22
42
6
23
6
97
.
6
13
.
6
5 +
=
và
12
1
6
1
−
+
=
n
B
với n
∈
N
a) Chứng minh :
B
A
M =
là số tự nhiên
b) Tìm n để M là số nguyên tố.
Bài 3.30: Cho
n
n
A
2
2
42
3
16
3
1297
.
3
37
.
3
7 +
=
+
+
+
+
+=
n
B
2
842
3
1
1
3
1
1.
3
1
1
3
1
1
3
1
1
với n
∈
N
a) Chứng minh : 5A – 2B là số tự nhiên.
b) Chứng minh với mọi số tự nhiên n khác 0 thì 5A – 2B chia hết cho 45.
Bài 3.31: Cho
n
nn
A
2
22
42
3
23
3
97
.
3
13
.
3
5 +
=
.( với n
∈
N ) Chứng minh: A < 3.
(4). Tính hợp lí các biểu thức có nội dung phức tạp:
Bài 4.1: Tính:
99.98 4.33.22.1
)98 321( )321()21(1
++++
+++++++++++
=
A
Bài 4.2: Tính:
99.98 4.33.22.1
1.98 96.397.298.1
++++
++++
=
B
Bài 4.3: Tính:
400.299
1
104.3
1
103.2
1
102.1
1
400.101
1
302.3
1
301.2
1
300.1
1
++++
++++
=
C
Bài 4.4: Tính:
100
99
4
3
3
2
2
1
100
1
3
1
2
1
1100
++++
++++−
=
D
Bài 4.5: Tính:
100.99
1
6.5
1
4.3
1
2.1
1
100
1
53
1
52
1
51
1
++++
++++
=E
Bài 4.6: Tính
121
16
11
16
16
121
15
11
15
15
:
27
8
9
8
3
8
8
27
5
9
5
3
5
5
+−
+−
−+−
−+−
=F
5
Bài 4.7: Tính
25
2
32,0
4
1
1.
5
1
1:2,1
56
43
4:
4
1
2
7
3
5
2
1
2:
5
1
15
2
3
+
−
−
+
=G
Bài 4.8: Tính
500
1
55
1
50
1
45
1
100
92
11
3
10
2
9
1
92
:
100
1
4
1
3
1
2
1
1
99
2
98
97
3
98
2
99
1
++++
−−−−−
++++
+++++
=H
Bài 4.9: Tính
2941
5
41
5
29
5
5
2941
4
41
4
29
4
4
:
1943
3
43
3
19
3
3
1943
2
43
2
19
2
2
−+−
−+−
−+−
−+−
=I
Bài 4.10: Tính
91
7
169
7
13
7
7
91
3
169
3
13
3
3
:
85
4
289
4
7
4
4
85
12
289
12
7
12
12
+++
+++
−−−
−−−
=K
Bài 4.11: Tính
20.1516.1212.98.64.3
10.58.46.34.22.1
++++
++++
=L
Bài 4.12: Tính
5
2
:5,0.6,0
17
2
2.
4
1
2
9
5
5
7
4
:
25
2
08,1
25
1
64,0
25,1.
5
3
1:6,1
+
−
−
+
−
=M
Bài 4.13: Tính
43
11
8:
1517
38
6
1591
94
11
5
1
8
−=N
Bài 4.14: Tính
−+=
37.13.11.7.3
4
222222
5
111111
5
.10101P
Bài 4.15: Tính
1.99
1
3.97
1
95.5
1
97.3
1
99.1
1
99
1
7
1
5
1
3
1
1
+++++
+++++
=Q
Bài 4.16: Tính
1
199
2
198
197
3
198
2
199
1
200
1
4
1
3
1
2
1
+++++
++++
=R
6