Tải bản đầy đủ (.pdf) (12 trang)

Aircraft Flight Dynamics Robert F. Stengel Lecture13 Analysis of Time Response

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.08 MB, 12 trang )

Time Response of Linear,
Time-Invariant Systems

Robert Stengel, Aircraft Flight Dynamics

MAE 331, 2012"
•  Time-domain analysis"
–  Transient response to initial conditions and
inputs"
–  Steady-state (equilibrium) response"
–  Continuous- and discrete-time models"
–  Phase-plane plots"
–  Response to sinusoidal input"
Copyright 2012 by Robert Stengel. All rights reserved. For educational use only.!
/>!
/>!
Linear, Time-Invariant (LTI)
Longitudinal Model"

Δ

V (t)
Δ

γ
(t)
Δ

q(t)
Δ

α


(t)
$
%
&
&
&
&
&
'
(
)
)
)
)
)
=
−D
V
−g −D
q
−D
α
L
V
V
N
0
L
q
V

N
L
α
V
N
M
V
0 M
q
M
α

L
V
V
N
0 1 −
L
α
V
N
$
%
&
&
&
&
&
&
&

&
'
(
)
)
)
)
)
)
)
)
ΔV(t)
Δ
γ
(t)
Δq(t)
Δ
α
(t)
$
%
&
&
&
&
&
'
(
)
)

)
)
)
+
0 T
δ
T
0
0 0 L
δ
F
/ V
N
M
δ
E
0 0
0 0 −L
δ
F
/ V
N
$
%
&
&
&
&
&
'

(
)
)
)
)
)
Δ
δ
E(t)
Δ
δ
T (t )
Δ
δ
F(t)
$
%
&
&
&
'
(
)
)
)
•  Steady, level flight"
•  Simplified control effects "
•  Neglect disturbance effects
"
•  What can we do with it?"

–  Integrate equations to obtain time histories of initial condition, control, and
disturbance effects"
–  Determine modes of motion"
–  Examine steady-state conditions"
–  Identify effects of parameter variations"
–  Define frequency response
"
Gain insights about
system dynamics!
Linear, Time-Invariant
System Model"
•  General model contains"
–  Dynamic equation (ordinary differential equation)"
–  Output equation (algebraic transformation) "

Δ
˙
x (t) = FΔx(t) + GΔu(t) + LΔw(t), Δx(t
o
) given
Δy(t) = H
x
Δx(t) + H
u
Δu(t) + H
w
Δw(t)
•  State and output dimensions need not be the same"
dim Δx(t )
[ ]

= n × 1
( )
dim Δy(t )
[ ]
= r × 1
( )
System Response to Inputs
and Initial Conditions"
•  Solution of the linear, time-invariant (LTI) dynamic model "

Δ

x(t) = FΔx(t) + GΔu(t) + LΔw(t), Δx(t
o
) given
Δx(t) = Δx(t
o
) + FΔx(
τ
) + GΔu(
τ
) + LΔw(
τ
)
[ ]
t
o
t

d

τ
•  has two parts"
–  Unforced (homogeneous) response to initial conditions"
–  Forced response to control and disturbance inputs"
Response to
Initial Conditions
Unforced Response to
Initial Conditions"
•  The state transition matrix, Φ, propagates the
state from t
o
to t by a single multiplication"
Δx(t ) = Δx(t
o
)+ FΔx(
τ
)
[ ]
d
τ
t
o
t

= e
F t−t
o
( )
Δx(t
o

) = Φ t − t
o
( )
Δx(t
o
)
e
F t −t
o
( )
= Matrix Exponential
= I + F t − t
o
( )
+
1
2!
F t − t
o
( )
"
#
$
%
2
+
1
3!
F t − t
o

( )
"
#
$
%
3
+
= Φ t − t
o
( )
= State Transition Matrix
•  Neglecting forcing functions"
Initial-Condition Response
via State Transition"
Φ = I + F
δ
t
( )
+
1
2!
F
δ
t
( )
#
$
%
&
2

+
1
3!
F
δ
t
( )
#
$
%
&
3
+

Δx(t
1
) = Φ t
1
− t
o
( )
Δx(t
o
)
Δx(t
2
) = Φ t
2
− t
1

( )
Δx(t
1
)
Δx(t
3
) = Φ t
3
− t
2
( )
Δx(t
2
)

•  If (t
k+1
– t
k
) =
Δ
t = constant, state
transition matrix is constant"

Δx(t
1
) = Φ
δ
t
( )

Δx(t
o
) = ΦΔx(t
o
)
Δx(t
2
) = ΦΔx(t
1
) = Φ
2
Δx(t
o
)
Δx(t
3
) = ΦΔx(t
2
) = Φ
3
Δx(t
o
)

•  Incremental propagation of Δx"
•  Propagation is exact"
Discrete-Time
Dynamic Model"
Δx(t
k+1

) = Δx(t
k
)+ FΔx(
τ
)+ GΔu(
τ
)+ LΔw(
τ
)
[ ]
d
τ
t
k
t
k+1

Δx(t
k+1
) = Φ
δ
t
( )
Δx(t
k
)+ Φ
δ
t
( )
e

−F
τ
−t
k
( )
&
'
(
)
d
τ
t
k
t
k+1

GΔu(t
k
)+ LΔw(t
k
)
[ ]
= ΦΔx(t
k
)+ ΓΔu(t
k
)+ ΛΔw(t
k
)
•  Response to continuous controls and disturbances"

•  Response to piecewise-constant controls and disturbances"
Ordinary Difference Equation!
•  With piecewise-constant inputs, control and disturbance
effects taken outside the integral"
•  Discrete-time model = Sampled-data model"
Sampled-Data Control- and
Disturbance-Effect Matrices"
Γ = e
F
δ
t
− I
( )
F
−1
G
= I −
1
2!
F
δ
t +
1
3!
F
2
δ
t
2


1
4!
F
3
δ
t
3
+
$
%
&
'
(
)
G
δ
t
Λ = e
F
δ
t
− I
( )
F
−1
L
= I −
1
2!
F

δ
t +
1
3!
F
2
δ
t
2

1
4!
F
3
δ
t
3
+
$
%
&
'
(
)
L
δ
t
Δx(t
k
) = ΦΔx(t

k −1
) + ΓΔu(t
k −1
) + ΛΔw(t
k −1
)
•  As
δ
t becomes
very small"
Φ
δ
t →0
$ →$$ I + F
δ
t
( )
Γ
δ
t →0
$ →$$ G
δ
t
Λ
δ
t →0
$ →$$ L
δ
t
Discrete-Time Response to Inputs"


Δx(t
1
) = ΦΔx(t
o
)+ ΓΔu(t
o
)+ ΛΔw(t
o
)
Δx(t
2
) = ΦΔx(t
1
)+ ΓΔu(t
1
)+ ΛΔw(t
1
)
Δx(t
3
) = ΦΔx(t
2
)+ ΓΔu(t
2
)+ ΛΔw(t
2
)

•  Propagation of Δx, with constant Φ, Γ, and Λ"

δ
t = t
k +1
− t
k
Continuous- and Discrete-Time
Short-Period System Matrices"
• 
δ
t = 0.1 s"
• 
δ
t = 0.5 s"
F =
−1.2794 −7.9856
1 −1.2709
"
#
$
%
&
'
G =
−9.069
0
"
#
$
%
&

'
L =
−7.9856
−1.2709
"
#
$
%
&
'
Φ =
0.845 −0.694
0.0869 0.846
#
$
%
&
'
(
Γ =
−0.84
−0.0414
#
$
%
&
'
(
Λ =
−0.694

−0.154
#
$
%
&
'
(
Φ =
0.0823 −1.475
0.185 0.0839
#
$
%
&
'
(
Γ =
−2.492
−0.643
#
$
%
&
'
(
Λ =
−1.475
−0.916
#
$

%
&
'
(
•  Continuous-time
(analog) system"
•  Sampled-data (digital) system"
δ
t has a large effect on the digital model"
δ
t = t
k +1
− t
k
Φ =
0.987 −0.079
0.01 0.987
#
$
%
&
'
(
Γ =
−0.09
−0.0004
#
$
%
&

'
(
Λ =
−0.079
−0.013
#
$
%
&
'
(
•  δt = 0.01 s"
Example: Continuous- and
Discrete-Time Models"

Δ

q
Δ

α
#
$
%
%
&
'
(
(
=

−1.3 −8
1 −1.3
#
$
%
&
'
(
Δq
Δ
α
#
$
%
%
&
'
(
(
+
−9.1
0
#
$
%
&
'
(
Δ
δ

E
• Note individual acceleration and difference
sensitivities to state and control perturbations"
Short Period"
Δq
k +1
Δ
α
k +1
#
$
%
%
&
'
(
(
=
0.85 −0.7
0.09 0.85
#
$
%
&
'
(
Δq
k
Δ
α

k
#
$
%
%
&
'
(
(
+
−0.84
−0.04
#
$
%
&
'
(
Δ
δ
E
k
Differential Equations Produce
State Rates of Change"
Difference Equations
Produce State Increments"
Learjet 23!
M
N
= 0.3, h

N
= 3,050 m"
V
N
= 98.4 m/s"
δ
t = 0.1sec
Example: Continuous- and
Discrete-Time Models"

Δ

p
Δ

φ
#
$
%
%
&
'
(
(

−1.2 0
1 0
#
$
%

&
'
(
Δp
Δ
φ
#
$
%
%
&
'
(
(
+
2.3
0
#
$
%
&
'
(
Δ
δ
A
Roll-Spiral"
Δp
k +1
Δ

φ
k +1
#
$
%
%
&
'
(
(

0.89 0
0.09 1
#
$
%
&
'
(
Δp
k
Δ
φ
k
#
$
%
%
&
'

(
(
+
0.24
−0.01
#
$
%
&
'
(
Δ
δ
A
k
Differential Equations Produce
State Rates of Change"
Difference Equations
Produce State Increments"
Example: Continuous- and
Discrete-Time Models"

Δ

r
Δ

β
#
$

%
%
&
'
(
(

−0.11 1.9
−1 −0.16
#
$
%
&
'
(
Δr
Δ
β
#
$
%
%
&
'
(
(
+
−1.1
0
#

$
%
&
'
(
Δ
δ
R
Dutch Roll"
Δr
k +1
Δ
β
k +1
#
$
%
%
&
'
(
(

0.98 0.19
−0.1 0.97
#
$
%
&
'

(
Δr
k
Δ
β
k
#
$
%
%
&
'
(
(
+
−0.11
0.01
#
$
%
&
'
(
Δ
δ
R
k
Differential Equations Produce
State Rates of Change"
Difference Equations

Produce State Increments"
Initial-Condition Response"
•  Doubling the initial condition doubles the output"

Δ

x
1
Δ

x
2
"
#
$
$
%
&
'
'
=
−1.2794 −7.9856
1 −1.2709
"
#
$
%
&
'
Δx

1
Δx
2
"
#
$
$
%
&
'
'
+
−9.069
0
"
#
$
%
&
'
Δ
δ
E
Δy
1
Δy
2
"
#
$

$
%
&
'
'
=
1 0
0 1
"
#
$
%
&
'
Δx
1
Δx
2
"
#
$
$
%
&
'
'
+
0
0
"

#
$
%
&
'
Δ
δ
E
% Short-Period Linear Model - Initial Condition!
!
F = [-1.2794 -7.9856;1. -1.2709];!
G = [-9.069;0];!
Hx = [1 0;0 1];!
sys = ss(F, G, Hx,0);!
!
xo = [1;0];!
[y1,t1,x1] = initial(sys, xo);!
!
xo = [2;0];!
[y2,t2,x2] = initial(sys, xo);!
plot(t1,y1,t2,y2), grid!
!
figure!
xo = [0;1];!
initial(sys, xo), grid!
Angle of Attack
Initial Condition"
Pitch Rate
Initial Condition"
Phase Plane Plots

State (Phase) Plane Plots"
•  Cross-plot of one component against
another"
•  Time or frequency not shown explicitly"
% 2nd-Order Model - Initial Condition Response!
!
clear!
z = 0.1; % Damping ratio!
wn = 6.28; % Natural frequency, rad/s!
F = [0 1;-wn^2 -2*z*wn];!
G = [1 -1;0 2];!
Hx = [1 0;0 1];!
sys = ss(F, G, Hx,0);!
t = [0:0.01:10];!
xo = [1;0];!
[y1,t1,x1] = initial(sys, xo, t);!
!
plot(t1,y1)!
grid on!
!
figure!
plot(y1(:,1),y1(:,2))!
grid on!

Δ

x
1
Δ


x
2
"
#
$
$
%
&
'
'

0 1

ω
n
2
−2
ζω
n
"
#
$
$
%
&
'
'
Δx
1
Δx

2
"
#
$
$
%
&
'
'
+
1 −1
0 2
"
#
$
%
&
'
Δu
1
Δu
2
"
#
$
$
%
&
'
'

Dynamic Stability Changes
the State-Plane Spiral"
•  Damping ratio = 0.1" •  Damping ratio = 0.3" •  Damping ratio = –0.1"
Superposition of
Linear Responses
Step Response"
•  Stability, speed of response,
and damping are
independent of the initial
condition or input"
•  Doubling the input
doubles the output"

Δ

x
1
Δ

x
2
"
#
$
$
%
&
'
'
=

−1.2794 −7.9856
1 −1.2709
"
#
$
%
&
'
Δx
1
Δx
2
"
#
$
$
%
&
'
'
+
−9.069
0
"
#
$
%
&
'
Δ

δ
E
Δy
1
Δy
2
"
#
$
$
%
&
'
'
=
1 0
0 1
"
#
$
%
&
'
Δx
1
Δx
2
"
#
$

$
%
&
'
'
+
0
0
"
#
$
%
&
'
Δ
δ
E
% Short-Period Linear Model - Step!
!
F = [-1.2794 -7.9856;1. -1.2709];!
G = [-9.069;0];!
Hx = [1 0;0 1];!
sys = ss(F, -G, Hx,0); % (-1)*Step!
sys2 = ss(F, -2*G, Hx,0); % (-1)*Step!
!
% Step response!
step(sys, sys2), grid!
Δ
δ
E t

( )
=
0, t < 0
−1, t ≥ 0
%
&
'
(
'
Superposition of Linear Responses"
•  Stability, speed of response, and damping are
independent of the initial condition or input"

Δ

x
1
Δ

x
2
"
#
$
$
%
&
'
'
=

−1.2794 −7.9856
1 −1.2709
"
#
$
%
&
'
Δx
1
Δx
2
"
#
$
$
%
&
'
'
+
−9.069
0
"
#
$
%
&
'
Δ

δ
E
Δy
1
Δy
2
"
#
$
$
%
&
'
'
=
1 0
0 1
"
#
$
%
&
'
Δx
1
Δx
2
"
#
$

$
%
&
'
'
+
0
0
"
#
$
%
&
'
Δ
δ
E
% Short-Period Linear Model - Superposition!
!
F = [-1.2794 -7.9856;1. -1.2709];!
G = [-9.069;0];!
Hx = [1 0;0 1];!
sys = ss(F, -G, Hx,0); % (-1)*Step!
!
xo = [1; 0];!
t = [0:0.2:20];!
u = ones(1,length(t));!
!
[y1,t1,x1] = lsim(sys,u,t,xo);!
[y2,t2,x2] = lsim(sys,u,t);!

!
u != zeros(1,length(t));!
[y3,t3,x3] = lsim(sys,u,t,xo);!
!
plot(t1,y1,t2,y2,t3,y3), grid!
2
nd
-Order Comparison:
Continuous- and Discrete-
Time LTI Longitudinal
Models"
Short !
Period"
Phugoid"

Δ

V
Δ

γ
#
$
%
%
&
'
(
(


−0.02 −9.8
0.02 0
#
$
%
&
'
(
ΔV
Δ
γ
#
$
%
%
&
'
(
(
+
4.7
0
#
$
%
&
'
(
Δ
δ

T

Δ

q
Δ

α
#
$
%
%
&
'
(
(
=
−1.3 −8
1 −1.3
#
$
%
&
'
(
Δq
Δ
α
#
$

%
%
&
'
(
(
+
−9.1
0
#
$
%
&
'
(
Δ
δ
E
Δq
k +1
Δ
α
k +1
#
$
%
%
&
'
(

(
=
0.85 −0.7
0.09 0.85
#
$
%
&
'
(
Δq
k
Δ
α
k
#
$
%
%
&
'
(
(
+
−0.84
−0.04
#
$
%
&

'
(
Δ
δ
E
k
ΔV
k +1
Δ
γ
k +1
#
$
%
%
&
'
(
(
=
1 −0.98
0.002 1
#
$
%
&
'
(
ΔV
k

Δ
γ
k
#
$
%
%
&
'
(
(
+
0.47
0.0005
#
$
%
&
'
(
Δ
δ
T
k
Learjet 23!
M
N
= 0.3, h
N
= 3,050 m"

V
N
= 98.4 m/s"
Differential Equations Produce
State Rates of Change"
Difference Equations
Produce State Increments"
δ
t = 0.1sec
4
th
- Order Comparison:
Continuous- and Discrete-Time
Longitudinal Models"
Phugoid and Short Period"

Δ

V
Δ

γ
Δ

q
Δ

α
$
%

&
&
&
&
&
'
(
)
)
)
)
)
=
−0.02 −9.8 0 0
0.02 0 0 1.3
0 0 −1.3 −8
−0.002 0 1 −1.3
$
%
&
&
&
&
'
(
)
)
)
)
ΔV

Δ
γ
Δq
Δ
α
$
%
&
&
&
&
'
(
)
)
)
)
+
4.7 0
0 0
0 −9.1
0 0
$
%
&
&
&
&
'
(

)
)
)
)
Δ
δ
T
Δ
δ
E
$
%
&
'
(
)
ΔV
k+1
Δ
γ
k+1
Δq
k+1
Δ
α
k+1
$
%
&
&

&
&
&
'
(
)
)
)
)
)
=
1 −0.98 −0.002 −0.06
0.002 1 0.006 0.12
0.0001 0 0.84 −0.69
−0.0002 0.0001 0.09 0.84
$
%
&
&
&
&
'
(
)
)
)
)
ΔV
k
Δ

γ
k
Δq
k
Δ
α
k
$
%
&
&
&
&
&
'
(
)
)
)
)
)
+
0.47 0.0005
0.0005 −0.002
0 −0.84
0 −0.04
$
%
&
&

&
&
'
(
)
)
)
)
Δ
δ
T
k
Δ
δ
E
k
$
%
&
&
'
(
)
)
Learjet 23!
M
N
= 0.3, h
N
= 3,050 m"

V
N
= 98.4 m/s"
Differential Equations
Produce State Rates of
Change"
Difference
Equations Produce
State Increments"
δ
t = 0.1sec
Equilibrium Response
Equilibrium Response"

Δ

x(t ) = FΔx(t ) + GΔu(t) + LΔw(t )
0 = FΔx(t ) + GΔu(t ) + LΔw(t )
Δx* = −F
−1
GΔu * +LΔw *
( )
•  Dynamic equation"
•  At equilibrium, the state is unchanging"
•  Constant values denoted by (.)*"
Steady-State Condition"
•  If the system is also stable, an equilibrium point
is a steady-state point, i.e.,"
–  Small disturbances decay to the equilibrium condition"
F =

f
11
f
12
f
21
f
22
!
"
#
#
$
%
&
&
; G =
g
1
g
2
!
"
#
#
$
%
&
&
; L =

l
1
l
2
!
"
#
#
$
%
&
&
Δx
1
*
Δx
2
*
"
#
$
$
%
&
'
'
= −
f
22
− f

12
− f
21
f
11
"
#
$
$
%
&
'
'
f
11
f
22
− f
12
f
21
( )
g
1
g
2
)
*
+
+

,
-
.
.
Δu *+
l
1
l
2
)
*
+
+
,
-
.
.
Δw *
"
#
$
$
%
&
'
'
2
nd
-order example"
sI − F = Δ s

( )
= s
2
+ f
11
+ f
22
( )
s + f
11
f
22
− f
12
f
21
( )
= s −
λ
1
( )
s −
λ
2
( )
= 0
Re
λ
i
( )

< 0
System Matrices"
Equilibrium "
Response with
Constant Inputs"
Requirement
for Stability"
Equilibrium Response of"
Approximate Phugoid Model"
Δx
P
* = −F
P
−1
G
P
Δu
P
* +L
P
Δw
P
*
( )
ΔV
*
Δ
γ
*
#

$
%
%
&
'
(
(
= −
0
V
N
L
V
−1
g
V
N
D
V
gL
V
#
$
%
%
%
%
%
&
'

(
(
(
(
(
T
δ
T
L
δ
T
V
N
#
$
%
%
%
&
'
(
(
(
Δ
δ
T
*
+
D
V

−L
V
V
N
#
$
%
%
%
&
'
(
(
(
ΔV
W
*
+
,
-
-
.
-
-
/
0
-
-
1
-

-
•  Equilibrium state with constant thrust and wind perturbations"
Steady-State Response of"
Approximate Phugoid Model"
ΔV
*
= −
L
δ
T
L
V
Δ
δ
T
*
+ ΔV
W
*
Δ
γ
*
=
1
g
T
δ
T
+ L
δ

T
D
V
L
V
%
&
'
(
)
*
Δ
δ
T
*
•  With L
δ
T
~ 0, i.e., no lift produced directly by thrust,
steady-state velocity depends only on the horizontal wind"
•  Constant thrust produces steady climb rate"
•  Corresponding dynamic response to thrust step,
with L
δ
T
= 0"
Steady horizontal wind
affects velocity but not
flight path angle!
Equilibrium Response of"

Approximate Short-Period Model"
Δx
SP
* = −F
SP
−1
G
SP
Δu
SP
* +L
SP
Δw
SP
*
( )
Δq
*
Δ
α
*
#
$
%
%
&
'
(
(
= −

L
α
V
N
M
α
1 −M
q
#
$
%
%
%
&
'
(
(
(
L
α
V
N
M
q
+ M
α
*
+
,
-

.
/
M
δ
E

L
δ
E
V
N
#
$
%
%
%
&
'
(
(
(
Δ
δ
E
*

M
α
−L
α

V
N
#
$
%
%
%
&
'
(
(
(
Δ
α
W
*
1
2
3
3
4
3
3
5
6
3
3
7
3
3

•  Equilibrium state with constant elevator and wind perturbations"
Steady-State Response of"
Approximate Short-Period Model"
•  Steady pitch rate and angle of attack response to elevator are not zero"
•  Steady vertical wind affects steady-state angle of attack but not pitch
rate"
Δq
*
= −
L
α
V
N
M
δ
E
%
&
'
(
)
*
L
α
V
N
M
q
+ M
α

%
&
'
(
)
*
Δ
δ
E
*
Δ
α
*
= −
M
δ
E
( )
L
α
V
N
M
q
+ M
α
%
&
'
(

)
*
Δ
δ
E + Δ
α
W
*
with L
δ
E
= 0"
Dynamic response to
elevator step with L
δ
E
= 0!
Scalar Frequency Response
Speed Control of
Direct-Current Motor"
u(t) = C e(t)
where
e(t) = y
c
(t) − y(t)
•  Control Law (C = Control Gain)"
Angular Rate"
Characteristics
of the Motor"
•  Simplified Dynamic Model"

–  Rotary inertia, J, is the sum of motor and load
inertias"
–  Internal damping neglected"
–  Output speed, y(t), rad/s, is an integral of the
control input, u(t)!
–  Motor control torque is proportional to u(t) "
–  Desired speed, y
c
(t), rad/s, is constant"
–  Control gain, C, scales command-following
error to motor input voltage"
Model of Dynamics
and Speed Control"
•  Dynamic equation"
y(t) =
1
J
u(t)dt
0
t

=
C
J
e(t)dt
0
t

=
C

J
y
c
(t) − y(t)
[ ]
dt
0
t

dy(t)
dt
=
u(t)
J
=
Ce(t)
J
=
C
J
y
c
(t) − y(t)
[ ]
, y 0
( )
given
•  Integral of the equation, with y(0) = 0"
• Direct integration of y
c

(t)"
• Negative feedback of y(t)"
Step Response of
Speed Controller"
y(t) = y
c
1− e

C
J
"
#
$
%
&
'
t
(
)
*
*
+
,
-
-
= y
c
1− e
λ
t

(
)
+
,
= y
c
1− e

t
τ
(
)
*
+
,
-
•  where"
 
λ
= –C/J = eigenvalue
or root of the system
(rad/s)"
 
τ
= J/C = time constant
of the response (sec)"
Step input :
y
C
(t) =

0, t < 0
1, t ≥ 0
"
#
$
%
$
•  Solution of the integral,
with step command"
y
c
t
( )
=
0, t < 0
1, t ≥ 0
"
#
$
%
$
Angle Control of a DC Motor"
•  Closed-loop dynamic equation, with y(t) = I
2
x(t)!

u(t) = c
1
y
c

(t) − y
1
(t)
[ ]
− c
2
y
2
(t)


x
1
(t)

x
2
(t)
!
"
#
#
$
%
&
&
=
0 1
−c
1

/ J −c
2
/ J
!
"
#
#
$
%
&
&
x
1
(t)
x
2
(t)
!
"
#
#
$
%
&
&
+
0
c
1
/ J

!
"
#
#
$
%
&
&
y
c
•  Control law with angle and angular rate feedback!
ω
n
= c
1
J ;
ζ
= c
2
J
( )
2
ω
n
c
1
/J = 1 "
c
2
/J = 0, 1.414, 2.828"

% Step Response of Damped "
Angle Control"
"
F1 = [0 1;-1 0];"
G1 = [0;1];"
"
F1a = [0 1;-1 -1.414];"
F1b = [0 1;-1 -2.828];"
"
Hx = [1 0;0 1];"
"
Sys1 = ss(F1,G1,Hx,0);"
Sys2 = ss(F1a,G1,Hx,0);"
Sys3 = ss(F1b,G1,Hx,0);"
"
step(Sys1,Sys2,Sys3)"
Step Response of Angle Controller,
with Angle and Rate Feedback"
•  Single natural frequency,
three damping ratios!
ω
n
= c
1
J ;
ζ
= c
2
J
( )

2
ω
n
Angle Response to a Sinusoidal
Angle Command"

Amplitude Ratio (AR) =
y
peak
y
C
peak
Phase Angle = −360
Δt
peak
Period
, deg
•  Output wave lags
behind the input
wave"
•  Input and output
amplitudes different!
y
C
t
( )
= y
C
peak
sin

ω
t
Effect of Input Frequency on Output
Amplitude and Phase Angle"
•  With low input
frequency, input
and output
amplitudes are
about the same"
•  Rate oscillation
leads angle
oscillation by ~90
deg"
•  Lag of angle
output oscillation,
compared to input,
is small"
y
c
(t) = sin t / 6.28
( )
, deg
ω
n
= 1 rad / s
ζ
= 0.707
At Higher Input Frequency, Phase
Angle Lag Increases"
y

c
(t) = sin t
( )
, deg
At Even Higher Frequency,
Amplitude Ratio Decreases and
Phase Lag Increases"
y
c
(t) = sin 6.28t
( )
, deg
Angle and Rate
Response of a
DC Motor over
Wide Input-
Frequency
Range "
!  Long-term response
of a dynamic system
to sinusoidal inputs
over a range of
frequencies"
!  Determine
experimentally from
time response or "
!  Compute the Bode
plot of the systems
transfer functions
(TBD)!

Very low damping!
Moderate damping!
High damping!
Next Time:
Root Locus Analysis

Reading
Flight Dynamics, 357-361,
465-467, 488-490, 509-514
Virtual Textbook, Part 14
Supplemental Material
Example: Aerodynamic Angle, Linear Velocity,
and Angular Rate Perturbations"
Learjet 23!
M
N
= 0.3, h
N
= 3,050 m"
V
N
= 98.4 m/s"

Δ
α

Δw
V
N
Δ

α
= 1° → Δw = 0.01745 × 98.4 =1.7 m s
Δ
β

Δv
V
N
Δ
β
= 1° → Δv = 0.01745 × 98.4 =1.7 m s
Δp =1° / s
Δw
wingtip
= Δp
b
2
"
#
$
%
= 0.01745 × 5.25 = 0.09 m s
Δq =1° / s
Δw
nose
= Δq x
nose
− x
cm
[ ]

= 0.01745 × 6.4 = 0.11m s
Δr =1° / s
Δv
nose
= Δr x
nose
− x
cm
[ ]
= 0.01745 × 6.4 = 0.11m s
• Aerodynamic angle and linear
velocity perturbations"
• Angular rate and linear
velocity perturbations"

×