Tải bản đầy đủ (.pdf) (11 trang)

Sự không tồn tại nghiệm dương của phương trình tích phân potx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.29 MB, 11 trang )

LU{J.nvan tot nghi~p
Trang 24
CHUONG 4
st; KHONG TON T~I NGHIEM DUONG
? "'" ,
CUA PHUONG TRINH TICH PHAN Val (J = N -1, N > 2
Trang phgn nay chung ta xet sv kh6ng t6n t~i nghit%mdu'dngcua phu'dng
trlnh tich phan phi tuye'n sau day
(4.1)
U
(
x
)
=b
f
g(y,u(y)) d
y
"dx E IRN
N N-l' ,
IRN Iy - xl
trang do bN = 2((N-l)lUN+ltl voi lUN+1la dit%ntich cua m~t c~u ddn vi trong
IRN+I, N > 2 va g: IRN xIR+ ~ IR la ham lien t\!Ccho tru'oc thoa di~u kit%n:
T6n t~i cae hftng s6 a,fJ ~ 0, M > 0 sao cho
(4.2)
g(x,u) ~ MlxlP ua, "dxE IRN, "du~ 0,
va mQt sf) di~u kit%nph\! sau do.
Phudng trlnh tich phan (4.1) duQc thanh l~p tu bai loan Neumann phi tuye'n sau
dayvoiN=n-l>2:
TIm mQt ham v Ia nghit%mcua bai loan Neumann
(4.3)
(4.4)


~v=O, xEIR: ={(xl,xn):xl EIRn-l,xn >O},
- vxn(Xl ,0) = g(XI, V(XI ,0)), Xl E IRn-l,
thoa cae tinh cha't:
(8])
VEC2(IR:)nC(IR:), vxn EC(IR:),
lim
(
SUP I vex) I + R. sup ov (x)
J
= 0,
k HOO Ixl=R,xn>O Ixl=R,xn>O fun
(82)
d day g: IRn-1x[0,+00)~ [0,+00)cho tru'oc thoa cac di~u kit%nsau:
(G])
(G2)
g la ham lien t\!e,
3a~0,3M>0: g(xl,v)~Mva, "dv~O, "dxl EIRn-l.
va mQt sf) di~u kit%nph\! se d~t sau.
Lu(jn van tot nghi~p
Trang25
Khi do, n€u g 1a ham lien t\lCva nghi~m v bai loan (4.3), (4.4) co cac
tinh cha'"t(SI)' (S2)'
thi v 1anghi~mcua phudngtrinhtichphan sau day
I - 2
f
g(l,vel ,0))dl I n
(4.5) vex ,xn) - 2 (n-2)/2 ' VeX ,xn) E IRp
(n-2)OJn Rn-I
(1
I I

I
2
)
Y -x' +Xn
trang do OJn1a di~n tich cua m~t c~u ddn vi trong IRn.
Day 1a k€t qua trong ph~n thi€t l~p phudng trinh tich phan (chudng 2,
dinh 1y 2.1), trang do co stf thay d6i cac ky hi~u trang cach vi€t bang cach thay
(a/,an) va (xl,xn) 1~n1u'<!tbdix=(xl,xn) va Y=(/,Yn)'
Ta cling gia sa rang gia tri bien V(XI,0) cua nghi~m v cua bai loan (4.3),
(4.4) thoa tinh cha'"t:
(s3) Tich phan f g(/, v(/ ,0))d/
/Rn-I I yl - xl In-2
t<3n t~i, VXI E IRn-l.
Gia sa rang bai loan (4.3), (4.4) co nghi~m dudng v= V(XI,xn) thoa cac
di~u ki~n (SI)- (S3)' Dung dinh 1'9hQi t\l bi ch~n Lebesgue, cho Xn ~ 0+ trang
phu'dngtrlnh tich phan (4.5), nho vao (S3)'ta thu duQc:
v(xl,0)= 2
f g(l, vel ,0))_~l , vxl EIRn-l.
(n - 2)OJn /Rn-I Il - Xl In
(4.6)
Ta vi€t l~i phudng trinh tich phan (4.6) bang cach thay l~i cac ky hi~u
n-1 = N, Xl = x, l =Y, V(XI ,0)= U(XI), i.e.,
(4.7)
u(x) = 2
f
g(y,u(y») dy
(N -l)OJ '
I I
N-I' '\Ix E IRN.
N+l IR' y-x

Khi do, ta phat bi~u k€t qua chinh trang ph~n nay nhu sau:
Djnh ly 4.1. Ntu g thoa cae gia thitt (GJ, (Gz) vdi N > 2 va 0 ~ a ~ N~l' Khi
do, phl1ang trinh tick phdn (4.7) khong c6.nghi~m lien t~c dl1ang.
Lu(in win tot nghifp Trang 26
Ch6 thich 4.1, K€t qua nay m~nh hdn k€t qua tfong [2], [8]. Th~t v~y, vOi
CY= N -1, d cling phu'dngtrlnh rich phan (4.7), cae gia thi€t sau day dii sa dt,mg
trong cae bai baa [2], [8] ma trong ehu'dngnay khong e~n d€n:
(G3) g(x,u) la ham khong giam d6i vdi bi€n u, i.e.,
(g(x,u)-g(x,v))(u-v)~O VxEIRN, Vu~O, Vv~O.
(G4) Tich phan J g (1,0; ~-I t6n t~iva du'dng.
1/1' ( 1+ x )
Tru'de h€t ta e~n mQt sO'ba't d&ngthue sau day:
B6 d~ 4.1. Vai mQi q ~ 0,X E IRN, fa dijt:
(4.8)
A[q](x):=A[(1+lylrq](x)= J(1+lylr:_,dy.
lRN Iy - x I
Khi an
(4.9)
A[q](x) = +00, ne'u q:::; 1,
(4.10)
A[q](x) hQifl;l va A[q](x)~ OJNN-I 111 -I' ne'u q>1.
(q-I)2 (1+ x)q
Chung minh b6 d~ 4.1.
a) Gia sa q :::;1. Chti Y d€n ba't d&ng thue tam giae
(4.11 )
Iy - xl :::;Iyl+ Ix! vdi mQi x, y E IRN ,
ta suy fa tu eong thue (4.8) ding
A[q](x) = J (1+lyl )-:-~y
[RN Iy - x I
>

J
(1 + Iyl rq
d
= +
J
oo (1+rrq d
J
d:S
-
1III
N1Y
II
Nlr r'
1/'
( Y + x ) - 0 ( r + x ) - lyl=r
(4.12)
trong d6 J dSr la rich phan m~t tren m~t e~u, tam 0, ban kinh r trong IRN.
Iyl=r
Tich phan n~y ehinh la dit%nrich eua m~t tren m~t e~u Iyl=r, tue la:
(4.13)
J
N-l
dSr = r OJN'
Iyl=r
LucJnvan tot nghifp
Trang27
Do do, ta suy tu (4.12), (4.13) ding
(4.14)
+00 N-} dr J
A[q](x)~wN I( r:'xl)N 1(1+r)q =wN q'

+00 N-I d
Tich philo Jq = f rll N-I r philo ky khi q ~ 1 va hQi t1;1khi q > 1.
0 (r+ x) (1+r)q
Do do, rich philo
(4.15)
A[q](x) philo ky khi q ~ 1.
a) Gia sa q > 1.
i) Xet t~i x = 0, ta co
(4.16)
-
f
(1+ Iylrq dy - +
f
oo(1+ rrq rl-Ndr =w +
f
oo~ .
A[q](O)-
I I
N-I -wN N-I N (I+r)q
m~ y 0 r, 0
/ / A +00 dr A' ,
Do do, hch
P
han
f
hOI tu VI
q
> 1.
0 (1+r)q . .
V~y, rich philo

(4.17)
A [q](0) hQi t1;1khi q > 1.
ii) Xet t~i x =F0, chQn R > 31xJ> O. Ta vie't l~i A[q](x) thanh t6ng hai tich philo
A[q](x)= f (1+IYI)~q_~y+ f (1+IYI)~q_~y =J~I>CX)+J~2)(X).
IY-Xl$/?Iy - xl Jy-xl"/? Iy - xl
(4.18)
U)Banhgia J~I)(X)=
f
(1+lylrqdy
I
N 1
.
IY-Xl$/? Y - xl -
Ta co:
(4.19)
J
(l)
()
=
f
(1+lylrqdy<
(I
II)
-q
f
~
Ii X N-I - sup + Y N-I
IY-XI$R Iy - xl ly-xl:>R ly-xl:SRIy - xl
d R N-Id
= sup (1+ !ylrq f :-1 = sup (1 + !ylrq wN rN-/

IY-XI$R Izl:SRIzi ly-xl:SR 0 r
= sup (1 + Iylrq wNR < +00.
ly-xl:SR
Lugn wln tot nghi~p Trang 28
OJ) Danhgia J~2)(X)=
f
(1+lyl)-qdy
I
N I
.
ly-4~1I Y - xl -
Ta co:
(4.20)
(21 =
f
(1+lylrqdy <
f
(1+lylrqdy <
f
(1+lylrqdy
JII (x) NI - NI - NI
ly-xl~R Iy-xl - lyl~R-lxl Iy-xl - IYI~R-Ixillyl-Ixil -
+00
(1 )
-'1 N-I
d
+00 N-I
d
f
+r r r

f
r r
=OJN N 1 =OJN N I - .
II-Ixl Ir-Ixll - R-Ixllr-Ixll - (1+r)q
Chu y rang, do R>3Ixl>O,ta colr-lxll=r-lxl:=::R-2Ixl>lxl>O, voi mQi
r:=::R-Ixl.
+00 N-]
d
D d
' '
h h
A
f
r r
h
A' ~.
1
0 0, tIc p an N I 'I Q1 tl,l VOl q> .
R-Ixl I r -Ixll - (1+ r)
V~y, tich phan
(4.21 )
J~2)(x) hQi W khi q > 1.
T6 h<;5pl(;li(4.17), (4.18), (4.19) va (4.21) ta thu du<;5c
(4.22)
\Ix E JRN, A[q](x) hQi tl,lkhi q > 1.
Hdn nua, voi q > 1, ta vie"t
(4.23)
+00 N-l
d
+00 N-I

d
J =
f
r r :=::
f
r r
q o(r+lxl)N-I(1+r)q Ixl(r+lxl)N-I(1+r)q
+00 rN-Idr 1 +00 dr
:=::J( r+r )N-I(1+r)q =2N-I J(1+r)q
= 1 1 \Ix E JRN
(q-l)2N-l (1+lxl)q-l .
Do do b6 d~ 4.1 du<;5cchung minh
Chung minh dinh ly 4.1.
Bang cach thay ham g(x,u) bdi gI(x,u) = bNg(x,u) va hang s6 M trong
(4.2) thay bdi bNM, ta co th~ gia sa rang bN= 1 ma khong lam m!t tinh t6ng
quat.
LucJnvan tot nghifp Trang 29
(4.24)
trongdo
(4.25)
Ta vie't phuong trlnh tich phan (4.7) voi bN = 1 theo d~ng
u(x) = Tu(x) = A[g(y,u(y))](x), \/x EIRN,
A [w(y)](x) = J w(y) d~-I' X E IRN.
iii' I y - x I
Ta chung mint b~ng phan chung. Gia su u Ia nghi~m lien t\lCva duong
cua (4.24). Khi do t6n t~i XoEIRN sao cho u(xo)> o. VI u lien t\lc nen t6n t~i
ro > 0 sao cho:
u(x»~u(xo)=L \/xEIRN, Ix-xol:::;;ro.
2
Ta suy tu gia thie't (G2),(4.24)-(4.26) r~ng

(4.26)
(4.27)
u(x) = A[g(y,u(y))](x) ~ MA[ua(y)](x)
2::MLa J dy N-l' \/x E IRN.
Iy-xol:s:ro I y - x I
Su d\lng ba't d~ng thuc sau
(4.28)
I y - x I :::;;Iyl + Ixl :::;;(1 + Ixl)(1 + Iyl) =(1+ Ixl)(1+ Iyl- Xo + xo)
:::;;(1 + Ixl)( 1+ jxoI+ Iy - Xo I )
:::;;(1+lxl)(1+lxol+ro)' \/x,YEIRN, Iy-xo I:::;;ro'
ta suy tu (4.27), (4.28) dng
(4.29) u(x) 2:: MLa J ~ N-l
Iy-xol:s:ro I y - x I
Ta vie't l~i
(4.30)
trong do
> MLa 1
-(1+lxol+ro)N-lx(1+lx l
)N-l J dy
Iy-xol:s:ro
= MLa 1
OJ
N
X NrO
(l+lxol+ro)N-l (1+lxl)N-l N ' \/xEIRN.
u(x) 2::u1(x) = m](1 + Ixlrq), \/x E IRN,
Lugn win tot nghifp Trang30
(4.31 )
a N
M L ())NrO

ql = N -1, m] = N(1+lxo!+ro)N-I'
Sa dl;lngffiQtl~n nii'a d&ng thuc (4.24), ta sur tITghl thi~t (G2), (4.27) r[tng
(4.32)
u(x) 2 MA[ua (y)](x) 2 M4[u~ (y)](x) =Mm~A[(1 + Iylraq, ](x)
\::IxE IRN.
Bay gid ta xet cac tru'dng hQpkhac nhau cua gia tti a.
1
O::;a::;
N-1
Ta sur ra tU (4.9), (4.32) voi q = a ql = a(N -1)::; 1, dng
Truong hQ'p1:
(4.33)
u(x) = +00 \::IxE IRN.
D6 la di~u vo 19.
Truong hdp 2:
~ < a <~.
. N-1 N-1
Sa dl;lng (4.10) voi q = a q] = a(N -1) > 1,ta sur ra tIT(4.32) r[tng:
(4.34) u(x) 2 Mm~A[(1+ Iylraq,](x) = Mm~A[a ql](x)
())
2 Mmla N N-I(1+lx!)I-aq" \::IxEIRN.
(aql -1)2
hay
(4.35)
U(X)2u2(x)=m2(1+lxlrq2, \::IxEIRN,
trong d6
(4.36)
q2 =aq ]
-1 m
- M())

N
ma
, 2 - I
2N-l .
q2
Giasa dng
(4.37) u(x) 2 Uk-I (X) =mk-I(1+!X!rqk-l, \::IXEIRN.
N€u aqk-I > 1, khi d6 ta dung ba"td&ngthuc (4.10) voi q =aqk-I > 1, ta thu du'Qc
tITgia thi€t (G2), (4.24), (4.37), r[tng
(4.38)
u(X) 2 M4[ua (y)](x) 2 M m:_]A[(1 + Iylraqk-' ](x)
Luc7nvan tot nghi~p
Trang 31
= M m:-lA[a qk-I ](x)
2 M ma ())
k-l N
(aqk-I -1)2N-l (1+IXI)I-aqk-1
2mk(I+lxlrqk =Uk(X), '\IxEIRN,
trong d6 cac dtiy {qk},{mk} duQCxac d~nh bdi cac cong thuc qui n~p sau:
(4.39)
a
M())N mk-I k = 2,3,.,
1 m = N I '
qk=aqH-' k 2 qk
Tli (4.31), (4.39) ta thu duQc
(4.40)
{
N - k, ntu a = 1,
qk = k I I-a k-I A'" 1 N
(N-l)a - - , neu -<a<-, a=t:l,

I-a N-l N-l
Ta suy tli (G2),(4.10) va (4.24) ding
(4.41)
U(x) 2 Mm: A [(1+ Iylraqk ](x), '\Ix E IRN.
Nhu v~y ta chI cftn chQn ffiQts6 t1,1'nhien k saGcho:
(4.42)
0 < aqk ::;1.
Do (4.40), ta chQn ffiQts6 t1,1'nhien k nhusau:
i) N€u a=1, tachQn k=N-1,khid6: aqk =a(N-k)=a(N-N+l)=a=1,
ii) N€u ~<a<~ va a=t:1, tachQnk thoa ko :=;;k<ko+l,
N-l N-l
voi k() = 21n[N -(N -1)a].
1na
N
Tni<tng htjp 3: a = N -1 .
Ta vi€t l~i (4.20)
(4.43) u(x) 2 M A[ua(y)](x) 2 Mm~A[(1+ Iylraql](x)
=Mm~A[(1+lylrN](x), '\IxEIRN,
M~Hkhac,voiffiQi xEIRN, IxI21,tac6.
(4.44)
A[(1+lylrN](x)= f (1+IYI~~IN dy
RN Iy - xl
Lugn van tot nghifp Trang 32
>
f
(1+lylrN
d
> +
f
'" (1+rrN d

I
dS
-
IIII
NIY-
II
Nlr r
Ii
\ ( y + x ) - 0 ( r + x ) - lyl=r
+"'(1+rrNrN-I 1\I+rrNrN-I
= OJv
f
II dr ~ OJN
f
II dr
. 0 (r + x )N-I I (r + x )N-I
Ixl rN-Idr
~OJN [(1+r)N(r+lxj)N-I.
Chu yr~ng voi mQi r sao cho 1~ r ~ Ix!ta co
(4.45)
( )
N
r 1, 1 1
1+ r ~ 2N va r + Ixl~ 21xJ.
V~y, ta co ta (4.45) dug
Ixl rN-Idr 1 1 Ixl dr
!(1+ r)N ( r + Ixl)N-I ~ 2N ( 21xl)N-2 !r( r + Ixl)
(4.46)
1 1 1+ Ixl N
= 4N-I x Ixl N-I x In( 2)' "Ix E IR , Ix!~ 1.

Ta (4.43), (4.44), (4.46) ta suy ra ding
(4.47)
0, Ixl~1,
u(x) ~ V2(x) =
~ ~
(
In 1+ Ixl
)
PZ, Ixl ~ 1,
IxIN-I 2
voi
(4.48)
PZ = 1, Cz = MOJNm~
4N-I
Gia su r~ng
(4.49)
0, Ixl~1,
u(x) ~ vk-l (x) =
~ Ck-l
(
In 1+ ixi
J
Pk-l, Ixl ~ 1,
IxlN-l 2
trong do Pk-l>Ck-lla cae h~ng s6 dtiong.
Su d\lng gia thie't (G2)va (4.49), ta suy ra dug
(4.50) u(x) ~ M A[ua(y)](x)
Lwjn van tot nghi~p
Trang 33
~ M A[v:-1(y)](x) =M J V:-J~~I dy

RN Iy - xl
> M J v:-I(y) d > M J v:-I(y) d
- I?' (lyl+lxl)N-1 Y - lyl~1(lyl+lxl)N-1 Y
+W V:-I (y) dSr
= M Jdr J (r + Ixl)N I
I Iyl=r
)
a Pk-I
I+r
(
In(- )
+w 2 dr
= M OJNC:-1J r(r + Ixl)N I
1
Ta xet tru'ong hcJp Ixl~ I, ta co
(4.51)
(
1+ r
)
a Pk-l
(
1+ r
)
a Pk-I
+00 In( -) +00 In( -)
J
2
J
2
dr~ dr

I r(r+lxl)N-1 Ixl r(r+lxl)N-l
(
1+ Ixl
J
a Pk-I +00 dr
~ In(-) J ( I
I)
N-l
2 Ixl r r + x
[
II
J
a Pk-I +00 d
;, In(l: x). I~r(r +:)N-I
- 1
(
- 1+ x aPk-I
(N -1)2N-Ilxt-1 In-fl) .
Tli (4.50), (4.51), ta suy ra r~ng
0, Ixl~ 1,
U(X)~Vk(X)=~ Ck
(
1+lxl
)
Pk
II
- In- , x:2:1,
IxlN-l 2
(4.52)
trong do Pk>Ckla cae h~ng s6 du'dngxac dinh b~ng cae cong thu qui n(;lpnhu'

sau:
(4.53)
Pk =apk-I'
C
MOJ
C
a
k = N k I
(N -1)2N-I' k = 3,4,
Ta tinh fa cDng thuc hiSn cua Pk>Ck nho vao (4.48), (4.53), nhu'sau
Lu4n van tot nghi~p
Trang 34
(4.54)
k-2 l-N N-I ak-2
Pk
=a , Ck =dN (dN C2) , k=3,4,
trong a6
(4.55)
MOJN
dN = (N -1)2N-J .
Ta vie'tI~i (4.52) voi Ixi ~ 1, ta c6
I-N 1
(
N-I 1+ Ixi
J
a k-2
(4.56) u(x)~vk(x)=dN IX!N-I dN C21n(2) .
ChQn Xl saGcho
(4.57) dZ-iC21n(I+lxll»I,
2

Do (4.56), ta suy ra rang u(xi) ~ lim Vk(Xl) =+00.
k->+oo
EHy la ai~u va 19.
Dinh 194.2 au'<;1cchung minh hoan ta't.
Chti thich 4.2.
i) Trong tru'ong h<;1pcua g(XI,U) chung ta chu'a co ke't lu~n v~ tru'ong h<;1p
a>(n-l)/(n-2), n~3. Tuy nhien, khi g(XI,U)=Ua, n~3, (n-l)/(n-2):::;a<
n/(n - 2), B. Hu trong [6] ail chung minh rAngbai tmin (4.1), (4.2), (1.7) khang
c6 nghi~m du'ong. Trong tru'ong h<;1p"gidi hf:ln a = n/(n - 2) ", nghi~m du'ong
khang t6n t~i (Xem [4-6]).
ii) Voi a = n/(n - 2), cac lac gia trong [4] ail ma ta ta't ca cae nghi~m khang am
khang t~m thu'ong UEc2 (IR;) n C(IR;) cua bai loan
{
-!J.u
=au (n+2)/(n-2) trong IR; ,
- uxn(xl ,0) = bua (Xl,0) tren xn = 0
trong cac tru'ong h<;1psau:
(j)
a> 0 hay a:::;0, b > B = ~a(2 - n)/n,
(jj) a = b= 0,
(jjj) a=O,b<O,
(4j) a < O,b= B.

×