Tải bản đầy đủ (.doc) (4 trang)

ChươngI §4.ĐT CUA HS VA PHEP TTIEN HETOAĐO.doc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (124.6 KB, 4 trang )

ChươngI §4 ĐỒ THỊ CỦA HÀM SỐ
NGÀY SOẠN 10/8/08 VÀ PHÉP TỊNH TIẾN HỆ TOẠ ĐỘ
Số tiết: 1
I/ Mục tiêu:
1. Kiến thức:
- Hiểu được phép tịnh tiến hệ toạ độ theo một véc tơ cho trước- Lập các công
thức chuyển hệ toạ độ trong phép tịnh tiến và viết phương trình đường cong đối
với hệ toạ độ mới.
- Xác định tâm đối xứng của đồ thị một số hàm số đơn giản.
2. Kỷ năng:
- Viết các công thức chuyển hệ toạ độ.
- Viết phương trình của đường cong đối với hệ toạ độ mới.
- Áp dụng phép tịnh tiến hệ toạ độ tìm tâm đối xứng của đồ thị hàm số đa thức
bậc 3 và các hàm phân thức hửu tỉ.
II/ Chuẩn bị của giáo viên và học sinh:
- Giáo viên: Bảng phụ hình 15 SGK
- Học sinh: Ôn lại định nghĩa đồ thị hàm số- Định nghĩa hàm số chẵn, hàm số lẻ.
III/ Phương pháp: Gợi mở + vấn đáp.
IV/ Tiến trình bài học:
1. Ôn định tổ chức:
2. Kiểm tra bài cũ:( 7’)
- Nêu lại định nghĩa đồ thị hàm số y=f(x) xác định trên tập D
- Đồ thị hàm số y =2x + 3, y = 3x
2
-2x -1?
- Nêu định nghĩa hàm số chẵn, hàm số lẽ của hàm số y=f(x) xác định trên tập D.
3. Bài mới: Trong nhiều trường hợp thay hệ toạ độ đã có bỡi một hệ toạ độ mới
giúp ta nghiên cứu đường cong thuận tiện hơn.
HĐ1: Phép tịnh tiến hệ toạ độ và công thức chuyển hệ toạ độ
TG HĐ CỦA GV HĐ CỦA HS GHI BẢNG
13’ -GV treo bảng phụ


hình 15 Sgk.
-GV giới thiệu hệ
toạ độ Oxy, IXY,
toạ độ điểm M với
2 hệ toạ độ.
-Phép tịnh tiến hệ
toạ độ theo vec tơ
OM
uuuur
công thức
chuyển toạ độ như
thế nào?
-Nêu được biểu thức
OM
uuuur
theo qui tắc 3 điểm O, I, M
OM
uuuur
=
OI
uur
+
IM
uuur
-Nêu được biểu thức giải
tích:
0 0
( ) ( )xi y j X x i Y y j+ = + + +
r r r r
-Kết luận được công thức:

0
0
x X x
y Y y
= +


= +

-Với điễm
0 0
( , )I x y
- Công thức chuyển hệ toạ
độ trong phép tịnh tiến
theo vec tơ
OI
uur
0
0
x X x
y Y y
= +


= +

HĐ2: Phương trình cuả đường cong đối với hệ toạ độ mới:
4’
4’
6’

6’
Oxy: y=f(x) (C)
IXY: y=f(x) →
Y=F(X) ?
-GV cho HS tham
khảo Sgk.
-GV cho HS làm
HĐ trang 26 Sgk
y= 2x
2
-4x
-GV cho HS giải
BT 31/27 Sgk
-Học sinh nhắc lại công thức
chuyển hệ toạ độ
-Thay vào hàm số đã cho
Kết luận: Y=f(X+x
0
) –y
0
-Nêu được đỉnh của Parabol
-Công thức chuyển hệ toạ độ
-PT của của (P) đối với IXY
+
2
2
x X
y Y
= −



= +

+
1
Y
X
= −
Ví dụ: (sgk)
a,Điểm I(1,-2) là đỉnh của
Parabol (P)
b, Công thức chuyển hệ toạ
độ theo
OI
uur
1
2
x X
y Y
= +


= −

PT của (P) đối với IXY
Y=2X
2
4. Củng cố toàn bài:(2’)
- Công thức chuyển hệ toạ độ.
- Chú ý HS đối với hàm hửu tỉ ta thực hiện phép chia rồi mới thay công thức vào

hàm số để bài toán đơn giản hơn.
5. Hướng dẫn bài tập về nhà: (3’)
BT 29/27 , 30/27 Hướng dẫn câu (c)
BT 32/28 Hướng dẫn câu (b)
TRƯỜNG THPT LÊHỒNG PHONG BÀI KIỂM TRA 1TIẾT CHƯƠNG I
NGÀY SOẠN 10/8/08 PHẦN HÌNH HỌC 12NC
Số tiết: 1
I/ Mục tiêu:
1. Kiến thức:
- Nắm được khái niệm khối đa diện, phân chia khối đa diện
- Biết được công thức tính thể tích khối đa diện.
2. Kỷ năng:
- Tính được thể tích các khối đa diện một cách nhuần nhuyển.
II/ Chuẩn bị của giáo viên và học sinh:
- Giáo viên: Đề kiểm tra + Đáp án.
- Học sinh: Ôn tập kỹ, chuẩn bị đầy các đồ dùng học tập phục vụ cho bài kiểm
tra.
ĐỀ
Cho hình chóp tứ giác đếu S.ABCD cạnh đáy có độ dài là a, cạnh bên có độ dài là
b. Gọi M là trung điểm của SB.
a. Dựng thiết diện tạo bởi mp(MAD) với hình chóp S.ABCD với giả sử
thiết diện cắt SC tại N. Thiết diện là hình gì?
b. Thiết diện chia hình chóp thành 2 khối đa diện nào.
c. Tính thể tích hình chóp S.ABCD.
d. CMR
.
.
1
2
S AMD

S ABD
V
V
=
từ đó suy ra
.S AMD
V
ĐÁP ÁN:
Hình vẽ: 0.5 Điểm
a.Dựng thiết diện tạo bởi mp(MAD) với hình chóp với giả sử thiết diện cắt SC tại N.
Thiết diện là hình gì? (2.5 điểm).
//( ) ( ) ( ) //AD SBC AMD SBC MN AD⇒ ∩ =
Vậy thiết diện cần tìm là hình thang cân AMND.
b. Thiết diện chia hình chóp thành 2 khối đa diện nào.(1 điểm).
- S.AMND và ABCDNM.
c. Tính thể tích hình chóp S.ABCD. (3 điểm).
2
2
2
2 2
.
2
2 2
1 1
. ( )
3 3 2
S ABCD ABCD
a a
BH SH b
a

V S SH a b dvtt
= ⇒ = −
= = −
d.CMR
.
.
1
2
S AMD
S ABD
V
V
=
từ đó suy ra
.S AMD
V
. (3 điểm).
Ta có:
( )
AH SB
AH SBD
AH SH


⇒ ⊥



Vậy AH là đường cao chung của 2 hình chóp A.SMD và A. SBD. Nên ta có:
. .

. .
1
.
1
3
1
2
.
3
SMD
S AMD A SMD SMD
S ABD A SBD SBD
SBD
S AH
V V S
SM
V V S SB
S AH
= = = = =
2
2 2
. . . . .
1 1 1 1
( )
2 4 12 2 2
S AMD S ABD S ABCD S ABD S ABCD
a
V V V a b dvtt DoV V= = = − =

×