Tải bản đầy đủ (.doc) (8 trang)

LTĐH Mũ + Log

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (212.06 KB, 8 trang )

Chuyên đề: Phương trình

Bất phương trình

hệ phương trình Mũ_Logarit
KIẾN THỨC CẦN NHỚ
I. Hàm số mũ
• y=a
x
; TXĐ D=R
• Bảng biến thiên
a>1 0<a<1
x
−∞ 0 +∞
x
−∞ 0 +∞
y
+∞
1
−∞
y
+∞
1
−∞
• Đồ thị
f(x)=3^x
-17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1
-15
-14
-13
-12


-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
x
y
y=3
x
f(x)=(1/3)^x
-16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3
-15
-14
-13
-12
-11
-10
-9
-8
-7
-6

-5
-4
-3
-2
-1
1
2
3
x
y
x
y






=
3
1
II. Hàm số lgarit
• y=log
a
x, ĐK:



≠<
>

10
0
a
x
; D=(0;+∞)
• Bảng biến thiên
a>1 0<a<1
x
0 0 +∞
x
0 0 +∞
y
+∞
1
−∞
y
+∞
1
−∞
• Đồ thị
f(x)=ln(x)/ln(3)
f(x)=3^x
f(x)=x
-15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3
-15
-14
-13
-12
-11
-10

-9
-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
4
x
y
y=x
y=3
x
y=log
3
x
f(x)=ln(x)/ln(1/3)
f(x)=(1/3)^x
f(x)=x
-15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3
-15
-14
-13
-12
-11

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
4
x
y
x
y






=
3
1
xy
3
1

log
=
y=x
III. Các công thức
1. Công thức lũy thừa :
Với a>0, b>0; m, n∈R ta có:
a
n
a
m
=a
n+m
;
mn
m
n
a
a
a

=
;(
n
a
1
=a

m
; a
0

=1; a

1
=
a
1
);
(a
n
)
m
=a
nm
; (ab)
n
=a
n
b
n
;
m
n
n
b
a
b
a
=







;
n
m
n
m
aa =
.
2. Công thức logarit : log
a
b=c⇔a
c
=b (0<a≠1; b>0)
Với 0<a≠1, 0<b≠1; x, x
1
, x
2
>0;
α
∈R ta có:
log
a
(x
1
x
2
)=log

a
x
1
+log
a
x
2
; log
a
2
1
x
x
= log
a
x
1
−log
a
x
2
;
Nguyễn Vũ Minh 0914449230

1
Chuyên đề: Phương trình

Bất phương trình

hệ phương trình Mũ_Logarit

xa
x
a
=
log
; log
a
x
α
=
α
log
a
x;
xx
a
a
log
1
log
α
α
=
;(log
a
a
x
=x); log
a
x=

a
x
b
b
log
log
;(log
a
b=
a
b
log
1
)
log
b
a.log
a
x=log
b
x; a
log
b
x
=x
log
b
a
.
IV. Phương trình và bất phương trình mũ−logarit

1. Phương trình mũ−logarit
a. Phương trình mũ :
Đưa về cùng cơ số
+0<a≠1: a
f(x)
=a
g(x)
(1) ⇔ f(x)=g(x).
+ 0<a≠1: a
f(x)
=b ⇔
( )



=
>
bxf
b
a
log
0
.
Chú ý: Nếu a chứa biến thì (1) ⇔(a−1)[f(x)−g(x)]=0
Đặt ẩn phụ: Ta có thể đặt t=a
x
(t>0), để đưa về một phương trình đại số
Lưu ý những cặp số nghịch đảo như: (2

), (7

4 3±
),… Nếu trong một phương trình có chứa {a
2x
;b
2x
;a
x
b
x
} ta
có thể chia hai vế cho b
2x
(hoặc a
2x
) rồi đặt t=(a/b)
x
(hoặc t=(b/a)
x
.
Phương pháp logarit hóa: a
f(x)
=b
g(x)
⇔ f(x).log
c
a=g(x).log
c
b,với a,b>0; 0<c≠1.
b. P hương trình logarit :
Đưa về cùng cơ số:

+log
a
f(x)=g(x)⇔
( )
( )



=
≠<
xg
axf
a 10
+log
a
f(x)= log
a
g(x)⇔
( ) ( )
[ ]
( ) ( )





=
>>
≠<
xgxf

xgxf
a
00
10
.
Đặt ẩn phụ.
2. Bất phương trình mũ−logarit
a. Bất phương trình mũ :
 a
f(x)
>a
g(x)

( ) ( ) ( )
[ ]



>−−
>
01
0
xgxfa
a
;  a
f(x)
≥a
g(x)

( ) ( ) ( )

[ ]



≥−−
>
01
0
xgxfa
a
.
Đặt biệt:
* Nếu a>1 thì: a
f(x)
>a
g(x)
⇔ f(x)>g(x);
a
f(x)
≥a
g(x)
⇔ f(x)≥g(x).
* Nếu 0<a<1 thì: a
f(x)
>a
g(x)
⇔ f(x)<g(x);
a
f(x)
≥a

g(x)
⇔ f(x)≤g(x).
b. Bất phương trình logarit :
log
a
f(x)>log
a
g(x)⇔
( ) ( )
( ) ( ) ( )
[ ]





>−−
>>
≠<
01
0,0
10
xgxfa
xgxf
a
; log
a
f(x)≥log
a
g(x)⇔

( ) ( )
( ) ( ) ( )
[ ]





≥−−
>>
≠<
01
0,0
10
xgxfa
xgxf
a
.
Đặt biệt:
+ Nếu a>1 thì: log
a
f(x)>log
a
g(x) ⇔
( ) ( )
( )



>

>
0xg
xgxf
;
+ Nếu 0<a<1 thì: log
a
f(x)>log
a
g(x) ⇔
( ) ( )
( )



>
<
0xf
xgxf
.
*
* *
Nguyễn Vũ Minh 0914449230

2
Chuyên đề: Phương trình

Bất phương trình

hệ phương trình Mũ_Logarit
MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH−BẤT PHƯƠNG TRÌNH−HỆ

PHƯƠNG TRÌNH MŨ-LOGARIT
I. Biến đổi thành tích
Ví dụ 1: Giải phương trình:
( )
( )
2 2 2
2 2
2 4.2 2 4 0 2 1 . 2 4 0
x x x x x x x x+ − −
− − + = ⇔ − − =
.
Nhận xét: Mặc dù cùng cơ số 2 nhưng không thể biến đổi để đặt được ẩn phụ do đó ta phải phân tích thành tích:
( )
( )
2
2
2 1 . 2 4 0
x x x−
− − =
. Đây là phương trình tích đã biết cách giải.
Ví dụ 2: Giải phương trình:
( )
( )
2
9 3 3
2 log log .log 2 1 1x x x= + −
.
Nhận xét: Tương tự như trên ta phải biến đổi phương trình thành tích:
( )
3 3 3

log 2log 2 1 1 .log 0x x x
 
− + − =
 
.
Đây là phương trình tích đã biết cách giải.
Tổng quát: Trong nhiều trường hợp cùng cơ số nhưng không thể biến đổi để đặt ẩn phụ được thì ta biến đổi
thành tích.
II. Đặt ẩn phụ-hệ số vẫn chứa ẩn
Ví dụ 1: Giải phương trình:
9 2( 2)3 2 5 0
x x
x x+ − + − =
. Đặt t = 3
x
(*), khi đó ta có:
( )
2
2 2 2 5 0 1, 5 2t x t x t t x+ − + − = ⇒ = − = −
. Thay vào (*) ta tìm được x.
Lưu ý: Phương pháp này chỉ sử dụng khi ∆ là số chính phương.
Ví dụ 2: Giải phương trình:
( ) ( ) ( )
2
3 3
log 1 5 log 1 2 6 0x x x x+ + − + − + =
. Đặt t = log
3
(x+1), ta có:
( )

2
5 2 6 0 2, 3t x t x t t x+ − − + = ⇒ = = −
⇒ x = 8 và x = 2.
III. Phương pháp hàm số
Các tính chất (rât` quan trọng)
Tính chất 1: Nếu hàm f tăng (hoặc giảm) trên khoảng (a;b) thì phương trình f(x)=k (k∈R) có không quá
một nghiệm trong khoảng (a;b).
Tính chất 2: Nếu hàm f tăng (hoặc giảm) trên khoảng (a;b) thì ∀u, v ∈(a,b) ta có
( )
( )f u f v u v= ⇔ =
.
Tính chất 3: Nếu hàm f tăng và g là hàm hằng hoặc giảm trong khoảng (a;b) thì phương trình f(x)=g(x)
có nhiều nhất một nghiệm thuộc khoảng (a;b).
Định lý Lagrange: Cho hàm số F(x) liên tục trên đoạn [a;b] và tồn tại F'(x) trên khoảng (a;b) thì
( )
bac ;∈∃
:
( )
( ) ( )
ab
aFbF
cF


='
. Khi áp dụng giải phương trình nếu có F(b) – F(a) = 0 thì
( ) ( ) ( )
; : ' 0 ' 0c a b F c F x∃ ∈ = ⇔ =
có nghiệm thuộc (a;b).
Định lý Rôn: Nếu hàm số y=f(x) lồi hoặc lõm trên miền D thì phương trình f(x)=0 sẽ không có quá hai

nghiệm thuộc D.
Ví dụ 1: Giải phương trình:
2
log
2.3 3
x
x
+ =
.
Hướng dẫn:
2 2
log log
2.3 3 2.3 3
x x
x x
+ = ⇔ = −
, vế trái là hàm đồng biến, vế phải là hàm nghịch biến nên phương
trình có nghiệm duy nhất x=1.
Ví dụ 2: Giải phương trình:
6 2 5 3
x x x x
+ = +
. Phương trình tương đương
6 5 3 2
x x x x
− = −
, giả sử phương
trình có nghiêm
α
. Khi đó:

αααα
2356 −=−
.
Xét hàm số
( ) ( )
α
α
tttf −+= 1
, với t > 0. Ta nhận thấy f(5) = f(2) nên theo định lý lagrange tồn tại
( )
2;5c∈

sao cho:
( ) ( )
1
' 1
0 1 0 0, 1f c c c
α
α
α α α


 
= ⇔ + − = ⇔ = =
 
 
, thử lại ta thấy x = 0, x = 1 là nghiệm của
phương trình.
Ví dụ 3: Giải phương trình:
2

1 2
2 2 ( 1)
x x x
x
− −
− + = −
. Viết lại phương trình dưới dạng
2
1 2
2 1 2
x x x
x x x
− −
+ − = + −
, xét hàm số
( )
ttf
t
+= 2
là hàm đồng biến trên R ( ??? ). Vậy phương trình được viết dưới dạng:
( )
( )
2 2
1 1 1f x f x x x x x x− = − ⇔ − = − ⇔ =
.
Ví dụ 4: Giải phương trình:
3 2 3 2
x x
x+ = +
. Dễ dàng ta tìm được nghiệm: x = 0 và x = 1. Ta cần chứng minh

không còn nghiệm nào khác.
Xét hàm số
( ) ( )
2 2
3 2 3 2 '' 3 ln 3 2 ln 2 0
x x x x
f x x f x= + − − ⇒ = + > ⇒
Đồ thị của hàm số này lõm, suy ra
phương trình không có quá hai nghiệm.
Nguyễn Vũ Minh 0914449230

3
Chuyên đề: Phương trình

Bất phương trình

hệ phương trình Mũ_Logarit
Ví dụ 5: Chứng minh hệ phương trình
2
2
2007
1
2007
1
x
y
y
e
y
x

e
x

= −





= −



có đúng hai nghiệm thỏa mãn x > 0, y > 0.
HD: Dùng tính chất 2 để chỉ ra x = y khi đó xét hàm số
( )
2
2007
1
x
x
f x e
x
= + −

.
Nếu x < −1 thì
( )
02007
1

<−<

exf
suy ra hệ phương trình vô nghiệm.
Nếu x > 1 dùng định lý Rôn và chỉ ra với x
0
= 2 thì f(2) < 0 để suy ra điều phải chứng minh.
Ví dụ 6: Cho
0>≥ ba
. Chứng minh rằng
1 1
2 2
2 2
b a
a b
a b
   
+ ≤ +
 ÷  ÷
   
(ĐH Khối D−2007)
HD: BĐT
1 1
ln 2 ln 2
1 1
2 2
ln 2 ln 2
2 2
a b
a b

a b
a b
b a
a b
   
+ +
 ÷  ÷
   
   
⇔ + ≤ + ⇔ ≤
 ÷  ÷
   
. Xét hàm số
( )
1
ln 2
2
x
x
f x
x
 
+
 ÷
 
=

với x > 0
Suy ra f’(x) < 0 với mọi x > 0, nên hàm số nghịch biến vậy với
0

>≥
ba
ta có
( )
bfaf ≤)(
(Đpcm).
IV. Một số bài toán (đặc biệt là các bài logarrit) ta th ường phải đưa về phương trình – hệ phương trình –
bất phương trình mũ rồi sử dụng các phương pháp trên.
1.Dạng 1: Khác cơ số:
Ví dụ: Giải phương trình
7 3
log log ( 2)x x= +
. Đặt t =
7
log 7
t
x x⇒ =
Khi đó phương trình trở thành:
3
7 1
log ( 7 2) 3 7 2 1 2.
3 3
t
t
t t t
t
 
 
= + ⇔ = + ⇔ = +
 ÷

 ÷
 
 
.
2.Dạng 2: Khác cơ số và biểu thức trong dấu log phức tạp
Ví dụ 1: Giải phương trình
( )
4
2 2
5
6
log ( 2 2) 2log 2 3x x x x− − = − −
.
Đặt t = x
2
– 2x – 3 ta có
( )
6 5
log 1 logt t+ =
.
Ví dụ 2: Giải phương trình
( )
6
log
2 6
log 3 log
x
x x+ =
. Đặt
6

logt x=
, phương trình tương đương
3
6 3 2 3 1
2
t
t t t t
 
+ = ⇔ + =
 ÷
 
.
3. Dạng 3:
( )
log
b
x c
a x
+
=
( Điều kiện: b = a + c )
Ví dụ 1: Giải phương trình
( )
7
log 3
4
x
x
+
=

. Đặt
( )
7
log 3 7 3
t
t x x= + ⇒ = +
, phương trình tương
đương
4 1
4 7 3 3. 1
7 7
t t
t t
   
= − ⇔ + =
 ÷  ÷
   
.
Ví dụ 2: Giải phương trình
( )
42
5log
3
+=
+
x
x
. Đặt t = x+4 phương trình tương đương
( )
t

t
=
+1log
3
2
Ví dụ 3: Giải phương trình
( )
( )
( )
3 3
log 1 log 1
4 1 2 0
x x
x x
+ +
− − − =
.
4. Dạng 4:
( )
log
ax b
s
s c dx e x
α β
+
= + + +
, với
,d ac e bc
α β
= + = +

Ph ương pháp: Đặt
log ( )
s
ay b dx e+ = +
rồi chuyển về hệ hai phương trình, lấy phương trình hai trừ phương
trình một ta được:
ax b ay b
s acx s acy
+ +
+ = +
. Xét
( )
at b
f t s act
+
= +
.
Ví dụ: Giải phương trình
1
7
7 6log (6 5) 1
x
x

= − +
. Đặt
( )
7
1 log 6 5y x− = −
. Khi đó chuyển thành hệ

( )
( )
1
1
1 1
1
7
7 6 1 1
7 6 5
7 6 7 6
1 log 6 5
7 6 5
x
x
x y
y
y
y
x y
y x
x


− −



= − +
= −
 

⇔ ⇒ + = +
 
− = −
= −




. Xét hàm số
( )
1
7 6
t
f t t

= +
suy ra x=y, Khi
đó:
1
7 6 5 0
x
x

− + =
. Xét hàm số
( )
567
1
+−=


xxg
x
Áp dụng định lý Rôn và nhẩm nghiệm ta được 2
nghiệm của phương trình là: x = 1, x = 2.
5. Dạng 5: Đặt ẩn phụ chuyển thành hệ phương trình.
Nguyễn Vũ Minh 0914449230

4
Chuyên đề: Phương trình

Bất phương trình

hệ phương trình Mũ_Logarit
Ví dụ: Giải phương trình
1 1 1
8 2 18
2 1 2 2 2 2 2
x
x x x x− − −
+ =
+ + + +
HD: Viết phương trình dưới dạng
1 1 1 1
8 1 18
2 1 2 2 2 2 2
x x x x− − − −
+ =
+ + + +
, đặt
1 1

2 1, 2 1. , 0
x x
u v u v
− −
= + = + >
.
Nhận xét: u.v = u + v. Từ đó ta có hệ:
8 1 18
.
u v u v
u v u v

+ =

+


= +

Bài tập
Bài 1: Giải các phương trình sau:
a.
( )
2
1
2
1 1
x
x x


− + =
b.
( )
2
2
1
x
x x

− =
c.
( )
2
4
2
2 2 1
x
x x

− + =
.
Bài 2: Giải các phương trình sau:
a.
4 8 2 5
3 4.3 27 0
x x+ +
− + =
b.
2 6 7
2 2 17 0

x x+ +
+ − =
c.
( ) ( )
2 3 2 3 4 0
x x
+ + − − =
d.
( ) ( )
3
3 5 16 3 5 2
x x
x+
+ + − =
e.
( ) ( )
7 4 3 3 2 3 2 0
x x
+ − − + =
f.
( ) ( )
2 3 2 3 4
x x
− + + =
g.
3.16 2.8 5.36
x x x
+ =
h.
1 1 1

2.4 6 9
x x x
+ =
Bài 3: Giải các phương trình sau:
a.
3 4 5
x x x
+ =
b.
( ) ( )
2
3 2 2 1 2 0
x x
x x− − + − =
c.
2 2
5 6 1 6 5
2 2 2.2 1
x x x x
− + − −
+ = +
d.
3 4 0
x
x
+ − =
e.
− + + +
+ + = + +
2x 1 2x 2x 1 x x 1 x 2

2 3 5 2 3 5
f.
2 3 2
3 (3 10)3 3 0
x x
x x
− −
+ − + − =
g.
21
)1(22
2
−=+−
−−
x
xxx
h.
2 2 2
3 2 6 5 2 3 7
4 4 4 1
x x x x x x
− + + + + +
+ = +
i.
xxxx
3526 +=+
j.
3.8 4.12 18 2.27 0
x x x x
+ − − =

k.
x
x
381
2
=+
l.
x
x
4115
2
=+
m.
x
x
−= 65
n.
0122.2 =+−

x
x
o.
0532 =−+
xxx
p.
xxxx
7483 +=+
q.
xxxx
1410159 +=+

r.
022.8
3
=−+−

xx
xx
s.
( )
( )
12232. −+−=
xx
xxx
t.
0155
312
=+−−
+
x
xx
u.
( )
2
322
2133
2
−−=−
−−
x
xxx

v.
2974 +=+ x
xx
Bài 4: Giải các phương trình sau:
a.
3 2 3
4 128
5 1
x y
x y
+
− −

=


=


b.
2
( ) 1
5 125
4 1
x y
x y
+
− −

=




=

b.
2
3 2 77
3 2 7
x y
x y

− =


− =


d.
2 2 12
5
x y
x y

+ =


+ =



e.
2
2 4
2
3 6
x y x y
x y x y
m m m m
n n n n
− −
+ +


− = −



− = −


với m, n > 1.
Bài 5: Giải và biện luận phương trình:
a .
( )
2 .2 .2 0
x x
m m m

− + + =
. b .

.3 .3 8
x x
m m

+ =
.
Bài 6: Tìm m sao cho phương trình sau có nghiệm:
( 4).9 2( 2).3 1 0
x x
m m m− − − + − =
.
Bài 7: Giải các bất phương trình sau:
Nguyễn Vũ Minh 0914449230

5
Chuyên đề: Phương trình

Bất phương trình

hệ phương trình Mũ_Logarit
a.
6
2
9 3
x
x+
<
b.
1
1

2 1
3 1
2 2
x
x

+

c.
2
1 5 25
x x−
< <
d.
( )
2
1 1
x
x x− + <
e.
( )
1
2
1
2 3 1
x
x
x x

+

+ + <
f.
( )
2
2
3
2 2
1 1
x x
x x
+
− > −
.
Bài 8: Giải các bất phương trình sau:
a.

+ − <
x x
3 9.3 10 0
b.
+ − ≤
x x x
5.4 2.25 7.10 0
c.
+

− −
x 1 x
1 1
3 1 1 3

d.
+
+ < +
2 x x 1 x
5 5 5 5
e.
− + >
x x x
25.2 10 5 25
f.
+
− > −
x x 2 x
9 3 3 9
.
Bài 9: Giải bất phương trình sau:
1
2 1 2
0
2 1
x x
x

+ −


.
Bài 10: Cho bất phương trình
( )
1

4 . 2 1 0
x x
m

− + >
a. Giải bất phương trình khi m=
16
9
.
b. Định m để bất phương trình thỏa
x R∀ ∈
.
Bài 11: a. Giải bất phương trình :
2 1
2
1 1
9. 12
3 3
x x
+
   
+ >
 ÷  ÷
   
(*)
b. Định m để mọi nghiệm của (*) đều là nghiệm của bất phương trình:
( )
2
2 2 2 3 0x m x m+ + + − <
Bài 12: Giải các phương trình sau:

a.
( ) ( )
5 5 5
log log 6 log 2x x x= + − +
b.
5 25 0,2
log log log 3x x+ =

c.
( )
2
log 2 5 4 2
x
x x− + =
d.
2
3
lg( 2 3) lg 0
1
x
x x
x
+
+ − + =

e.
1
.lg(5 4) lg 1 2 lg 0,18
2
x x− + + = +

Bài13: Giải các phương trình sau:
a.
1 2
1
4 lg 2 lgx x
+ =
− +
b.
2 2
log 10log 6 0x x+ + =
c.
0,04 0,2
log 1 log 3 1x x+ + + =
d.
16 2
3log 16 4log 2log
x
x x− =
e.
2
2
log 16 log 64 3
x
x
+ =
.
Bài 14: Giải các phương trình sau:
a.
3 9
1

log log 9 2
2
x
x x
 
+ + =
 ÷
 
b.
( ) ( )
2 2
log 4.3 6 log 9 6 1
x x
− − − =
c.
( ) ( )
1
2 2 1
2
1
log 4 4 .log 4 1 log
8
x x+
+ + =
d.
( )
lg 6.5 25.20 lg 25
x x
x+ = +
e.

( )
lg 4 5 lg 2 lg3
x
x x+ − = +
f.
lg lg5
5 50
x
x= −
g.
2 2
lg lg 3
1 1
x x
x x

− = −
h.
2
3 3
log log
3 162
x x
x+ =
Bài 15: Giải các phương trình sau:
a.
( )
( )
2
lg 6 4 lg 2x x x x+ − − = + +

b.
( ) ( )
3 5
log 1 log 2 1 2x x+ + + =
c.
( ) ( ) ( ) ( )
2
3 3
2 log 1 4 1 log 1 16 0x x x x+ + + + + − =
d.
( )
5
log 3
2
x
x
+
=
e.
2
2 2
log ( 4)log 3 0x x x x+ − − + =
f.
( )
4
2 2
5
6
log ( 2 2) 2log 2 3x x x x− − = − −
g.

( )
1215log36
6
+++= xx
x
Nguyễn Vũ Minh 0914449230

6
Chuyên đề: Phương trình

Bất phương trình

hệ phương trình Mũ_Logarit
Bài 16: Giải các phương trình sau:
a.
2 2
lg lg 1
29
x y
x y
+ =



+ =


b.
3 3 3
log log 1 log 2

5
x y
x y
+ = +


+ =

c.
( )
( ) ( )
2 2
lg 1 3lg 2
lg lg lg3
x y
x y x y

+ = +



+ − − =

d.
4 2
2 2
log log 0
5 4 0
x y
x y

− =



− + =


e.
( ) ( )
3 3
4 32
log 1 log
x y
y x
x y x y
+


=


+ = − +

f.
2
2log
log log
4 3
y
x y

x
xy x
y y

=



= +

Bài 17: Giải và biện luận các phương trình sau:
a.
( ) ( )
2
lg 2 3 3 lg 2mx m x m x
 
+ − + − = −
 
b.
3
3
log log log
x x
a a a+ =
c.
2
sin
sin
log 2.log 1
x

x
a = −
d.
2
2
4
log .log 1
2
a
x
a
a
a x

=

Bài 18: Tìm m để phương trình sau có nghiệm duy nhất:
a.
( )
( )
2
3 1
3
log 4 log 2 2 1 0x ax x a+ + − − =
b.
( )
( )
lg
2
lg 1

ax
x
=
+
Bài 19: Tìm a để phương trình sau có 4 nghiệm phân biệt:
2
3 3
2log log 0x x a− + =
.
Bài 20: Giải bất phương trình:
a.
( )
2
8
log 4 3 1x x− + ≤
b.
3 3
log log 3 0x x− − <
c.
( )
2
1 4
3
log log 5 0x
 
− >
 
 
d.
( )

( )
2
1 5
5
log 6 8 2log 4 0x x x− + + − <
e.
1
3
5
log log 3
2
x
x + ≥
f.
( )
9
log log 3 9 1
x
x
 
− <
 
 
g.
2 2
log 2.log 2.log 4 1
x x
x >
h.
1

3
4 6
log 0
x
x
+

i.
( ) ( )
2 2
log 3 1 log 1x x+ ≥ + −
j.
8 1
8
2
2log ( 2) log ( 3)
3
x x− + − >
k.
3 1
2
log log 0x
 
 ÷

 ÷
 
l.
5
log 3 4.log 5 1

x
x + >
m.
2
3
2
4 3
log 0
5
x x
x x
− +

+ −
n.
1 3
2
log log 1x x+ >
o.
( )
2
2
log 5 6 1
x
x x− + <
p.
( )
2
3
log 3 1

x x
x

− >
q.
2
2
3
1
5
log 1 0
2
x
x
x x
+
 
− + ≥
 ÷
 
r.
6 2
3
1
log log 0
2
x
x
x
+


 
>
 ÷
+
 
s.
2
2 2
log log 0x x+ ≤
t.
2
16
1
log 2.log 2
log 6
x x
x
>

u.
2
3 3 3
log 4log 9 2log 3x x x− + ≥ −
v.
( )
2 4
2 16
1
2

log 4log 2 4 logx x x+ < −
Bài 21: Giải bất phương trình:
Nguyễn Vũ Minh 0914449230

7
Chuyên đề: Phương trình

Bất phương trình

hệ phương trình Mũ_Logarit
a.
2
6 6
log log
6 12
x x
x+ ≤
b.
3
2 2
2 log 2 log
1
x x
x
x
− −
>
c.
( ) ( )
1

2 1
2
log 2 1 .log 2 2 2
x x+
− − > −
d.
( ) ( )
2 3
2 2
5 11
2
log 4 11 log 4 11
0
2 5 3
x x x x
x x
− − − − −

− −
Bài 22: Giải hệ bất phương trình:
a.
2
2
4
0
16 64
lg 7 lg( 5) 2lg2
x
x x
x x


+
>

− +


+ > − −

b.
( )
( ) ( )
( )
1
1 lg 2 lg 2 1 lg 7.2 12
log 2 2
x x
x
x
x
+

− + + < +



+ >

c.
( )

( )
2
4
log 2 0
log 2 2 0
x
y
y
x



− >


− >


Bài 23: Giải và biện luận bất phương trình(
0 1a< ≠
):
a.
log 1
2
a
x
x a x
+
>
b.

2
1 log
1
1 log
a
a
x
x
+
>
+
c.
1 2
1
5 log 1 log
a a
x x
+ <
− +
d.
1
log 100 log 100 0
2
x a
− >
Bài 24: Cho bất phương trình:
( ) ( )
2 2
log 2 log 2 3
a a

x x x x
− − > − + +
thỏa mãn với:
9
4
x =
. Giải bất phương trình.
Bài 25: Tìm m để hệ bất phương trình sau có nghiệm:
2
lg lg 3 0
1
x m x m
x

− + + ≤

>


.
Bài 26: Cho bất phương trình:
( ) ( )
2
1
2
3 3 logx m x m x m x− + + < −
a. Giải bất phương trình khi m = 2.
b. Giải và biện luân bất phương trình.
Bài 27: Giải và biện luân bất phương trình:
( )

( )
log 1 8 2 1
x
a
a x

− ≥ −
−−−−−−−−−−−−−−−−−−−−−−−
Nguyễn Vũ Minh 0914449230

8

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×