2012
ỨNG DỤNG LIÊN HỆ GIỮA CHUYỂN ĐỘNG TRÒN ĐỀU VÀ DAO ĐỘNG
ĐIỀU HÒA TRONG VIỆC GIẢI MỘT SỐ BÀI TOÁN DAO ĐỘNG VÀ SÓNG
Tác giả: Phạm Ngọc Thiệu
Trường THPT Trần Phú – Vĩnh
Phúc
I. LÍ DO CHỌN CHUYÊN ĐỀ
Trong những năm gần đây Bộ GD-ĐT đã áp dụng hình thức thi trắc nghiệm
khách quan trong kì thi tốt nghiệp THPT cũng như tuyển sinh đại học, cao đẳng đối
với nhiều môn học trong đó có mộn vật lý. Hình thức thi trắc nghiệm khách quan đòi
hỏi học sinh phải có kiến thức rộng, xuyên suốt chương trình và có kĩ năng làm bài,
trả lời câu trắc nghiệm nhanh chóng. Hình thức thi này cũng kéo theo sự thay đổi
trong cách dạy học, ôn tập, luyện thi đại học cao đẳng của cả giáo viên và học sinh.
Nếu như trước đây giáo viên chỉ dạy các dạng bài tập tự luận, rèn cho học sinh cách
giải và cách trình bày bài tập như thế nào để đạt điểm cao nhất thì hiện nay ngoài việc
hướng dẫn học sinh làm các bài tập tự luận theo dạng, giáo viên đồng thời phải sưu
tầm tài liệu, đặc biệt là hệ thống bài tập trắc nghiệm phù hợp theo chuyên đề để học
sinh luyện tập thêm và hướng dẫn học sinh những cách giải bài tập trắc nghiệm
nhanh nhất trong quá trình làm bài thi
Trong chương trình thi đại học cao đẳng nói chung và phần kiến thức dao động
điều hòa nói riêng, việc tìm thời gian, thời điểm hoặc các đại lượng có liên quan luôn
là một kiến thức khó đối với học sinh. Để giải bài toán loại này, một số giáo viên và
học sinh đã sử dụng những kiến thức liên quan đến phương trình lượng giác, tuy
nhiên phương pháp này thuần túy toán học, phức tạp và dễ gây nhầm lẫn. Để giúp các
em học sinh có phương pháp giải quyết nhanh chóng các loại bài tập này, đặc biệt là
trong bài thi trắc nghiệm, qua nhiều năm ôn luyện thi đại học phần dao động cơ, sóng
cơ, sóng điện từ, dòng điện xoay chiều, tôi đã hướng dẫn học sinh áp dụng mối liên
hệ giữa chuyển động tròn đều và dao động điều hòa để giải nhanh các bài toán liên
quan đến tìm thời gian, thời điểm đại lượng dao động đạt giá trị xác định, pha dao
động hoặc các đại lượng có liên quan đến thời gian dao động,
2012
Chuyên đề đề này đề cập đến các dạng bài tập nâng cao thường gặp trong đề
thi TSĐH, CĐ. Trong phạm vi thời gian có hạn, chuyên đề tập trung nghiên cứu hai
vấn đề:
- Cơ sở lý thuyết và phương pháp giải từng loại bài toán.
- Giới thiệu một số trường hợp vận dụng.
Sau cùng là một số câu hỏi trắc nghiệm để bạn đọc tam khảo sau khi đọc phần bài tập
tự luận.
Với sự hạn chế về kinh nghiệm ôn luyện thi ĐH-CĐ của bản thân cũng như thời
gian nghiên cứu còn ít, chắc chắc những nội dung trong chuyên đề này sẽ còn nhiều
điểm cần bổ sung, chỉnh sửa cho phù hợp với nhiều đối tượng. Tác giả rất mong các
thầy cô giáo và các bạn đồng nghiệp đóng góp ý kiến để chuyên đề có thể hoàn thiện
hơn và trở thành tài liệu tham khảo của các bạn đồng nghiệp trong quá trình ôn luyện
thi Đại hoc, cao đẳng. Xin chân thành cảm ơn.
II. MỘT SỐ CƠ SỞ LÝ THUYẾT ÁP DỤNG TRONG CHUYỂN ĐỀ
II.1. Chuyển động tròn đều:
* Chuyển động tròn là đều khi chất điểm đi được những cung tròn có độ dài bằng
nhau trong những khoảng thời gian bằng nhau tùy ý.
* Một số đại lượng đặc trưng của chuyển động tròn đều
- Chu kì,tần số của chuyển động tròn đều:
+ Chu kì là khoảng thời gian để chất điểm đi hết một vòng trên đường tròn. Kí hiệu T
+ Tần số là số vòng chất điểm quay được trong một đơn vị thời gian. Kí hiệu f
+ Liên hệ giữa chu kì và tần số:
1
T
f
- Tốc độ góc của chuyển động tròn đều: Tốc độ góc ω là góc quay được của bán kính
trong một đơn vị thời gian, đơn vị rad/s:
t
II.2. Mối liên hệ giữa chuyển động tròn đều và dao động điều hòa
2012
Độ dài đại số của hình chiếu trên trục x của véc tơ quay
OM
biểu diễn dao động
điều hòa chính là li độ x của dao động.
Nói cách khác: Khi véc tơ
OM
quay đều với tốc độ góc ω
quanh điểm O thì hình chiếu P của điểm M dao động điều hòa
trên trục x’Ox thuộc mặt phẳng quỹ đạo của M với li độ bằng
tọa độ hình chiếu của M, biên độ bằng độ dài OM, tần số góc
đúng bằng tốc độ góc ω và pha ban đầu φ bằng góc
xOM
ở thời
điểm t=0.
* Một số hệ quả:
- Nếu biểu diễn dao động điều hòa x=A.cos(ωt+φ) bằng véc tơ quay thì thì φ=
xOM
là
góc pha ban đầu của dao động với lưu ý:
+ Tại t=0, v
0
<0 thì
OM
ở trên Ox =>φ>0; v
0
>0 thì
OM
ở dưới Ox => φ<0.
+ Thời gian vật dao động điều hòa đi từ vị trí (x
1
; v
1
) đến vị trí (x
2
; v
2
) bằng thời gian
OM
quay đều được góc φ=
12
M OM
với tốc độ góc ω: φ=ω.Δt => Δt=φ /ω.
+ Nếu biết góc quay của
OM
trong thời gian Δt tính từ thời điểm đầu t=0 ta có thể
tìm được thời điểm vật qua vị trí có li độ x với vận tốc v, từ đó có thể tính được số lần
vật qua vị trí x trong thời gian t
0
hoặc tính được quãng đường vật dao động diều hòa
đi được trong thời gian Δt.
+ Phương pháp biểu diễn dao động điều hòa có thể áp dụng đối với sóng cơ học, sóng
điện từ và dao động điệu từ trong mạch RLC vì các đại lượng có chung một đặc tính
là biến thiên điều hòa.
Để minh họa các phương pháp trên chúng ta cùng xét các thí dụ sau đây.
M
O
x
P
φ
2012
III. MỘT SỐ THÍ DỤ ÁP DỤNG MỐI LIÊN HỆ GIỮA CHUYỂN ĐỘNG
TRÒN ĐỀU VÀ DAO ĐỘNG ĐIỀU HÒA.
III. 1. Tính thời gian đại lượng dao động điều hòa biến thiên và thời điểm
đại lượng đó đạt giá trị xác định.
III.1.1. Dao động cơ
Ví dụ 1:
Vật dao động điều hoà với phương trình x=4.cos(2πt) (cm)
a) Tính thời gian vật đi từ vị trí ban đầu đến vị trí có li độ x= - 2cm lần thứ nhất, lần
thứ hai và các thời điểm vật qua vị trí x=-2cm theo chiều dương và theo chiều âm.
b) Tính số lần vật đi qua vị trí x=-2 cm theo chiều âm trong 2 giây và trong 3,25 s.
d) Tại thời điểm t vật ở li độ 2cm. Xác định trạng thái dao động (x, v) ở thời điểm
(t+6) s và (t+
1
3
) s.
e) Tìm thời điểm vật qua vị trí x=-2cm theo chiều âm lần thứ 2011 và 2014.
Hướng dẫn
a) Véc tơ quay biểu diễn dao động của vật ở thời điểm ban đầu, thời
điểm vật qua vị trí x=-2cm lần thứ nhất và lần thứ như hình vẽ 1:
- Từ hình vẽ ta có: t
1
= φ
1
/ω; φ
1
=
01
M OM
=2π/3 => t
1
=1/3 s
t
2
= φ
2
/ω; φ
2
=
02
M OM
=4π/3ω=2/3 s
- Chu kì dao động là T=1s.
- Sau một chu kì vật lại quay lại trạng thái ban đầu nên các thời điểm vật đị qua vị trí
x nói trên theo chiều dương và âm là: t
a
=t
1
+kT =
1
3
+ k ; t
d
= t
2
+kT =
2
3
+ k (k=1, 2, 3,
4,…)
b) Tính số lần vật đi qua vị trí x=-2cm theo chiều dương và theo chiều âm.
- Trong t=2s: véc tơ
OM
quay góc: φ=ω.t=4π rad. Mỗi vòng quay
(2π) vật qua vị trí (x,v) 2 lần => Trong 2s vật qua vị trí nói trên 4
lần.
O
x
P
M
M
0
-2
4
H.2
O
x
P
M
1
M
0
-2
4
M
2
H.1
2012
- Trong t=3,25s: = ω.t=6,5π rad= 6π + 0,5π. Vẽ véc tơ quay ở hai vị trí đầu và cuối
như hình vẽ 2, dễ dàng suy ra vật qua vị trí trên 6 lần.
c) Xác định vị trí sau thời gian
t:
- Khi t =6s: Véc tơ OM quay góc φ=ω.t =12π: Véc tơ OM đã
quay 6 vòng và trở lại vị trí đầu, do đó x(t+6s)=x(t) =2cm.
- Khi t=1/3s: Véc tơ OM quay góc φ=ω.t=2π/3=>Có hai khả
năng:
+ Tại thời điểm t vật có x=2cm; v>0: Vị trí véc tơ ở hai thời điểm t
và t+1/3s được biểu diễn như hình vẽ 3. Từ hình vẽ suy ra: x(t+1/3s)
=2 cm và đang chuyên động theo chiều âm.
+ Tại thời điểm t vật có x=2cm và v<0: Vị trí các véc tơ như hình vẽ
4. Từ hình vẽ suy ra: x(t+1/3s) = -4 cm và đang ở biên âm.
e). Tìm thời điểm vật qua vị trí (x, v) lần thứ n:
- Với n=2011. Tách 2011 =2010 +1 (lần). Sau 2010 lần đã hết 1005 chu kì và véc tơ
OM trở về đúng vị trí ban đầu OM
0
, Từ hình vẽ 1 ta suy ra:
t
2011
=1005T +t
1
= 1005.1+
1
3
=
3016
3
s
- Với n=2014: Tách 2014=2012+2 lần. Ta thấy sau 2012 lần đã hết 1006 chu kì và
vật lại trở về đúng vị trí ban đầu OM
0
. Từ hình vẽ suy ra:
t
2014
=1006T +t
2
= 1006.1+
2
3
=
3020
3
s
.
Tổng quát: Thời điểm vật đi qua vị trí (x,v) lần thứ n:
(Trong đó t
1
; t
2
là thời điểm vật qua vị trí (x,v) lần thứ
nhất và lần thứ 2)
Ví dụ 2
O
x
M
1
2
M
2
4
H.3
O
x
M
1
2
M
2
-4
4
H.4
t = với n lẻ
t = với n chẵn
2012
Một vật dao động điều hoà theo phương trình: x = Acos(
t -
2
). Cho biết, từ
thời điểm ban đầu vật đến li độ x =
3
2
A
trong khoảng thời gian ngắn nhất là
s
60
1
và tại điểm cách VTCB 2(cm) vật có vận tốc
40 3
(cm/s). Xác định tần số góc và
biên độ A của dao động.
Hướng dẫn: Véc tơ quay biểu diễn vị trí đầu và cuối như
hình vẽ 5. Từ hình vẽ =>
6
=>∆ =
2
=
3
=>
20
t
rad/s => A =
cm
v
x 4
2
2
2
.
Ví dụ 3
Một lò xo có khối lượng không đáng kể có độ cứng k =100N/m, một đầu treo
vào một điểm cố định, đầu còn lại treo một vật nặng khối lượng 500g. Từ vị trí cân
bằng kéo vật xuống dưới theo phương thẳng đứng một đoạn 10cm rồi buông nhẹ cho
vật dao động điều hòa. Lấy g = 10m/s
2
. Xác định tỉ số thời gian lò xo bị nén và dãn
trong một chu kỳ.
Hướng dẫn
=
m
k
= 10
2
(rad/s)
Độ dãn của lò xo ở vị trí cân bằng:
cmm
k
mg
l 505,0
; A=10cm > ∆l
=> Thời gian lò xo nén t
1
là thời gian ngắn nhất để vật
đi từ vị trí lò xo không biến dạng đến vị trí cao nhất và trở về vị trí cũ.
Vậy: t
1
=
, với sin=
2
1
A
l
=>=
6
=>∆ = -2=
3
2
=> t
1
=
s
215210.3
2
l
dãn
O
-A
A
nén
(A > l)
O
x
M
1
M
2
H.6
x
-A
A
M
2
O
M
1
H.5
2012
Thời gian lò xo dãn t
2
là thời gian ngắn nhất để vật đi từ vị trí lò xo không biến dạng
đến vị trí thấp nhất và trở về vị trí cũ: t
2
=
22
15 2.
s
=>
1
2
1
2
t
t
Ví dụ 4 (ĐH 2010)
Một con lắc lò xo dao động điều hòa với chu kì T và biên độ 5 cm. Biết trong
một chu kì, khoảng thời gian để vật nhỏ của con lắc có độ lớn gia tốc không vượt quá
100 cm/s
2
là
3
T
. Lấy
2
=10. Tính tần số dao động của vật.
Hướng dẫn
Vì gia tốc biến thiên điều hòa nên ta có thể biểu diễn gia tốc bằng một véc tơ
quay. Trong thời gian T/3 véc tơ OM quay góc: ∆ = ω.t =
2
3
=> Các véc tơ quay biểu diễn độ lớn của a không vượt
quá 100cm/s
2
như hình vẽ 7. Từ hình vẽ ta có: =π/3
=> A.ω
2
.cosπ/3=100 =>ω=2π => f=1Hz.
III.1.2. Sóng cơ
Ví dụ 1
Hai điểm M, N cùng nằm trên một phương truyền sóng cách nhau x = λ/3, sóng
có biên độ A, chu kì T=0,5s. Tại thời điểm t
1
= 0, có u
M
=+3cm và u
N
=-3cm. Ở thời
điểm t
2
liền sau đó có u
M
= +A, biết sóng truyền từ M đến N. Xác định A và t
2
.
Hướng dẫn
Ta có độ lệch pha giữa M và N là:
3
22
x
.
Vì li độ sóng cũng biến thiên điều hòa nên ta có thể mô tả dao động
của các phần từ bằng véc tơ quay. Khi đó véc tơ quay biểu diễn li độ
dao động của M và N tại thời điểm t như hình vẽ 8.
Từ hình vẽ ta có:
6
=> A =
32
cos
M
u
(cm); t
2
= t
1
+
; ω=2π/T =4π rad/s => t
2
=
1
24
s
Ví dụ 2
Aω
2
O
a
M
1
100
M
4
H.3
-Aω
2
M
2
M
3
-100
H.7
O
u
- 3
H.8
H.8
3
2012
Một sóng cơ được truyền theo phương Ox với vận tốc v=20cm/s. Giả sử khi
truyền đi, biên độ không đổi. Tại O dao động có dạng u
o
=4.cos(
6
t
-
2
) (cm). Tại
thời điểm t
1
li độ của điểm O là u=2
3
cm và đang giảm. Tính li độ tại điểm O sau
thời điểm t
1
một khoảng 3 giây và li độ của điểm M cách O một đoạn d=40 cm ở
cùng thời điểm t
1
.
Hướng dẫn
Độ lệch pha giữa M và O là
3
d
v
. Sau 3s véc tơ quay
của O quay được góc ω.t =
2
. Do vậy li độ của O và của M được
biểu diễn bằng các véc tơ quay tại thời điểm t=0 và t=t
1
và li độ của
O ở thời điểm t
1
+3 như hình vẽ 9. Từ hình vẽ ta có:
u
O
(t
1
+3)=-2; u
M
(t
1
)= 2
3
cm
III.1.3. Dao động điện và điện từ
Ví dụ 1
Điện áp giữa hai đầu một đoạn mạch có biểu thức u=220
2
cos(100
t –
2
)(V), t tính bằng giây(s). Xác định thời điểm đầu tiên điện áp tức thời có giá trị bằng
điện áp hiệu dụng và đang giảm.
Hướng dẫn
Ta có U=U
0
/
2
=220V. Do u biến thiên điều hòa nên ta có
thể biểu diễn u dưới dạng một véc tơ quay ở thời điểm ban
đầu và thời điểm t
1
u đạt giá trị u=U như hình vẽ 10
Từ hình vẽ ta có :
t
; ∆ =
2
+ ; cos=
2
1
2
o
U
u
=> =
4
rad =>∆ =
2
+
4
=
4
3
rad =>
1
33
4.100 400
t t s
Ví dụ 2
U
u
-U
o
U
o
M
2
O
M
1
H.10
M (t
1
)
O(t
1
)
2
u
H.9
4
O(t
1
+3)
2012
Mắc một đèn vào nguồn điện xoay chiều có điện áp tức thời là
220 2cos(100 )( ).u t V
Đèn chỉ phát sáng khi điện áp đặt vào đèn có độ lớn không
nhỏ hơn
110 6V
. Xác định tỉ số thời gian đèn sáng và tắt trong một chu kỳ.
Hướng dẫn
Véc tơ quay biểu diễn thời gian đèn sáng và tắt như hình
vẽ 11. Điều kiện để đèn sáng là:
)(6110 Vu
Trong mỗi nửa chu kì, khoảng thời gian đèn tắt là:
∆t
1
=
1
, với ∆
1
=-2, cos=
2
3
1
o
U
u
=>=
6
rad
=>∆
1
=
3
2
rad => ∆t
1
=
s
150
1
=> Trong một chu kì, thời gian đèn tắt là: 2∆t
1
=
s
150
2
=> Thời gian đèn sáng trong một chu kì là: T - 2∆t
1
=
s
150
1
Vậy: Tỉ số thời gian đèn sáng và tắt trong một chu kì là:
2
1
2
2
1
1
t
tT
Ví dụ 3
Một mạch dao động điện từ lí tưởng đang có dao động điện từ tự do. Tại thời
điểm t = 0, tụ điện bắt đầu phóng điện. Sau khoảng thời gian ngắn nhất
t = 10
-6
s thì
điện tích trên một bản tụ điện bằng một nửa giá trị cực đại. Tính chu kì dao động
riêng của mạch.
Hướng dẫn
Ở thời điểm đầu (t = 0), điện tích trên một bản tụ là: q
1
= q
o
Sau khoảng thời gian ngắn nhất ∆t, điện tích trên một bản tụ
điện là: q
2
=
2
o
q
.
Từ hình vẽ 12 ta có : Ta có: ∆ =
3
rad =>t=
62
.
3
TT
Vậy, chu kì dao động riêng của mạch là: T = 6∆t = 6.10
-6
s
Ví dụ 4
x
-U
o
U
o
M
1
1
O
M
2
H.11
q
-q
o
q
o
q
2
q
1
M
1
O
M
2
H.12
2012
Một mạch dao động LC lí tưởng đang có dao động điện từ tự do. Điện tích trên
một bản tụ điện có biểu thức: q = q
o
cos(10
6
t-
)
2
(C). Kể từ thời điểm ban đầu (t =
0), sau một khoảng thời gian ngắn nhất là bao lâu thì năng lượng điện trường trên tụ
điện bằng ba lần năng lượng từ trường ở cuộn cảm?
Hướng dẫn
Ở thời điểm ban đầu t = 0, điện tích trên một bản tụ là q
1
= 0.
Sau đó một khoảng thời gian ngắn nhất ∆t thì W
L
=
3
1
W
C
.
=> W =
3
1
W
C
+ W
C
=
3
4
W
C
C
q
C
q
o
23
4
2
2
2
2
=> q
2
=
2
3
q
o
hoặc q
2
= -
2
3
q
o
. Ta biểu diễn dao động của q ở các thời điểm như hình vẽ 13.
Ta có:
t
với ∆ =
2
; mà: cos =
2
3
2
o
q
q
=> =
6
=>∆ =
3
. Vậy:
st
3
10
10.3
6
6
Ví dụ 5
Một mạch dao dộng LC lí tưởng có chu kì dao động là T. Tại một thời điểm
điện tích trên tụ điện bằng 6.10
-7
C, sau đó một khoảng thời gian
t = 3T/4 cường độ
dòng điện trong mạch bằng 1,2
.10
-3
A. Tìm chu kì T.
Hướng dẫn
Giả sử ở thời điểm ban đầu t
1
, điện tích trên tụ điện có giá
trị q
1
. Ở thời điểm t
2
, sau đó một khoảng thời gian ∆t =
T
4
3
ta có
2π 3T 3π
Δ =ωΔt= . =
T 4 2
rad. Từ hình vẽ 14 ta có:
1
+
2
=
2
=> sin
2
= cos
1
(1) Từ công thức:
2
2
22
i
qq
o
=>
o
q
i
2
2
sin
q
-q
o
q
o
O
M
2
M
1
q
1
q
2
H.13
q
-q
o
q
2
q
1
q
o
O
M
2
1
2
M
1
H.14
2012
Do đó (1) <=>
oo
q
q
q
i
12
.
=>
2000
10.6
10.2,1
7
3
1
2
q
i
rad/s Vậy : T = 10
-3
s.
III. 2. Tính quãng đường đi trong dao động điều hòa.
Ví dụ 1
Một vật dao động điều hoà theo phương trình: x=4.cos(4πt+
/3) (cm). Tính
quãng đường vật đi được:
- trong t=2s từ vị trí ban đầu.
- trong 3,25s kể từ vị trí x= -2 cm ngược chiều dương.
- trong 2,325s từ vị trí cân bằng theo chiều dương.
Hướng dẫn
Biểu diễn dao động của vật bằng véc tơ quay ở thời điểm t=0 như hình vẽ 15.
Ta nhận thấy nếu
OM
quay góc π thì hình chiếu của M đi được quãng đường S
1
=2A
và
không phụ thuộc vào vị trí đầu và cuối của M. Vậy khi
OM
quay góc n.π thì hình
chiếu của M luôn đi được quãng đường 2nA.
- Trong t=2s véc tơ OM quay góc =2.4π = 8π => Quãng đường dao động điều hòa
đi được là: s=2.8.A =64 cm.
- Trong 3,25s: Véc tơ OM quay góc =3,25.4π =13π => Quãng đường vật đi là
s=13.2.A=104cm
- Trong 2,325s: Góc quay là =ω.t= 9,3π =9π+0,3π . Biểu
dao động bằng véc tơ quay ở các vị trí đầu (x=0, v>0), vị trí
cuối và vị trí sau khi đã quay góc 9π (H.15)
Từ hình vẽ ta có: S=9.2A + x
1
với x
1
=A.cos(0,2π)
=> S=18A+A.cos(0,2π) =75,24cm
Ví dụ 2
Một vật m = 1kg dao động điều hòa theo phương ngang với phương trình
x=Acos(
t +
). Lấy gốc tọa độ là vị trí cân bằng 0. Từ vị trí cân bằng ta kéo vật theo
A
x
x
1
O
H.15
M
2
M
3
M
1
2012
phương ngang 4cm rồi buông nhẹ. Sau thời gian t=
/30 s kể từ lúc buông tay vật đi
được quãng đường dài 6cm. Tính cơ năng của vật.
Hướng dẫn
- Biên độ dao động: A=4cm. Giả sử lúc buông tay x=A=4cm
=> Sau t=/30s vật đi quãng đường 6cm thì vật đến vị trí x=-
2cm. Biểu diễn dao động bằng các véc tơ quay như hình vẽ 16.
Từ hình vẽ ta có: Góc quay:
2π
=ωΔt=
3
=>ω =20 rad/s
=> W=mω
2
A
2
/2=0,32J.
Ví dụ 3
Một vật dao động điều hòa với phương trình x=Acos(ωt+
) dọc theo trục Ox.
Tính quãng đường lớn nhất và nhỏ nhất mà vật đi được trong thời gian
t cho trước
trong các trường hợp: a)
t <
2
T
b)
t >
2
T
Hướng dẫn
Vật có vận tốc lớn nhất khi qua VTCB, nhỏ nhất khi qua vị trí biên nên trong
cùng một khoảng thời gian quãng đường đi được càng lớn khi vật ở càng gần VTCB
và càng nhỏ khi càng gần vị trí biên. Sử dụng mối liên hệ giữa dao động điều hoà và
chuyển đường tròn đều.
Góc quét φ t.
a) Nếu t <
2
T
thì φ t < π.
Quãng đường lớn nhất khi vật đi từ
M
1
đến M
2
đối xứng qua trục sin (H.17) =>
max
S 2Asin
2
Quãng đường nhỏ nhất khi vật đi từ M
1
đến M
2
đối xứng qua trục cos (H.18)
=>
min
S 2A(1 cos )
2
b) Nếu t >
2
T
thì φ .t > π .
4
x
-2
O
H.16
M
A
A
M
1
O
P
x
P
2
P
1
2
M
2
2
A
O
M
2
M
1
A
x
P
H.17
H.18
2012
Tách φnπ +φ
1
=> S=n.2A +S
1
với S
1
là quãng đường vật đi thêm khi
OM
quay
góc φ
1
sau khi đã đi quãng đường 2.nA => S
max
=n.2A +S
1max
và S
min
=n.2A +S
1min
.
Áp dụng công thức trên ta có:
max
S 2A(n sin )
2
;
min
S 2A(n 1 cos )
2
III.3. Tìm biên độ sóng dừng và vị trí các điểm có biên độ xác định trong sóng
dừng
Ví dụ 1
Dây AB đầu B cố định, chiều dài l=1m, đầu A dao động với tần số 25Hz với
biên độ 1cm. Trên dây có 5 bó sóng với A, B là các nút sóng.
a) Tính tốc độ truyền sóng trên dây.
c) Tìm điểm gần A nhất dao động với biên độ 1cm và khoảng cách từ A đến các điểm
có biên độ 1cm.
Hướng dẫn
a) Ta có l=5λ/2 =2,5λ => λ = 40cm => v=λ.f=10m/s
b) Biên độ sóng dừng tại điểm cách các nút đoạn d là: A=2a|sin
2πd
λ
|
=> Biên độ sóng dừng biến thiên điều hòa trong không gian với pha dao động tại
điểm cách A đoạn d là
2πd
λ
=> Độ lệch pha của hai biên độ dao động tại hai hai điểm
cách nhau đoạn d là φ=
2πd
λ
. Có thể biểu diễn biên độ sóng dừng tại điểm nút A
(biên độ bằng 0) và điểm M (biên độ bằng 1cm) bằng các véc tơ
quay như hình vẽ H.19 mà độ dài hình chiếu của các véc tơ trên
trục Ox thẳng đứng có độ lớn bằng biên độ của sóng dừng tại
điểm đó.
Từ hình vẽ ta thấy: Điểm gần A nhất có biên độ 1cm lệch pha (về
biên độ) với A góc:
Δφ =
2πd
λ
=
6
=> d =
12
=
10
3
cm
1
O
H.19
M
1
M
2
A
Δφ
x
2
2012
Điểm tiếp theo dao động với biên độ 1cm lệch pha với A góc
5
2 3 6
=> d=
50
3
cm
Vậy khoảng cách từ các điểm có biên độ 1cm đến đầu A là: d=
10
3
+kλ =
10
3
+40k cm
và d=
50
3
+kλ =
50
3
+40k cm (k= 1, 2, 3, 4, 5).
Ví dụ 2 (Đại học 2011)
Một sợi dây đàn hồi căng ngang, đang có sóng dừng ổn định. Trên dây, A là
một điểm nút, B là một điểm bụng gần A nhất, C là trung điểm của AB, với AB = 10
cm. Biết khoảng thời gian ngắn nhất giữa hai lần mà li độ dao động của phần tử tại B
bằng biên độ dao động của phần tử tại C là 0,2 s. Tốc độ truyền sóng trên dây là
A. 0,25 m/s. B. 0,5 m/s. C. 2 m/s. D. 1 m/s.
Hướng dẫn
- Biên độ sóng dừng tại A và C lệch pha nhau góc:
2 2 .5
40 4
d
=>
2
2
C
A
A
- Xét sự dao động của B. Độ lệch pha của của dao động tại hai
thời điểm là:
Δ =ω.t
=>
1
π
λ 40
2
=2,5π T=0,8 v= = =50cm/s=0,5m/s
0,2 T 0,8
s
t
IV. MỘT SỐ CÂU HỎI TRẮC NGHIÊM THAM KHẢO
Câu 1. Vật dao động theo phương trình x =4cos(10t-/6) cm, thời gian ngắn nhất vật đi từ
li độ
22
cm đến
22
cm là:
1
O
H.20
C
B
Δφ
A/2
A
2012
A. 0.1s B. 0.05s C. 0.02s D.0.01s
Câu 2: Khi treo vật nặng M vào lò xo thì lò xo giãn một đoạn ∆l=25(cm).Từ vị trí cân bằng
O kéo vật xuống theo phương thẳng đứng đến vị trí lò xo giãn 35 (cm) rồi buông nhẹ để vật
dao động điều hòa. Lấy g=π
2
=10m/s
2
. Nếu vào thời điểm nào đó có li độ của M là 5cm theo
chiều dương thì vào thời điểm 1/4 (s) ngay sau đó li độ của vật M là bao nhiêu?
A. 5
3
cm B. -5cm C. 5
2
cm D. Đáp án khác
Câu 3: Một vật dao động điều hòa theo phương ngang với phương trình x=20sin2t (cm).
Vào một thời điểm nào đó vật có li độ là 5cm thì li độ vào thời điểm 1/8 (s) ngay sau đó là:
A. 17,2 cm B. -10,2 cm C. 7 cm D. A và B đều đúng
Câu 4: Một vật dao động điều hòa với phương trình: x = 0,05sin20t (m). Vận tốc trung
bình trong 1/4 chu kỳ kể từ lúc t
0
= 0 là
A. 1 m/s B. 2 m/s C. 2/ m/s D.1/ m/s
Câu 5: Một vật dao động điều hòa dọc theo trục Ox. Vận tốc của vật khi qua vị trí cân bằng
là 62,8 cm/s và gia
tốc cực đại của vật là 4 m/s
2
. Lấy π
2
≈ 10. Vận tốc trung bình và tốc độ trung bình của vật.
a) Trong một chu kì dao động là
A. 0 và 10 cm/s B. 10 cm/s và 10cm/s C. 0 và 40cm/s D. 10 cm/s và 40cm/s
b) trong thời gian ngắn nhất khi đi từ vị trí cân bằng theo chiều dương đến vị trí x=52 là
A. 402 cm và 402 cm B. 202 cm và 202 cm
C. -402 cm và 202 cm D. một đáp án khác
Câu 6: Con lắc lò xo dao động theo phương ngang với phương trình: x=10cos(2t) cm. Thời
gian ngắn nhất từ lúc t
0
= 0 đến thời điểm vật có li độ -5cm là:
A. /3 s B. /4s C./2 s D. 1/2(s)
Câu 7: Một vật dao động điều hòa với phương trình: x=2cos(20t) cm. Những thời điểm vật
qua vị trí có li độ x=+1 cm là:
A. t = -1/60 +k/10 (k=1, 2, 3, 4, 5, ) B. t = +1/60 +k/10 (k 0) (k=0, 1, 2, 3)
C. A và B đều đúng D. A và B đều sai
Câu 8: Một lò xo treo thẳng đứng, đầu trên cố định, đầu dưới có vật m = 100g, độ cứng
K=25 N/m, lấy g=10 m/s
2
. Chọn trục Ox thẳng đứng, chiều dương hướng xuống. Vật dao
động với phương trình:
x = 4cos(5t+/3) cm. Thời điểm lúc vật qua vị trí lò xo bị dãn 2 cm lần đầu tiên là:
A. 1/30s B. 1/25s C. 1/15s D.1/5s
Câu 9: Một vật thực hiện 40 dao động trong 1/3 phút. Biên độ dđ A=10cm. Vận tốc trung
bình của vật khi chuyển động từ vị trí có ly độ x
1
= -5cm đến vị trí x
2
=5cm theo chiều
dương là
A. 120cm/s B. 60cm/s C. -120cm/s D. -60cm/s
Câu 10: Một vật dao động điều hoà với phương trình: x=0,05sin20πt (m). Vận tốc cực đại
và tốc độ trung bình khi vật dao động trong 1/4 chu kỳ đầu là
A. π m/s và 2m/s B. 2m/s và 1m/s C. 1m/s và 0 D. 2m/s và 2m/s
Câu 11: Vật dao động điều hòa. Liên hệ giữa tốc độ cực đại của vật với tốc độ trung bình
trong một chu kì là
A. v
tb
=2v
max
/π B. v
tb
=v
max
/2π C. . v
tb
=v
max
D. v
tb
=v
max
/π
2012
Câu 12: Một qủa cầu dao động điều hòa với phương trình: x=2cos(2πt) (cm,s).
a) Sau bao lâu kể từ khi bắt đầu dao động, qủa cầu sẽ đi qua vị trí x = 1(cm) lần thứ 2011?
A.
6031
6
s B.
6005
6
s C. 1005s D. Đáp án khác
b) Thời điểm vật đi qua vị trí x=1cm lần thứ 2012 là
A.
3015
6
s B.
3017
3
s C. Đáp án khác D. 2/3 s
Bài 13: Con lắc lò xo nằm ngang dao động điều hoà với biên độ 10 cm, thời gian ngắn nhất
đi từ vị trí có li độ -5cm đến 5cm là 1/3 s. Thời gian vật đi từ vị trí lò xo nén cực đại đến vị
trí lò xo dãn 5cm.
A. 3/2 s B. 1/3 s C. 4/3 s D. 2/3s
Bài 14: Một lò xo treo thẳng đứng dao động điều hoà với chu kì 0,4s. Lấy g=π
2
=10m/s
2
.
a) Tính độ biến dạng của lò xo khi m cân bằng.
A. 50cm B. 4cm C. 10cm D. 5cm
b) Kéo vật đến vị trí lò xo dãn 12cm rồi buông tay. Tính thời gian lò xo bị giãn trong một
chu kì dao động.
A. 4/15s B. 2/15s C. 4/30s D. Đáp án khác
Bài 15: Một con lắc lò xo treo thẳng đứng gồm vật nhỏ có khối lượng m =250g và một lò
xo nhẹ có độ cứng K=100N/m. Kéo vật m xuống dưới theo phương thẳng đứng đến vị trí lò
xo giãn 7,5cm rồi thả nhẹ. Chọn gốc tọa độ ở vị trí cân bằng của vật, trục tọa độ thẳng đứng,
chiều dương hướng lên trên, chọn gốc thời gian là lúc thả vật. Cho g = 10m/s
2
. Tìm thời
gian từ lúc thả vật đến thời điểm vật đi qua vị trí lò xo không biến dạng lần thứ nhất.
A. π/30s B. 1/30s C. 2π/30 s D. Đáp án khác
Câu 16: Một con lắc lò xo treo thẳng đứng, đầu dưới có vật m. Chọn gốc tọa độ ở vị trí cân
bằng, trục Ox thẳng đứng, chiều dương hướng lên. Kích thích quả cầu dao động với phương
trình: x =5sin(20t–/2) cm. Lấy g = 10 m/s
2.
Thời gian vật đi từ lúc t
0
= 0 đến vị trí lò xo
không biến dạng lần thứ nhất là:
A. /30 (s) B. /15 (s) C. /10 (s) D. /5(s)
Bài 17: Vật dao động điều hoà với phương trình x=5.sin(2πt+π/2)cm.
a) Thời điểm đầu tiên vật qua vị trí động năng bằng thế năng kể từ thời điểm ban đầu là
A. 1/4s B. 1/8 s C. 3/4 S D 3/8 s
b) Trong một chu kì số lần vật đi qua vị trí động năng bằng thế năng là
A. 2 lần B. 4 lần C. 1 lần D. 3 lần
c) Khoảng thời gian giữa hai lần liên tiếp động năng bằng thế năng là
A. 1/4 s B. 3/4 s C. 1/8 s D. Đáp án khác
d) Thời điểm vật qua vị trí động năng bằng thế năng và số lần vật đi qua vị trí đó trong thời
gian 2,25s là
A. t= 1/8+k/4 (s) (K=0, 1,2,3, ) và 9 lần B. t= 1/4+k/4 (s) (=0, 1,2,3, ) và 8 lần
C. t= 1/8+k/8 (s) (K=0, 1,2,3, ) và 8 lần D. Một đáp án khác
Câu 18: Một vật dao động điều hòa với phương trình: x = Acos(t +). Trong khoảng thời
gian 1/60(s) đầu tiên, vật đi từ vị trí x
0
= 0 đến vị trí x =
3
A
2
theo chiều dương và tại
2012
im cỏch v trớ cõn bng 2cm thỡ nú cú vn tc l 40
3
cm/s. Khi lng qu cu l m =
100g. Nng lng ca nú l
A. 32.10
-2
J B. 16.10
-2
J C. 9.10
-3
J D. Mt giỏ tr khỏc
Cõu 19 (H 2010): Mt cht im dao ng iu hũa vi chu kỡ T v biờn A. Trong
khong thi gian ngn nht khi i t v trớ biờn cú li x = A n v trớ x =
2
A
, cht im
cú tc trung bỡnh l
A.
6
.
A
T
B.
9
.
2
A
T
C.
3
.
2
A
T
D.
4
.
A
T
Cõu 20(H 2010): Mt con lc lũ xo dao ng iu hũa vi chu kỡ T v biờn 5 cm. Bit
trong mt chu kỡ, khong thi gian vt nh ca con lc cú ln gia tc khụng vt quỏ
100 cm/s
2
l
3
T
. Ly
2
=10. Tn s dao ng ca vt l
A. 4 Hz. B. 3 Hz. C. 2 Hz. D. 1 Hz.
Cõu 21: Mt con lc lũ xo dao ng vi phng trỡnh: x=4cos4t (cm). Quóng ng vt
i c trong thi gian 30s k t lỳc t
0
= 0 l
A. 16 cm B. 3,2 m C. 6,4 cm D. 9,6 m
Cõu 22: Mt con lc lũ xo cng K=100N/m, vt nng khi lng m=250g, dao ng
iu hũa vi biờn A=4cm. Ly t
0
=0 lỳc vt v trớ biờn thỡ quóng ng vt i c
trong thi gian /10s u tiờn l:
A. 12 cm B.8 cm .16 cm D.24 cm
Cõu 23: Mt vt m = 1kg dao ng iu hũa theo phng ngang vi phng trỡnh x =
Acos(t +). Ly gc ta l v trớ cõn bng 0. T v trớ cõn bng ta kộo vt theo phng
ngang 4cm ri buụng nh. Sau thi gian t = /30 s k t lỳc buụng tay vt i c quóng
ng di 6cm. C nng ca vt l
A. 16.10
-2
J B. 32.10
-2
J C. 48.10
-2
J D. Tt c u sai
Cõu 24: Mt vt m =1,6 kg dao ng iu hũa vi phng trỡnh : x = 4sint. Ly gc ta
ti v trớ cõn bng.Trong khong thi gian /30 (s) u tiờn k t thi im t
0
=0, vt i
c 2 cm. cng ca lũ xo l:
A. 30 N/m B. 40 N/m C. 50 N/m D. 6N/m
Câu 25: Vật dao động theo ph-ơng trình x= cos(10t-/2) cm. Quãng đ-ờng vật đi đ-ợc
trong khoảng thời gian từ thời điểm 1.1s đến 5.1s là:
A. 40cm B. 20cm C. 60cm D. 80cm
Câu 26: Vật dao động theo ph-ơng trình x=4cos(10t-/6)cm, thời điểm vật đi qua vị trí có
li độ 2cm h-ớng về VTCB trong lần dao động thứ hai là:
A. 0.45s B. 0.35s C. 0.25s D. 0.05s
Cõu 27: Mt con lc lũ xo dao ng iu hũa vi phng trỡnh : x 12cos(50t-/2)cm.
Quóng ng vt i c trong khong thi gian t /12(s), k t thi im gc l : (t 0)
A. 6cm. B. 90cm. C. 102cm. D. 54cm.
Cõu 28: Mt con lc lũ xo dao ng iu hũa vi phng trỡnh : x 6cos(20t /3)cm.
Quóng ng vt i c trong khong thi gian t 13/60(s), k t khi bt u dao ng
l :
2012
A. 6cm. B. 90cm. C. 102cm. D. 54cm.
Câu 29: Một con lắc lò xo dao động điều hòa với biên độ 6cm và chu kì 1s. Tại t = 0, vật đi
qua VTCB theo chiều âm của trục toạ độ. Tổng quãng đường đi được của vật trong khoảng
thời gian 2,375s kể từ thời điểm được chọn làm gốc là:
A. 56,53cm B. 50cm C. 55,77cm D. 42cm
Câu 30: Một vật dao động với phương trình x 4
2
cos(5πt-3π/4)cm. Quãng đường vật đi
từ thời điểm t
1
1/10(s) đến t
2
= 6s là:
A. 84,4cm B. 333,8cm C. 331,4cm D. 337,5cm
Câu 31: Một vật dao động điều hòa dọc theo trục Ox, quanh vị trí cân bằng O với biên độ A
và chu kỳ T. Trong khoảng thời gian T/4, quãng đường lớn nhất mà vật có thể đi được là :
A. A B.
2
A. C.
3
A. D. 1,5A.
Câu 32: Một vật dao động điều hòa với phương trình x = 4cos(4t + /3). Tính quãng
đường lớn nhất mà vật đi được trong khoảng thời gian t = 1/6 (s) :
A. 4
3
cm. B. 3
3
cm. C.
3
cm. D. 2
3
cm.
Câu 33: Một con lắc lò xo gồm một lò xo có độ cứng k 100N/m và vật có khối lượng
m=250g, dao động điều hoà với biên độ A6cm. Chọn gốc thời gian t 0 lúc vật qua
VTCB. Quãng đường vật đi được trong 10π (s) đầu tiên là:
A. 9m. B. 24m. C. 6m. D. 1m.
Câu 34: Một vật dao động điều hòa với phương trình x = 4cos(4t + /3). Tính quãng
đường bé nhất mà vật đi được trong khoảng thời gian t = 1/6 (s):
A. 4cm B. 1 cm C. 3
3
cm D. 2
3
cm