Sở Giáo dục - Đào tạo
thái bình
Kỳ thi tuyển sinh lớp 10 THPT Chuyên
Năm học 2010 - 2011
Môn thi: Toán
Thời gian làm bài: 120 phút
(không kể thời gian giao đề)
Bài 1. (2,5 điểm) Cho biểu thức:
x 7 x 3 2 x 1
A
x 5 x 6 x 2 x 3
+ +
= +
+
với x 0; x 4; x 9
a) Rút gọn A.
b) Tính giá trị của A khi
2
x 3 2
=
.
Bài 2. (2,0 điểm) Cho hai đờng thẳng:
(d
1
): y = (m 1)x m
2
2m
(d
2
): y = (m 2)x m
2
m + 1
cắt nhau tại G.
a) Xác định toạ độ điểm G.
b) Chứng tỏ rằng điểm G luôn thuộc một đờng thẳng cố định khi m thay đổi.
Bài 3. (1,5 điểm) Giải các phơng trình sau:
a)
2
1 1 1
0
1 1 1
x x x
=
+
+ +
b)
2
2
x
x 1
1
x
=
ữ
+
+
Bài 4. (3,5 điểm)
Cho điểm M thuộc nửa đờng tròn tâm O, đờng kính AB. Điểm C thuộc đoạn
OA. Trên nửa mặt phẳng bờ AB chứa điểm M kẻ tiếp tuyến Ax, By với đờng tròn.
Đờng thẳng qua M vuông góc với MC cắt Ax, By tại P, Q. Gọi E là giao điểm của
AM với CP, F là giao điểm của BM với CQ.
a) Chứng minh rằng:
+ Tứ giác APMC và tứ giác EMFC là tứ giác nội tiếp.
+ EF // AB.
b) Giả sử có EC.EP = FC.FQ. Chứng minh rằng: EC = FQ và EP = FC.
Bài 5. (0,5 điểm) Cho hai số thực x, y thoả mãn x
2
+ y
2
+ xy = 1.
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức B = x
2
xy + 2y
2
.
Hết
Họ và tên thí sinh:. Số báo danh:.
(với m là tham số)
đề chính thức