CHƯƠNG 4
7/11/2014 1THS. NGUYỄN HẢI SƠN - ĐHBK
§1: KHÁI NIỆM ÁNH XẠ TUYẾN TÍNH
1.1 Định nghĩa.
a.Định nghĩa. Cho V và W là 2 KGVT trên trường
K. Ánh xạ f :V→W là một ánh xạ tuyến tính nếu
thỏa mãn 2 tính chất:
(i ) f (u v) f (u) f (v)
(ii ) f (ku) kf (u)
với
u,v V , k K
+ Ánh xạ tuyến tính f :V→V gọi là toán tử tuyến
tính hay phép biến đổi tuyến tính trên V.
§1:
KHÁI NIỆM ÁNH XẠ TUYẾN TÍNH
b. Các ví dụ.
VD1. Ánh xạ không
là ánh xạ tuyến tính.
VD2. Ánh xạ đồng nhất
NX: Ta có thể gộp (i) và (ii) thành
(iii ) f (ku lv) kf (u) lf (v)
u,v V , k ,l K
với
W
Wf : V , f (v) , v V
V
V
Id : V V
v Id (v) v
là một toán tử tuyến tính.
§1:
KHÁI NIỆM ÁNH XẠ TUYẾN TÍNH
VD3. Ánh xạ đạo hàm
là ánh xạ tuyến tính.
[x] [x]
p
n n
D : P P
D( p) p'
1
Thật vậy, với ta có
( . . ) ( . . )' . ' . ' ( ) ( )D k f l g k f l g k f l g kD f lD g
, [x], k,l
n
f g P
§1:
KHÁI NIỆM ÁNH XẠ TUYẾN TÍNH
VD4. Ánh xạ
là ánh xạ tuyến tính.
f :
f (x ,x ,x ) (x x ,x x )
3 2
1 2 3 1 2 2 3
2
§1:
KHÁI NIỆM ÁNH XẠ TUYẾN TÍNH
Thật vậy, với
ta có
1 1 2 2 3 3
1 1 2 2 2 2 3 3
1 2 1 2 2 3 2 3
1 2 2 3 1 2 2 3
( ) ( , , )
(( ) 2( ),( ) ( ))
(( 2 ) ( 2 ),( ) ( ))
( 2 , ) ( 2 , )
( ) ( )
f x y f x y x y x y
x y x y x y x y
x x y y x x y y
x x x x y y y y
f x f y
3
1 2 3 1 2 3
( , , ), ( , , ) ,x x x x y y y y k
1 2 3 1 2 2 3
1 2 2 3 1 2 2 3
( ) ( , , ) ( 2 , )
( ( 2 ), ( )) ( 2 , )
( )
f kx f kx kx kx kx kx kx kx
k x x k x x k x x x x
kf x
§1:
KHÁI NIỆM ÁNH XẠ TUYẾN TÍNH
VD5. Với A là một ma trận cỡ mxn bất kì, ánh xạ
là ánh xạ tuyến tính.
AX
n p m p
f : M ( K ) M ( K )
X