Tải bản đầy đủ (.pdf) (26 trang)

hệ thống bài tập toán lớp 10 nâng cao

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (338.23 KB, 26 trang )

 



 !"#$%&'()* +!, %-'. ( /'!0 12(3-4&'* +!, !0
!5(64#$% !"!07$5(#84
 !" #
° 1% !"9:; <!, (<-% !"9*. 4
A

°=9!0' >
A
3-4
°=93-4' >
A
!0
$%&'()'*+(,-.,-.
#%&'()'/01
°=9!07$?!0' >9@A?#$% !"!0
°=9!07$?3-4' >9@A?#$% !"3-4
2(,-.,-./01
° !"9?!0=97$?!"!0 12(!=3-4
 ° !"9?3-4=9!07$?3-4 12(93-47$?!0
3"4#256""%78
, :
∀ ∃
#"4#25/01
278∀*#9∃
°B. 4∀C!6(#$7D4%64
°B. 4∃C!6(#$'E'84
" !" #""


°
A " x X,
= ∀ ∈
7D4%64F(G'. ( /'H
A " x X
⇒ = ∃ ∈
:'E'84F* (G'. ( /'H
°
B " x X
= ∃ ∈
:'E'84F(G'. ( /'H
B " x X
⇒ = ∀ ∈
:754%64F* (G'. ( /'H
:;<=>?0@AB@?:CD
!EF8%"GH8% 
-I, #JCKLBM

1!, #J9@A?-649#$!4"*4!<!N(G?:(O?#$!4"*4(P!N(G9
!EFI'8%"G*+ 
#!EFI'
4Q3R'-(G!, #J9@A?KM
-FS'% !"?@A9KTM

 
 !"KM#$!0K7>#$%&'!, #JM % !"!Q1KTM(G' N!0 12(3-4
 =% !"!Q1KTM#$!0' >% !"!Q1KTM64#$!, #J!Q1(<-% !"KM
28%"G*+ 
=!E' 4(G(Q!, #J' UKM7$!, #J!Q1KTM' >'-(G% !"!09?
V0(!G'-G4C9#$!4"*4(P7$!<!N(G?7$(WG4?#$!4"*4(P7$!<!N

(G9
$&J"4.JI"4.
4Q3R'-(P( %4 !, #J9@A?
°4Q3R
B
K'(#$4Q3R?3-4 12(* (G?M
°XY; S;3Z4C
1 2
B B B A
⇒ ⇒ ⇒ ⇒
K'[44Q' 4='M
°\!G3-(G?K'(#$?!0M
°]U9@A?!5(( %4 
K"L
°=!, #J!^(_; ['`4NZD4Z89@A?' >!, #J; ['`4NZD4Z8
B A


!5(64#$!, #J!Q1(<-!, #J'a
°-(G'. ( /'
A B B A
⇒ ⇔ ⇒

°]U:' -7>( %4 9@A?'-!4( %4 
B A


M>
M+a% !"; <!, 7$FS''. !03-4(<-% !"; <!, !GC
-I ^'4 

Tb
T
=+−
xx
(G 4%`I
T


( 4- ='( 1
(Icd( 4- ='( 1b
M+a% !"; <!, (<-%e4% !"3-C
-I
:
T
=∈∃
xRx
`I
:
T
+∈∀
nNn
* ( 4- ='( 1d
(I
MK:
T
−≠−∈∀
xxRx
M+$ ['`4N%e4% !"3-!)ZD4Z8% !"*S1' f1g=h' >hH
-I[((8 !i4`j -#$!4"*4!<!N%&''4[(#$ > `>  $ 
`I4"*4!<!N'k-l`AT#$(G.' /'%&'3i- -`#D ^

(I4"*4!<!N%&''4[(#$ > 7#$ -4!( S17G( -
M+3[(% !"3-!)!0 -3-4:4Q4' .( C
-I
2
x N, x
∀ ∈
( 4- ='( 1b@AF( 4- ='( 1b
`
2
x N, x
∀ ∈
( 4- ='( 1m@AF( 4- ='( 1m
$D=>:N?:OPD
(QJRJ
U; 5;#$%&'* [44%(^`Q(<-'1[ 6(
T
 
2S#""T"!(QJRJ
[( CV4'*a([(; P'R'1'U; 5;
]XC9@n:b:o::pc:ppq
[( TC r-'. ( /'!2('(<-'U; 5;
]XC9@nhhhhhhhhq
Là tập hợp khôpng có phần tử nào,kí hiệu là ∅
VJC∅@
{ } { }
.
≠ ∅
QJ"'
#
A B (x A x B)

⊂ ⇔ ∈ ⇒ ∈

°
A A.

° =
A B, B C thì A C
⊂ ⊂ ⊂
°
∅ ⊂ Α ; ∅ ⊂ Β ; . . .
2D QJRJ2U.#8
A B (A B vaø B A)
= ⇔ ⊂ ⊂
"MV8W=)-`4NZ4%&''U;(1`j s!4N%j%`a'1%&'!'O
* S;*.64#$`4N!E]f
=;9@n-:`:(q
3"J&J('(XY(QJRJ
#RJ" ##(QJRJ
K
x A B x A hay x B
∈ ∪ ⇔ ∈ ∈
K7"Z(
°
A
∪ ∅ = Α .
°
A A A.
∪ =
° 4-1 1[C
A B B A.

∪ = ∪
° B=' 5;C
A (B C) (A B) C (A C) B A B C.
∪ ∪ = ∪ ∪ = ∪ ∪ = ∪ ∪
2 #'" ##(U; 5;C
K
x A B (x A vaø x B)
∈ ∩ ⇔ ∈ ∈
K7"Z(
°
A
∩ ∅ = ∅ .
°
A A A.
∩ =
° 4-1 1[C
A B B A.
∩ = ∩
°B=' 5;C
A (B C) (A B) C (A C) B A B C.
∩ ∩ = ∩ ∩ = ∩ ∩ = ∩ ∩
"&JEZ[JG2\
K/0 B. 4#$C
B
A A
C hoaëc C B.
B
A
x C (x A vaø x B)
∈ ⇔ ∈ ∉

b
-
(
9
9∪?
9
?

?
9
?
9

B
A
B A A \ B C
=
K7"Z(

B A
x x
C C A B.
= =

A B
x x
B A C C .

]8" ##(QJRJ
KKLBM*. 4#$C9t?

x A \ B (x A vaứ x B)

K7"Z(

A \ A
=

A\ A
=

A B
= =
M>
M+^]4='([('U; 5;3-ZD4Z8#4'*a; P'RC
-
2
A {x N |x 7 vaứ x 10}.
= <
`
B {x N |x 15 vaứ x laứ boọi cuỷa 2}
=
(
C {x N | x 4 vaứ x laứ boọi cuỷa 3}
=
M+_]4='([('U; 5;3-ZD4Z8!2('C
-
A {0, 1, 4, 9,16, 25, 36}.
=
`
B {3, 5}

=
(
1 1 1 1 1
C 1, , , , ,
4 9 16 25 36

=


Z
1 1 1 1 1
D , , , ,
2 4 6 8 10

=


f
{ }
E (0, 2); (1, 3)
=
u v@
{ }
9, 36, 81,144

{ }
G 3, 9, 27, 81
=
M+`wS'x- `-1 $%4Wy([('U; 5;3-C
-

2
A {x | x 3x 2 0}
= + =
7$
B {x | x 2 0}.
= =
`
2
B {x | x 1 0}
= + =
7$
2
F {x | x 4 0}.
= =
(
G {2, 3}
=
7$@zT:b{
DM+a 1'U; 5;9@n-:`:(:Z:fq
-I9(G`-1 4a'U;(1|
`IG`-1 4a'U;(1(<-9( 0yb; P'R|
(IG`-1 4a'U;(1(<-9( - 4" /'d; P'R|
M+b>%9?}9?}9t?}?t9:`4='j
-I9@KT:lM}?@z:b{
`I9@K:d{}?@K:lM
(I9@nF~IFoq?@nF~ITFq
d
9
?
9t?

 
@>0cMd=>MeD
QJT"!" #+fgV$'>%'/'(Q([(4[',(<-F!N $%3i(G •-
‚LFC
-I
MK
MK
xf
xg
y
=
F[(!, * 47$( r* 4CuKFM7$KFM(YF[(!, 7$
MK

xf

`I
MK
T
xfy
n
=

l]D4#ƒ' >w@'U;F[(!, (<-uKFM
l]D4( „' >w#$C
MK

xf

(I

MK
MK
xf
xg
y
=
F[(!, * 47$( r* 4CKFMF[(!, 7$uKFMA
ZI
MKMK xgxfy
±=
F[(!, * 47$( r* 4C
MK

xf
7$
MK

xg

0h25(Y" #+fg 1 $%3iuF[(!, 'aB
$%3i!E`4='aB=
MKMK:}
TTT
xfxfxxKxx
<⇒<∈∀

$%3i ,( `4='aB=
MKMK:}
TTT
xfxfxxKxx

<⇒<∈∀
‚CNFS'3…`4=' 4a(<- $%3i:'-(P' …( 4C
i&((jfg
T
T
MKMK
xx
xfxf



l=K‚MA@AI3i!E`4=
l=K‚M•@AI3i ,( `4=
$+fg"kEl 1 $%3iuF[(!, 'aX
$%3i( „uKFM@uKFM 
$%3i#ƒuKFM@uKFM
‚"L
l$%3i( „ U'†('#$%'†(!i4F
l$%3i#ƒ Ui('18!&#$%')%!i4F
3+fg2Q"Z(
#+fg[m#Tn2
l=-A' > I3i!E`4=CKLBM
l=-•' > I3i ,( `4=CKLBM
2W(!+fg
baxy
+=

"*oG' N7‡!E' ,@-Fl`7$@-Fˆ`E4F1[!4 -4; P!' +j%
; ZD4'†( 1$  P(O#84#$!E' , $%3i!‰( 1
^+fg2Q"#

‚"2,p"%I'f(*+*o
lw[(!, !r (<-KM#$
lw[(!, '†(!i4F7$ D(<-KM
lw[(!, '18!&([(4-1!4N%(<-KM7D4'†('7$'†( 1$ K=(GMw[(!, 
' a%%&'3i!4N%(<-KM!N7‡( 1( . F[(
lVU;`Q`4=' 4a
l]‡!E' ,(<-KM
Š"LC
l=-A' >KM(G`"#‹%x-#a
l=-•' >KM(G`"#‹%x-Fi
o
 
M>
M+>%'U;F[(!, (<-([( $%3i3-C
-I
p
b
T

+
=
x
x
y
`I
MTMKbK
TMbK
−−
−−
=

xx
xx
y
(I
MMKbTK
bd
xx
xx
y
−−
−+−
=
ZI
boT

T
++
+
=
xx
x
y
fI
T
−−−=
xxy
M+B Q13['3…`4=' 4a7$7‡!E' , $%3iC
-I
b
+−=

xy
`I
T
−=
xy
(I
xzy T
−+=
ZI
b
T
+=
xy
fI
obT
T
−+−=
xxy
M+$wS''. ( „#ƒ(<-([( $%3i3-C
-I
bT
T
−+=
xxy
`I
x
y

=
(I

TT
++−=
xxy
M+3w[(!, -:`(<-!E' , I3i@-Fl`'1([(' 5;3-C
-I4x-9K}TM7$!4N%?KT}M
`I4x-9K}M7$3131'†(F
(I4x-KT}oM7$(G 3iG(`j:o
ZI4x-ŒKd}TM7$7G(7D4!' +
o
T

+

=
xy
M+^
>%`i $%3i`U( /'(G!E' ,#$`i!' +(•' -'84`i!r (<- > 7
 Ui(#$%')%!i4F:`4='%&'!r (<- > 7#$9Kb}M
M+_w[(!, KM

T
++=
bxaxy
'1([(' 5;3-C
-I4x- -4!4N%9K}TM7$?KT}M
`IG!r ŽK}M
(I•-K}dM7$(G'!&`j
M+`>%KM
cxaxy
+−=

d
T

-I4x-9K}TM7$?KT}bM
`IG 1$ !&!r #$b7$!4x-KT}M
@Oq=>OqD
Br@As
I*+2YE8QC
#,-.(Xt2Q"Z(#Tn2mu
l=


a
C; ^'> (G 4%Z /'
l=-@}


b
C; ^'> 7 4%
l=-@}`@C;'73i 4%
2,-.(Xt2Q"#

T
=++
cbxax

‚=-@C;''•' P ;'`U( /' K4Q4'^'… 'aM
‚=



a
C
l

<∆
C; ^'> 7 4%
l

=∆
C;'(G 4%*S; 
l

>∆
C;'(GT 4%; )`4'
a
b
x
T
∆−−
=
7$
a
b
x
T
∆+−
=
m
 
!EF=&(-43i

T
} xx
#$([( 4%(<-;'
T

ax bx c
+ + =
* 47$( r* 4' 1Q%‰
' (C
a
b
xx

=+
T
7$
a
c
xx
=
T


$(v8[*J(2Q"Z(*+2Q"# 
#,-.(Xt"4#w(X'.]Z8.(X!(8[(g
K;x.
MKMK xgxf
=

"Cl2'!I*C

MK

xf
l?> ; ^ -47=:4Q4'>% 4%
lB=' 5;!I*7$!--'U; 4a%(<-; ^'> 
"Cl



≥=
<−=
MKMKMK
MKMKMK
xfkhixgxf
xfkhixgxf

K;x.
MKMK xgxf
=




=
−=
MKMK
MKMK
xgxf
xgxf
2,-.(Xt]x.

MKMK xgxf
=
•@A


T
( )
( )
( ) ( )
g x
f x
f x g x






=

".I%"C 
l2'!*(G •-
l?> ; ^T7=4Q4'>% 4%
",-.(Xt"4#wyz8  
K".I
 l2'!I*%‘3i(G •-
 l•!E%‘3iE44Q4'>% 4%K( 0J!I*M
],-.(Xt(X\.J,-.
MK
Td

=++
cbxax
K".I 
 l2'
I
T
≥=
tkđxt

 l -'7$1;'KM4Q4'>%'@AF
KLF=".I2J(
MKMK xgxf

{
MKMK xgxf

{
MKMK xgxf
>
{
MKMK xgxf
<
*+
MKMK xgxf

{
MKMK xgxf

{
MKMK xgxf

>
{
MKMK xgxf
<
"|.(,-.(h.IJ,-.
(XtDj(#[}]Z8~m•(+]Z8~€{•{
≤≥
}
•
3J(2Q"##w
N4Q4 ;'`U( -4 -4’:'-' ZYC;;' =:;;(&:;;!2'’; †]4(( 6;;$1
(O'“' &(7$1([(; ^'> (†' N
M>
M+4Q47$`4#U;'C
-I
mxxm TT
T
+=+
`I
TMK
−+=−
mxmxm
(I
TcMK
T
=−+−
xxm
ZI
MbKT
T

=+++−
mxmmx
c
 
M+>%%!N;'3-(GT 4%'[4Z/
bMTKMK
T
=−+−++
mxmxm
M+$>%%!N`;'3-7 4%C
T
K TM TK M T m x m x m
− + + + >
M+3C 1;'%F
T
ˆTK%lTMFld%l€@, %!N; ^'> C
-IGT 4%; )`4'`IGT 4%'[4Z/
(IGT 4%!")%ZIGT 4%; )`4'' 1QC
o
T
T

T
−=+
xx

M+^ 1; ^'> 
bMKd
T
=+++−

mxmmx
-I, %!N; ^'> (GT 4%'[4Z/
`I, %!N; ^'> (G 4%$/;b#P 4%*4-
(I, %!N; ^'> (GT 4%3-1( 1C
b

T
=+
xx
M+_ 1; ^'> 
TTMbTK
TT
=++++−
mmxmx
-I, %!N; ^'> (GT 4%
T
} xx
' 1Q
T
Txx
=

`I4Q43R; ^'> (G -4 4%
T
} xx
‰'>% ' (#4a 4s-([( 4%!&(
#U;7D4' -%3i%
M+`4Q4([(;'7$([(`;'3-C
-I
dcT

=+−
xx
`I
pTc€
T
−=+−
xxx
 (I
Tob
Td
≤−+
xx

ZI
MbTMKcTK
T
>−−+
xxx
 fI
oT
+≤−
xx
uI
T

T


+
+

x
x
x
x
I
dbbTT
≥−−−
xx
I
xxxx bbMbKT
TT
+=−+
; I2'’; †
Cb
T
≥+=
tđkxxt
M+a>%([(4[',(<-F' ”-%‰%e4`;'3-
I

T
<

x
x
 TI
bTT
+<−
xx
bI

T T
 T
d d bx x x
<
− − +
dI
x
x
x
>

+


oMT T b b d x x
− − − ≥
b T
mM
T  Tx x

+ −
M+b4Q4 ;'7$`;'3-C
-I



=−
=+
T
md

TT
yx
yx
 `I



=++
=+++
o

TT
yxxy
yxyx
 (I



=+
=
T€
pm
TT
yx
yx
ZI



=−

=
oo
Td
TT
yx
yx
fI



=−
=−
xyx
yxy
bT
bT
T
T
uI



=+
=+
b
dT
TT
TT
yxyx
yx

I





+
<

−<+
o
b
d
bT
b

o
b
xx
x
x
x
I





+>+
+<

+
dpT€odT
ToT
T
b€
xx
x
x
€
 
@=Md‚ƒ=>MdOqD
Br@As
MZ(„.(4"
#M25}(,-.,-.
• ?4=!k4'^!^`!'' ((P(I%-%&'!4" 4N 4a
2M(…fC]D4 -43i-}`* )%' >C
ba
ba

T

+

X/g@HFQ--@`
KyX….]D43i* )%}'-(GC
n
n
n
aaa
n

aaa


T
T

+++
X/g@HFQ-* 47$( r* 4C
n
aaa
===

T
";\.M((tB{" #fg
• -43i* )%-7$`(G'k* !k4' >'.( -`!8'* 4-@`
• -43i* )%-7$`(G'.( * !k4' >'k-l`!8'V* 4-@`
;Z8" #!(4"2Q"Z(
-I, #JCKLBM
`I]U!†!, #J4Q4`;'C
l?;''.(
l?;'( -%‘
l?;'( -’'1Z/4[',''!i4
$;Z8" #(#(4"2Q"#
-I, #JCKLBM
`I]UZ†C
l?;'' ^'.(
l`;'`U( -4
‚
:
T

>++∈∀
cbxaxRx




>
<∆


a
‚
:
T
<++∈∀
cbxaxRx




<
<∆


a
M>
M+4.
-I
bbdd
abbaba

+≥+
`I
cabcabcba
++≥++
TTT
(I
abcaccbba €MMKMKK
≥+++
7D4
}}

cba

ZI
pM

MKK
>++++
cba
cba
7D4
}}
>
cba
p

fI
a
a
b

b
a
c
b
b
a
+++
T
T
T
T
7D4
}}
>
cba
M+C>%V7$(<- I3iK=(GM
-IuKFM@FKFM7D4


x
`IuKFM@TFKbFTM7D4
b
T


x
(I
T

MK

+
++=
x
xxf
7D4FAT
M+$wS'Z/`4N' (3-C
-I
( )
( )
( )
2
5 6 2 1
4 3
x x x
g x
x
+
=

`IuKFM@bFKTFlcMKpbFM
M+34Q4([(`;'3-C
-I
9
5
1
x
x
+
>


`I
3 47 4 47
3 1 2 1
x x
x x

>

(I
T
T

xxx
ZI
Tdb
T
++
xxx
@=cPD
Ă ÂĂÊÔ ƠƯĂĐă
âÊêôƠƯĂĐă
Ă ơÊ-đĂ ơÊ ƠƯĂĐă
ĂàêảãđđÊáƠƯĂĐă
M>
ƠđạằẳẵắạẵắƠẵắặầẩẫạấạƯậèạẫăẵẻẽẽéẹềẫểẻễẵạếắạệàẵìỉ
ầƠ
b b To To bo do d d bo do
bo To do b b b d b To do
do bo bo b d d d bo bo bo bo
ẫăặạĩệíĩịìẫầắòêỏẵõíĩịìẫ

ằăóọầồổƠ
1 ẳẵắổạỗẵằốẵ
1 ẳẵắổạỗẵằốẵặ
ẹăộẫờởẳẹềẫẹỗằăỡóọẵạồẵớợịớạùẵắồổìẵắẹềẫẹủẹầĩệạẵắ
ƠđạũầĩệẹúằẳẵắổạỗẵằốẵốẵặắạợổầổẵạùẫƠ
ạú Đạẳẵắ ốẵƯẵĩă ốẵặƯụĩă
zm}{ p Từ
T zp}p{ Tdddừ
b zpT}pd{ p dTTTừ
d zpo}pc{ m bbdừ
ửẵắ @do ừ
-M ữằĩứíựạòẵạẹỳốẵ ằăữằĩứíựạòẵạẹỳốẵặ
(M ữằĩứíựíùỷẵắắặổạẩẹốẵ ỹăữằĩứíựạòẵạởậ
ƠêíỳỹĩỳẹạĩĩờủọƯíỏẵõíỳỹĩầẹăẫạíùýẹũầĩệẫƠ
dd db dT ddo dp om oT obd ooo om omd ocT
ocd o oc o op op opb opd m mb mo mT


ẫă ỵẵạìẵắằòẵạỡìẵắõ
ằăảồổằẳẵắặẵắạợổầổắựầổĩíỳỹĩạẳẵắầƠẵạúíốĩẵầăẵạú
ạạẫĩầéă
i*a!4N%'1[(<-%&'#D;X!5(*='xQ3-C
4N% T b d o m c p
P3i T d b b c b p b T
ò ỵẵạíĩứìẵắằòẵạỡìẵắõíỳầệẹạẹạẵ
ĂẳẵầùýẵắầẩẫƯíỏẵõậăẹềẫạẫìỳẵắạỵẵắạĩệẹúẹẵắỹĩệẵỵẹạíùýẹìòẵạ
ằọìẵắằẳẵắốẵẫíỗọƠ
ĂẳẵầùýẵắƯớăT T TT Tb Td
ặẵƯẵă o m @d
ẫă òẳẵầùýẵắìẵắằòẵạẹềẫạẫìỳẵắ

ằă òổạùỏẵắẫĩíỳầệẹạẹạẵ

Ă
eDsÂÊ
ẫẵạệắĩẫíỳìẫíĩẫẵ


@


-Z: -Z@






ĩ


ểỡẻạòẻ



ỡẻìẫỹẵắùýẹầậĩẻìẫỹ

oc

c


do

?Q&!k43-~-Z7$5(#84(<-%&'3iG(' Z
1

b

do

m

p

T

bo

o



bm

~-Z4-
m

d

b


T

b
T

d
b

m
o



T
êỳỹĩ
l
ẹềẫẹẵắìẵẹúí

ìẫỹỡằủẵỵẵạơầ
l
@R

ĂíẹềẫẹủẹẹẵắìẵẹúíĩứíốàỡíĩứẹĩầƠí

T :AB k k Z

= +
:
ìẵắíú


ầíẹềẫỳẹẵắầùýẵắắĩủẹọẹúíĩứíốĩẵầàỡíĩứẹĩĩ
ắĩủìõĐẵắĩỳẹẵắ
ờĩờíằẵắíỳạòẫẹúƠí


bm :AB k k Z

= +
!êứằĩứỹĩẵẹẵắầùýẵắắĩủẹẹúí

ìẵíùỷẵắìẵầùýẵắắĩủẹỡẫẹạẵíĩứ
àƯẻăầíĩứíốẹềẫẹẵắòồọẫẹạễẹốẵớủẹíõẵạíĩứẹĩìẵíùỷẵắìẵầùýẵắ
ắĩủẹẫẹạẹẵắ

AM
ẹúí

AM

=
"ĩẹẵắầùýẵắắĩủẹ

CD
ẵắĩỳắúẹầùýẵắắĩủẹƯđỡăẵắùýẹầậĩĂí
ẹềẫẹẵắầùýẵắắĩủẹắúẹầùýẵắắĩủẹùỏẵắẵắầìẵắẵạẫ
M>
êửĩẹủẹíắúẹẫìẫíỳƠ
T b b T b
} }} } } }
b o p m T


êĩẹủẹíắúẹẫìẫìẫíĩẫẵƠể

}T

b

}

}o

}TT

b

}TTo

ỳẹẵắìẵẹúằủẵỵẵạẻẹ òíỳỹĩẹủẹẹẵắìẵíùỷẵắìẵíúẹúíƠ
-M
m

`MTo

(Md

ZMb


ìẵíùỷẵắìẵầùýẵắắĩủẹỡớủẹíõẵạẹủẹíĩứạủẹẵạẫằĩờìẵắẹẵắàẹú
ẹủẹíƠ

-Mk

`M
T
k

(M
T
K M
o
k k Z


ZM
K M
b T
k k Z

+

eDsÂÊ
D ìẵíùỷẵắìẵầùýẵắắĩủẹắẹàẹạẹẵắ

AM
ẹúí

AM
@

34


@
OK
@
M
y
} (13

@
M
OH x
=
'-

@
34
(13


K(13



M}(1'

@
(13
34



K
34


M
#$%&#'()*#&*+'#
]D4764

'-(GC
1 cos 1 hay cos 1





+
tg xaực ủũnh
2
k

cotg xaực ủũnh
k


,-#$%&#*.)/#01)/#'*2&#345)/#/6%&#&7#89)
34
T

l(13
T


@}
M:K(1'
34
(13

=



}
'-(1'@ (1'@

'-

} '-@

(1'

}
l'-
T
@

T
(13

} l(1'
T
@


T
34


!:;%#'<=# 345)/#/6%&#&>?#&%&#&@)/#0A6#)*?@B
vaứ -




= = = =
cos( ) cos ; sin( ) sin ; ( ) ; cot ( ) cot
tg tg g g
K'f!i4M
C-#D6%#'<=#345)/#/6%&#&>?#&%&#&@)/#8E#)*?@#F
vaứ -



= = = =
cos( ) cos ; sin( ) sin ; ( ) ; cot ( ) cot
tg tg g g
K0`YM
G-#D6%#'<=#345)/#/6%&#&>?#&%&#&@)/#*7)#HIJ#)*?@#

B
vaứ

+



+ = + = + = + =
cos( ) cos ; sin( ) sin ; ( ) ; cot ( ) cot
tg tg g g
Ưỏẵợ

'-:(1'M
K-#D6%#'<=#345)/#/6%&#&>?#&%&#&@)/#*7)#HIJ#)*?@#
T

B
vaứ
2


+



+ = + = + = + =
cos( ) sin ; sin( ) cos ; ( ) ; cot ( ) t
2 2 2 2
tg cotg g g
T

L-#D6%#'<=#345)/#/6%&#&>?#&%&#&@)/#M*N#)*?@#F
vaứ
2







= = = =
cos( ) sin ; sin( ) cos ; ( ) ; cot ( ) t
2 2 2 2
tg cotg g g
ÔƠƯĐăƯâêô

eDsÂÊ
O-#$P)/#'*2&#&Q)/R





+ = = +
+ = + =


cos( ) cos .cos sin .sin ; cos( ) cos .cos sin .sin
sin( ) sin .cos sin .cos ; sin( ) sin .cos sin .cos
tg +tg
tg( + ) = ; tg(
1 .
tg tg





+
tg tg
) =
1 .
tg tg
S-#$P)/#'*2&#)*T)#0P6R





=
= = =
=

2 2 2 2
2
sin2 2sin .cos
cos2 cos sin 2cos 1 1 2sin
2
2
1
tg
tg
tg
,-#$P)/#'*2&#*U#8V&R
T T T
(13 T (13T (13 T

(13 }34 }
T T (13T
tg



+
= = =
+
W-#$P)/#'*2&#86X)#0Y6#'(&*#'*Z)*#'Y)/R
[ ] [ ]
[ ]


= + + = +
= + +
1 1
cos .cos cos( ) cos( ) ; sin .sin cos( ) cos( )
2 2
1
sin .cos sin( ) sin( )
2
C-#$P)/#'*2&#86X)#0Y6#'Y)/#'*Z)*#'(&*R








+ +
+ = =
+ +
+ = =
+
+ = =
cos cos 2cos .cos ; cos cos 2sin .sin
2 2 2 2
sin sin 2sin .cos ; sin sin 2cos .sin
2 2 2 2
sin( ) sin(
;
cos cos
tg tg tg tg



)
cos cos
M>
-M 1(13F@
b
o

ẻé

FTc

ỵẵạĩẵớỡẫẵớỡẹớ
`M 1'-


@
b
d

b
T


< <
ỵẵạẹ

:34

:(13

b

(I 1
d
d
=

Cos
7D4


<<
T
.


T}T CosSin
ơẩắẵẹủẹằĩứạẹ
-M
T
T(13
34 (13
A
x x

=
+
`M
CosxSinx
CosxSinx
CosxSin
T
bb
+
+
+
=
(I


T
TT
T
Cot
CotTan

A
+
+
=
L-!G'. 4[',(<-`4N' (* 4



=
ỵẵạắĩủìõẹềẫằĩứạẹƠ
-M
(1' '-
(1' '-
A


+
=

ằĩờĩẵ

@
b
o



T

`M 1

'- b

=
ỵẵạ
T34 b(13
d34 o(13


+

}
b b
b34 T(13
o34 d(13



+
đạẵắĩẵạẹủẹíẵắạẹẫƠ
-M
34 (13 T
(13 34 34
x x
x x x
+
+ =
+
`M34
d
Fl(13

d
F@T34
T
F(13
T
F
(M
(13
'-
(13 34
x
x
x x
=
+
ZM34
m
Fl(13
m
F@b34
T
F(13
T
F
fI
xCos
xTan
xSin
xCos



=+
+
uI
TM
T
K
Tdd
=
xSinxSinxSin

đạẵắĩẵạìẵắƠ



+ = = + = = +
)sin cos 2 cos( ) 2 sin( ); b)sin cos 2 sin( ) 2 cos( )
4 4 4 4
a
ơ ẫăĩờẵíửĩạẵạửẵắằĩứạẹƠ
xxA b(13o(13
=
`D ỵẵạắĩủìõẹềẫằĩứạẹƠ
T
c
34
T
o
(13


=
B
-ĩờẵíửĩạẵạỵẹạằĩứạẹƠ
bF34TF3434
++=
xA
đ ỵẵạắĩủìõẹềẫẹủẹằĩứạẹ
-M
34 (13 (13 (13
Td Td T m
A

=
(M
( ) ( )

(13o 34o (13o 34oC
= +
`M
T
T(13 co B
=
ĐạẵắỹẵắằẳẵắầùýẵắắĩủẹỡỵẵạẹủẹắĩủìõẹềẫẹủẹằĩứạẹẫƠ
-M
T b
(13 (13 (13
c c c
P

= +

`M
T d m
(13 (13 (13
c c c
Q

= + +
ơẩắẵằĩứạẹƠ
d
 
-M
34 T 34
 (13 T (13
A
α α
α α
+
=
+ +
`M
T
T
d34
 (13
T
B
α
α
=


(M
 (13 34
 (13 34
α α
α α
+ −
− −
MqC
=±
1n#*&"(-,R".²E+"\.J,-.C=4[(<-( 03131 12('Y -
l?-!4N%9:?:; )`4'' + $* 47$( r* 47$(Y; ^
l-47S('^(Y; ^' >( 0(G' N(Y D 12(5( D
l-47S('^!5(64#$`j -=( 0(G(Y D7$(Y!&Z$4
l]S('^ˆ* #$7S('^(G!4N%!P7$!4N%(i4'Y -
1}.*+8" ##*&"(-
l 1b!4N%9:?:'YJ
-(GC•'•(`-!4N%C
AB
uuur
l
BC
uuur
@
AC
uuur
•'•('\C
AB
uuur
ˆ
AC

uuur
@
CB
uuur

l•'•( > `>  $ C=9?X#$ > `>  $ ' >
AB
uuur
l
AD
uuur
@
AC
uuur

lŽ#$'!4N%(<-!18' +9?
IA IB O
⇔ + =
uur uur ur

l#$'6')%(<-∆9?
GA GB GC O
⇔ + + =
uuur uuur uuur ur

$17"Z(" #*&"(-*p³(fg
l!4N%(<-!18' +CŽ#$'!4N%(<-!18' +9?
TMA MB MI
⇒ + =
uuur uuur uuur

:∀
l#$'6')%(<-∆9?
bMA MB MC MG
⇔ + + =
uuur uuur uuuur uuuur

l4"*4!N -47S('^(Y; ^C
a
r
7$
b
r
K
b

r
M(Y; ^⇔'E'84%&'3i*C
a kb
=
r r

31('x³
lV4a 4s-'18!&(<-!4N%7$'18!&(<-7S('^'1%2'; +
 1C9KF
9
}
9
M:?KF
?
}

?
M-(GC
AB
uuur
@KF
?
F
9
}
?

9
M
l18!&'!4N%(<-!18' +C 19KF
9
}
9
M:?KF
?
}
?
MB 4!G'18!&'!4N%
ŽKF
Ž
}
Ž
M(<-!18' +9?#$C
T
T
A B

I
A B
I
x x
x
y y
y
+

=



+

=


l18!&'6')%(<-'-%4[(C 19KF
9
}
9
M:?KF
?
}
?
M:KF

}


MB 4!G'18!&'6
')%KF

}

M(<-'-%4[(9?#$C
o
 
b
b
A B C
G
A B C
G
x x x
x
y y y
y
+ +

=



+ +

=




´=µ£¶ee=±=>ƒ;<D
1(X!E,R.."" #³(.S"2Z(%·(¸


5

€
17"*…,p." ##*&"(-D
n!.¹#
a
r
7$
b
r


r
:'-(GC
   13K-: Ma b a b c b
=
r r r r r r
nMV8(4"('x³" #(7"*…,p.( 1
a
r
@K-

}-
T
M:
b

r
@K`

}`
T
M
B .!GC
a b
r r
@-

`

l-
T
`
T
[\]
a
r
@K-

}-
T
M:
b
r
@K`

}`

T
M* [(

r
a
r
⊥
b
r
⇔-

`

l-
T
`
T
@
n³]+" #*&"(- 1
a
r
@K-

}-
T
MB 4!GC
T T
 T
a a a
= +

r
nS".º##*&"(-
a
r
@K-

}-
T
M:
b
r
@K`

}`
T
M
(13K
:a b
r r
M@


a b
a b
r r
r r
@
  T T
T T T T
 T  T

 
a b a b
a a b b
+
+ +
n'I."".º##V
 19KF
9
}
9
M:?KF
?
}
?
MB 4!GC9?@
T T
K M K M
B A B A
x x y y
− + −

M>
11%2'; +'18!&F:( 1b!4N%9K}bM:?KT}M:KT}oM
-M>%'18!&([(7S('^
AB
uuur
:
BC
uuur
:

CA
uuur
`M>%'18!&'!4N%Ž(<-!18' +97$'18!&'6')%(<-∆9?
(M>%'18!&!4N%X!N'(4[(9?X#$ > `>  $ 
11%2'; +'18!&F:( 19K}oM:?KT}bM:Ko}TM
-M %4 jb!4N%9:?:* ' + $
`M>%'18!&(<-7S('^
b Tx AB AC
= −
r uuur uuur

$1 1
a
r
@K}M:
b
r
@KT}M‰; )'.( 7S('^
c
r
@Kd}M' f1T7S('^
a
r
7$
b
r
31 1G(F:7D4(13F@

T
. 4[',(<-`4N' (@b34

T
F(13
T
F
^1 1∆!"9?(G(8 `j-. ([('.( 7 D
AB AC
uuur uuur
:
AC CB
uuur uuur
m
 
_1a%2'; +F:'. G(4s- -47S('^
a
r
:7$
b
r
'1([(' 5;3-C
-M
a
r
@KT}bM:
b
r
@Km}dM
`M
a
r
@Kb}TM:

b
r
@Ko}M
`1 1'-%4[(!"9?(8 `j-. !&Z$4(<-([(7S('^C

AB
uuur
l
BC
uuur
7$
AB
uuur

BC
uuur

a %4 j!i47D4'4[(9?X`/'*“'-#(GC
-M
AB
uuur
l
BC
uuur
l
CD
uuur
l
DA
uuur

@
O
ur
`M
AB
uuur

AD
uuur
@
CB
uuur

CD
uuur

^ %4 j
AB
uuur
@
CD
uuur
⇔'!4N%(<-!18' +9X7$?'Y -
_ 1 -4!4N%; )`4'97$?>%B3-1( 1
b
KA
uuur
lT
KB
uuur

@
O
ur
 1
U
ur
@

T
i
r
o
j
r
:
V
ur
@%
i
r
d
j
r
>%%!N
U
ur
7$
V
ur
(Y; ^

 1
a
r
@Kb}TM:
b
r
@Kd}oM:
c
r
@Km}M
-M>%'18!&(<-7S('^
U
ur
@b
a
r
lT
b
r
d
c
r
`M>%'18!&7S('^
x
r
l
a
r
@
b

r

c
r
(M>%([(3i*7$ 3-1( 1
c
r
@*
a
r
l
b
r
  1m!4N%:::•:~:L`/'*“ %4 j
MP
uuur
l
NQ
uuur
l
RS
uuur
@
MS
uuur
l
NP
uuur
l
RQ

uuur
!1%2'; +'18!&F:( 19Ko}TM:?Ko}bM:Kb}bM
-M>%'18!&([(7S('^
AB
uuur
:
BC
uuur
:
CA
uuur
`M>%'18!&'!4N%Ž(<-!18' +?7$'18!&'6')%(<-'-%4[(
9?
(M>%'18!&!4N%X!N'4[(9?X#$ > `>  $ 
" 1b!4N%9K}oM:?Ko}oM:K}M
-M %4 jb!4N%9:?:* ' + $
`M>%'18!&7S('^
U
ur
@T
AB
uuur

AC
uuur
` 1
a
r
@Kb}dM:
b

r
@K}TM )'.( 7S('^
c
r
@K}bM' f1 -47S('^
a
r
7$
b
r
a 1G(F:7D434F@

T
. 4[',(<-`4N' (@b34
T
Fl(13
T
F
ba%2'; +F:'. G(4s- -47S('^
a
r
7$
b
r
'1([(' 5;3-
-M
a
r
@Kb}TM:
b

r
@Ko}M
`M
a
r
@KT}T
b
M:
b
r
@Kb}
b
M
(M
a
r
@Kd}bM:
b
r
@K}cM
c
 
^a%2'; +'18!&F( 1d!4N%9Kc}bM:?K€}dM:K}oM:XK}TM 
%4 j'4[(9?X#$ > 7

{ƒBO?e:6»e:D
Š ‰•¼¨‰¦½‰¾¦¿¨‰ÀÁÂÃĉ¾ÅªÃĉ¾ÆljĈ¼¨Ž‰
 1'-%4[(9?(G?@-:9@`:9?@(:''=9@
a
m

:?@
b
m
:
@
c
m
K!EF"'f
CosAcbcba T
TTT
−+=
CosBacacb T
TTT
−+=
CosCabbac T
TTT
−+=
‘½‰ÈÉÊŽ
cb
acb
CosA
T
TTT
−+
=

ac
bac
CosB
T

TTT
−+
=
T
TTT
ba
cba
CosC
−+
=
K!EFf
C
c
B
b
A
a
343434
==
@T~
K7D4~#$`[*. !'O184'4=;'-%4[(9?M
D³]+,Ë.(X8.(8[5" #(#."
d
MKT
dT
TTTTTT
T
acbacb
m
a

−+
=−
+
=
}
d
MKT
dT
TTTTTT
T
bcabca
m
b
−+
=−
+
=
d
MKT
dT
TTTTTT
T
cabcab
m
c
−+
=−
+
=
 

$D""….(4"(7](7"(#."
‚
cba
hchbhaS 
T


T


T

===
‚
L@
T

-`34@
T

`(349@
T

-(34?
‚L@
R
abc
d
 ‚L@;
‚L@

MMKMKK cpbpapp
−−−
7D4;@
T

K-l`l(M
M>
†‡ˆ‰ŠŽ 19?(G(@bo:`@T:

m
=∠
A
.  -}~}
†‡ˆ‰‰‹C 19?(G9?@:9@d7$

m
=∠
A
. ( 74(<-9?:'. '-
†‡ˆ‰‰ŒC 19?(G

m
=∠
A
:(8 9@€(%:(8 9?@o(%
-M. ? `M. Z4'.( 9? (MwS'Ff%G(?'Y - 6|
ZM. !&Z$4!(-19 fM. ~
†‡ˆ‰‰•C19?:`4='-ˆ`@:

b

=∠
A
:
T
=
c
h
. L4?
†‡ˆ‰‰•Ž 19?(G-@b(%:`@d(%:(@o(%
-M. Z4'.( 9? `MG(?'Y - 6|. ?
€

(M. `[ *. ~: ZM. !&Z$4!''=
T
=
b
m
ơ 19?(G?@T:9@b:''=9@. Z4'.( 9?|.
G(?|
-C 19?(Gb(8 p}o}7$c. ([(G((<-'-%4[(|. * 1Q([( '\9
!=?
đC %4 j'19?#(G(' (
19?
-M %4 jCL4?@L4K9lM
`M 1

m
=
A
:


co
=
B
:9?@T:. ([((8 (O#84(<-9?
19?(G#$'6')%64-@?:`@9:(@9?
%4 jC
MK
b

TTTTTT
cbaGCGBGA
++=++
-%4[(9?(G?@-:9@`:9?@( %4 jC
-@`(13l((1`?
Oqè
D,-.(Xt(#fg" #,ậ.(.



+=
+=
T

tuyy
tuxx
7D4K

} yx
M7$

M}K
T
uuu
=

#$7f('^( r; ^K]M
D,-.(Xt(}.v8(" #,ậ.(.
MKMK

=+
yybxxa
--Fl`l(@
K7D4(@-

x
`

y
7$-
T
l`
T
M '1!GK

} yx
M7$
M}K ban
=

#$7f('^; [;

'=K]M
K,-.(Xt,ậ.(."(#(Xẻ"(#'84 -4!4N%9K-}M7$?K}`M#$C

=+
b
y
a
x

K,-.(Xt,ậ.(.v8#V/

} yx
1"Sfg.S"(GZ8C


y
@KF

x
M
$D'I.""(áV/

} yx
15,ậ.(.-Fl`l(@!5('.
' f1(' (C
TT

M}K

ba

cybxa
d
M
+
++
=

3D=!(X7(,-.g" ##,ậ.(.
'
CMK

=++
cybxa
7$
CMK
TTTT
=++
cybxa
l


('
T



T T
a b
a b


ẫíỳắĩẫíĩứẹềẫ



T

ầẵắạĩệẹềẫ
p

ạệ

T T T
@
@
a x b y c
a x b y c
+ +


+ +

l



T



T T T

a b c
a b c
=
}
l



T



T T T
a b c
a b c
= =
K7D4
T
a
:
T
b
:
T
c
* [(M
ẽƠ
éẹềắểƯễắếƯệìắƯỉ
VU;; ^'> ' -%3i7$'kx['(<-!' +K


M`4='C
-IK

Mx-KT}bM7$(G]
n
r
@Ko}M
`IK

Mx-KT}dM7$(G]
Kb}dMu
=
r
VU;; ^'> !' +K

M`4='CK

Mx-KT}dM7$(G 3iG(
*@T
1T!4N%9Kb}M7$?K}TM]4='; ^'> !' +9?
1b!4N%9Kd}M:?K}TM:Kb}M
-I]4=';'([(!' +9?:?:9
`I64#$'!4N%(<-?]4=';'' -%3i(<-!' +9
(I]4='; ^'> !' +!4x-!4N%97$')%!'O184'4=;

]4='; ^'> !' +Z!4x-4-1!4N%(<- -4!' +Z

:Z
T
(G

ổạùỏẵắìòẵạầốẵầùýầƠẻểớọẻẻỡẻẽớẻẻọẽíĩứƯẻẻă
ơVU;; ^'> !' +K

M`4='CK

Mx-9K}TM7$31317D4!
' +Flb@
- 1`4=''!4N%`-(8 (<-%&''-%4[(#$

KT}M}
T
Ko}bM}

b
Kb}dMVU;; ^'> `-(8 (<-'-%4[(!G
đ ìẵắổạẵắẫíỳẹạẫắĩủẹĩƯẻẻăầìẵắíĩứẹềẫỳẹậẵạỡạẫĩ
ẹậẵạĩẫẹúổạùỏẵắìòẵạầƠớọỡớọể ủẹíõẵạẫíỳẹủẹíễẵạẹềẫẫ
4[(
VU;; ^'> (<-!' +KXM'1([(' 5;3-C
-IKZMx-K}TM7$7G(7D4!'

CbFl@
`IKZMx-i('6-!&7$7G(7D4!'
T o

x t
y t
=



= +

1'-%4[(9?(G!r 9KT}TM
-IVU;; ^'> ([((8 (<-'-%4[(`4='([(!(-1*'\?7$#P#5'(G
; ^'> CpFbd@7$FlT@
`MVU;; ^'> !' +x-97$7G(9
éẹƯẫệăẳăĩẹểƯễắếƯệìắƯỉ
đạíùỷẵắạẵắƯỹăƠ
b T

x t
y t
= +


=

ỡầạẫóọĩờổởẹềẫỹ
ĩờổạùỏẵắìòẵạạẫẹềẫíùỷẵắạẵắƠớểọẻ
T

ĩờổạùỏẵắìòẵạửẵắởủỡạẫỡẹạỵẵạ!ẹƯẵờẹúăẹềẫẹủẹì"ẹẫíỳ
ĩờổạùỏẵắìòẵạạẫẹềẫẹủẹíùỷẵắạẵắọểớ
éẹíắịắễệòặƯặệìắƯỉ
ợõìỵùỏẵắíĩẹềẫĩẹổíùỷẵắạẵắẫƠ
-IKZ

ăƠớọƯỹ
T
MCFlb@

`MKZ

ăƠểớọƯỹ
T
MCmFdc@
(MKZ

MC
o
T d
x t
y t
=


= +

Ưỹ
T
MC
m o
T d
x t
y t
= +


=

ZMKZ


ăƠéớẻọẻƯỹ
T
MC
m o
m d
x t
y t
= +


=

éẹỏăõóƯêấăẳăƯ
ỵẵạắúẹắĩẫạẫĩíùỷẵắạẵắ
-IKZ

ăƠớọƯỹ
T
MCFlb@
`MKZ

ăéớẻọẻƯỹ
T
MC
m o
m d
x t
y t
= +



=

(MKZ

ăƠớọƯỹ
T
MCTFlm@
đạíĩứƯẻăíùỷẵắạẵắƯỹăƠớọểĩờổạùỏẵắìòẵạíùỷẵắạẵắ
Ưỹ#ăíĩởẫạýổĩƯỹăỳắúẹ


ĩờổíùỷẵắạẵắíĩởẫắẹẫíỳậĩíớỳắúẹ


ĩờổíùỷẵắạẵắíĩƯẻẻăậĩíọỳắúẹ


êĩứàƯăầíễẵạẹềẫẫắĩủẹàđđủẹíùỷẵắẹẫẹềẫẫắĩủẹ$ếíễẵạỡđ
ẵìẵẹủẹíùỷẵắạẵắẹúẹủẹổùỏẵắẵắầƠẽớểọỡ
ớọĩờổíùỷẵắạẵắởẫàậĩàđỳắúẹ


ơ 1T!4N%KT}oM7$Ko}M]4='; ^'> !' +KZM!4x-7$([(
!4N%%&'* 1Q`jb
-]4='; ^'> !' +Z!4x-i('6-!&7$([( !4N%K}TM%&'* 1Q
`jT
đ]4='; ^'> !' +31
T

7$([( !"T!' +FlTb@7$Fl
Tlc@
]4=';'!' +7G(7D4!' +ZCbFd@7$([( !4N%
KT}M%&'* 1Q`jb
đạíùỷẵắạẵắƯ

ăƠớọẻíĩứƯẻă
ẫèĩờổạùỏẵắìòẵạíùỷẵắạẵắƯ

#ăíĩởẫẵắắúẹĩƯ

M
ằè òẫíỳạòẵạẹạĩờẹềẫìẵƯ

M
ẹè òíĩứ#íĩớẵắĩởẫƯ

M
ọồổỗ
D,-.(Xt,ậ.(Xố(ộ/#{212%7O"S]x.C
TTT
MKMKCMK RbyaxC
+
KM
-
TT
TT
=++
cbyaxyx
KTM

7D4
TTT
Rbac
+=

T

]D4!4"*4

TT
>+
cba
' >; ^'>
TT
TT
=++
cbyaxyx
#$; ^'>
!'O')%K-}`M`[*. ~
'OKM(G')%K-}`M7$`[*. ~'4=;F0(7D4!' +
7D4CFll@* 47$( r* 4C
R
ba
cybxa
d
M
=
+
++
=


TT

M}K


ẹ!Ưđă

ZK}M~
ạẵắẹúíĩứẹạẵắĩƯđă

ZK}MA~
ĩờổớẩẹĩƯđă

ZK}M@~
ẽƠ
éẹƯờĩẹểắệìắở ếầắỡầõớẳóịƯăợặệìắở
,-.JJ
"l-; ^'> 7"Z8F
T
l
T
T-FT`l(@
lB4N%'-!4"*4-
T
l`
T
(A-Z=*='#U
"l-; ^'> 7"Z8KF-M
T

lK`M
T
@%
l=%A' >; ^'> 'a#$; ^'> !'O
ìẵắẹủẹổạùỏẵắìòẵạẫỡổạùỏẵắìòẵạẵằĩứỹĩẵíùỷẵắìẵ òỗằủẵ
ỵẵạẵờẹúƠ
-MF
T
lb
T
mFll@ `MTF
T
lT
T
dFlT@
(MKFoM
T
lKlcM
T
@o ZMF
T
l
T
ldFllo@
đạổạùỏẵắìòẵạớ
T
l
T
ớƯẻăọƯẻăỡầạẫ
ẫèĩắĩủìõẵẹềẫạòƯẻăầổạùỏẵắìòẵạíùỷẵắìẵ

ằèờƯẻăầíùỷẵắìẵạóọòẫíỳỗằủẵỵẵạẹềẫíùỷẵắìẵạ%
éẹờểểƯễắếƯệìắở
ĩờổạùỏẵắìòẵạíùỷẵắìẵìẵắẹủẹìùỷẵắạýổẫƠ
ẫă ỗƯểăẹúằủẵỵẵạ ằă ỗƯểăíĩởẫắẹẫíỳ
ẹăêùỷẵắỵẵạầàĩàƯẻẻăƯă ỹă ỗƯẻểăíĩởẫíĩứàƯểẻă
ĩờổạùỏẵắìòẵạíùỷẵắìẵíĩởẫểíĩứàƯăƯẻăđƯểẻă
ĩờổạùỏẵắìòẵạíùỷẵắìẵẵắậĩĩờổẫắĩủẹàđĩàƯăƯểăđƯ
M

-MĩờổíùỷẵắìẵỗƯẻăĩờổớẩẹĩíùỷẵắạẵắƯỹăƠớọ
ằèĩờổíùỷẵắìẵỗƯểẻăĩờổớẩẹĩíùỷẵắạẵắƯỹăƠểớọ
òẫíỳắĩẫíĩứẹềẫíùỷẵắạẵắ
MKMK Cv

`4='C

x 1 2t
:
y 2 t
= +



= +

KMCKFM
T
lKTM
T
@m

ơĩờổạùỏẵắìòẵạíùỷẵắìẵíĩởẫàƯẻăỡƯẻăẹúằủẵỵẵạơẻ
-đạƯăĩờổíùỷẵắìẵỗĩờổớẩẹĩƯỹăƠớọ
TT

éẹờểểƯễắếƯắềểắẫề
ảồổổạùỏẵắìòẵạĩờổọờẵĩíùỷẵắìẵƯđăƠ
T T
K M K TM bmx y
+ + =
ậĩíĩứ
1
Kd}
ăạỳẹíùỷẵắìẵ
ĩờổạùỏẵắìòẵạĩờổọờẵĩíùỷẵắìẵƯđăƠ
T T
K TM K M bx y
+ =
ậĩíĩứ
ạỳẹíùỷẵắìẵẹúạẵạíỳằẵắớ
1
@T
ĩờổạùỏẵắìòẵạĩờổọờẵĩíùỷẵắìẵƯđăƠ
T T
T T b x y x y
+ + + =
íĩởẫ
íĩứƯểă
ĩờổạùỏẵắìòẵạĩờổọờẵẹềẫíùỷẵắìẵƯđăƠ
T T
K dM dx y

+ =
$ếắẹẫíỳ
đạíùỷẵắìẵƯđăƠ
T T
T m o x y x y
+ + + =
íùỷẵắạẵắƯỹăƠớọẻĩờ
ổạùỏẵắìòẵạĩờổọờẵƯ

ăằĩờ

èèỹ òẫíỳĩờổíĩứ
ơđạíùỷẵắìẵƯđăƠ
T T
K M K TM x y
+ =
ĩờổạùỏẵắìòẵạĩờổọờẵĩ
ƯđăỡằĩờìẵắĩờổọờẵíúèèỹẹúổạùỏẵắìòẵạƠớọ
-ĩờổạùỏẵắìòẵạĩờổọờẵĩíùỷẵắìẵƯđăƠ
T T
ox y
+ =
ỡằĩờìẵắĩờổọờẵíú
ẵắắúẹĩíùỷẵắạẵắớọ
đđạíùỷẵắìẵƯđăƠ
T T
m T m x y x y
+ + + =
íĩứàƯẻểă
ẫèđạẵắĩẵạìẵắàẵẵắĩíùỷẵắìẵ

ằăĩờổĩờổọờẵẹềẫƯđă$ếà
(I]4=';''4=;'=(<-KM`4=''4=;'=7G(7D4!' +KZMC
7D4KZMCbFdl@
ĩờổíùỷẵắìẵƯđăíĩởẫíĩứàƯẻỡăĩờổớẩẹĩíƠ
KZ

ăƠớọƯỹ
T
MCFllT@
ọồùƠ
ìẵắổạẵắớọẹạíĩứ&

K(}M:v
T
Ưẹă&

v
T
@T-
Ưẫ'ẹ'ỡẫẹẵă(ầĩổƯ(ăầồổạýổẹủẹíĩứƠ&

lv
T
@T-
-KM@
T
n I T qM F M F M a
+ =
S-#c*47)/#'<d)*#&*()*#'e&#&>?#f36M#Fgh#3ZR#
T T

T T

x y
a b
+ =
K-
T
@`
T
l(
T
M
,-#$%&#'*Z)*#M*i)#&>?#f36M#Fgh#3ZR
ẫĩĩíĩứƠ&

K(}M:v
T
K(}M ẵíễẵạƠà

K-}M:9
T
K-}M:?

K`}M:
?
T
K`}M
êỳỹĩì"ẹầẵƠà

9

T
@T` êỳỹĩì"ẹẵạ)Ơ

?
T
@T`
ĩẹộ&

v
T
@T(
W-#jd)*#kU)/#&>?#f36M#Fghl
*Ư(ăẹúì"ẹíĩớẵắầớỡọẹúỗíĩớẵắầắẹẫíỳ
Tb

*ĩíĩứẹềẫƯ(ăẵắậĩìếíễẵạíịẵìẵắạòẵạẹạẵạồẹúỵẹạạẹẫằắĩĩ
ạậẵằỉĩẹủẹíùỷẵắạẵắớ

-:@

ằòẵạẹạẵạồíúắĩầạòẵạẹạẵạồẹỏỉẹềẫ
f#4;
ẽƠ
éẹẳăệíƯăẳăềẫắòăợặủể
òíỳỹĩẹủẹì"ẹỡẫíỳẹủẹĩíĩứỡẹủẹíễẵạẹềẫƯ(ăẹúẹủẹổạùỏẵắìòẵạẫƠ
-M
T T
c m Tx y
+ =
`M

T T
d p mx y
+ =

(M
T T
d x y
+ =
ZM
T T
K : Mmx ny n m m n
+ = > >
đạƯ(ăẹúổạùỏẵắìòẵạ
T T

d
x y
+ =
ẫè òẫíỳĩíĩứỡẹủẹíễẵạỡíỳỹĩì"ẹầẵì"ẹẵạ)ẹềẫƯ(ă
ằè òìẵƯ(ăẵạẵắíĩứẫẹạẵạòẵíậẵạẵắẵĩạẫĩĩíĩứỹùĩỳắúẹ
7
đạƯ(ăẹúổạùỏẵắìòẵạ
T T

To p
x y
+ =
óọĩờổạùỏẵắìòẵạíùỷẵắìẵƯđăẹúíùỷẵắ
ỵẵạ&


v
T
ìẵắíú&

&
T
ầĩíĩứẹềẫƯ(ă
òĩíĩứẹềẫ%ầĩổƯ(ăƠ
T T T T
(13 34 Kdo p Mx y

+ = < <
mU)/#SR#nVM#M*47)/#'<d)*#&>?
op
Ơảồổổạùỏẵắìòẵạẹạỵẵạ!ẹẹềẫ%ầĩổƯ(ăằĩờƠ
ẫèỳíễẵạìẵì"ẹầẵầàƯ+ăỳĩíĩứ&Ư+
T
}M
ằèẫĩíễẵạìẵì"ẹầẵầƯ
b
T}
o
M:
T b
K }
o

M
ảồổổạùỏẵắìòẵạẹạỵẵạ!ẹẹềẫ%ầĩổƯ(ăằĩờƠ
ẫèạùỏẵắìòẵạẹủẹẹậẵạẹềẫạòẵạẹạẵạồẹỏỉầ

d:@ bx
=
ằèêĩởẫíĩứ
Kd} bMM

KT T} bMN

ẹă ĩíĩứ&

Ư+ăễ
T
b
c
a
=
ảồổổạùỏẵắìòẵạẹạỵẵạ!ẹẹềẫ%ầĩổƯ(ăằĩờƠ
ẫè ĩẹộằẵắỡễ
b
o
c
a
=
ằăêĩởẫíĩứ
b d
K } M
o o
M


v


v
T
ẵắậĩ
ẹèẫĩĩíĩứ&

Ưă&
T
Ưẻẻăỡíỳỹĩì"ẹầẵằẵắ
mU)/#,R#q6rJ#s#k6#0Q)/#'<t)#JQ'
op
đạƯ(ăẹúổạùỏẵắìòẵạ
T T

m b
x y
+ =
òẵạẵắíĩứìẵ%ầĩổẹủẹạíịíĩứàƯẻ
ăƯ+ă
Td

đạƯ(ăẹúổạùỏẵắìòẵạ
T T

m
x y
+ =
íùỷẵắạẵắỹƠọớ òẵạẵắíĩứìẵ
Ư(ăẫẹạạẳẵắẹủẹạếíĩứíúíờẵỹằẵắ
b


ảồổổạùỏẵắìòẵạẹạỵẵạ!ẹẹềẫ%ầĩổƯ(ăằĩờƠ
ẫă ĩẹộằẵắỡễ
ằăêĩởẫíĩứ&ẻ&ẵắậĩ
ẹèẫĩĩíĩứ&ẻ,Ưă&Ưẻẻăỡíỳỹĩì"ẹầẵằẵắ
èAM?B
ìẵắổạẵắớọẹạíĩứ&

K(}M:v
T
Ưẹă&

v
T
@T-* !k4
Ưẹ'ẫ'ăọổ%ằầƯăầồổạýổẹủẹíĩứƠ&

v
T
@T-
-
{ }
aMFMFMH TIMK
T
==
D,-.(Xt"7("" #[J)2'EC
CMK
T
T
T

T
=
b
y
a
x
H
7D4
TTT
bac
+=
ẳăắƯƯểƯũăợặểủớêÔô
ẫĩĩíĩứƠ&

K(}M:v
T
K(}M ẫĩíễẵạƠà

K-}M:9
T
K-}M
êỳỹĩì"ẹạộẹƠà

9
T
@T- êỳỹĩì"ẹẳƠ

?
T
@T`

ĩẹộ&

v
T
@T( )%3-4
a
c
e
=
-4!'4%(UC
x
a
b
y
=
èeOeM?B
ìẵắổạẵắớọẹạíĩứ
M}
T
K
p
F
íùỷẵắạẵắ
MK
T
CMK
>

=
p

p
x


{ }
M}KIMK
==
MdMFMP
D,-.(Xt"7("" ##X#2'EC
xpyP TCMK
T
=

ẳăắƯƯểƯũăợặểủớêÔô
ẫĩĩíĩứƠ
M}
T
K
p
F
(
T
C
p
x

=
M>
M+VU;; ^'> ( . '((<-;f`1#KM'1([(' 5;3-C
To

×