Tải bản đầy đủ (.pdf) (5 trang)

Giáo trình phân tích quy trình nghiên cứu giai đoạn tăng lãi suất thời gian tích lũy p5 pot

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.19 MB, 5 trang )

Lợi tức được vốn hoá : m = = 10 lần
Giá trị tích luỹ thu được sau 30 tháng sẽ là :

Ví dụ :
Một người cần đầu tư một khoản vốn gốc ban đầu là bao nhiêu để nhận
được một giá trị tích luỹ sau 3 năm là 5.000.000 VND. Biết rằng đầu tư này đem
lại lãi suất danh nghĩa là 10%, vốn hoá 2 lần/năm.
Giải :
i
(2)
= 10%
Lợi tức được vốn hoá : m = 3 x 2 = 6 lần
Vốn gốc cần đầu tư ban đầu là A(t)
-1

Ta có :
A(t)
-1
x (1 + )
6
= 5.000.000 VND

1.7. Lãi suất chiết khấu danh nghĩa
Tương tự lãi suất danh nghĩa, ta cũng có khái niệm lãi suất chiết khấu
danh nghĩa d
(m)
. Trong trường hợp này, mỗi kỳ được chia làm m kỳ nhỏ và lãi
suất chiết khấu áp dụng đối với mỗi kỳ nhỏ là .
Ta có thể xác định lãi suất chiết khấu hiệu dụng d tương ứng với lãi suất
chiết khấu danh nghĩa là d
(m)


qua phương trình sau :

Đây chính là giá trị hiện tại của 1VND sau một kỳ. Từ đó, suy ra :



Tóm tắt chương :
Các nội dung chính :
Lợi tức: được xem xét dưới hai góc độ:
- Ở góc độ người cho vay hay nhà đầu tư vốn, lợi tức là số tiền tăng thêm
trên số vốn đầu tư ban đầu trong một khoảng thời gian nhất định.
- Ở góc độ người đi vay hay người sử dụng vốn, lợi tức là số tiền mà người
đi vay phải trả cho người cho vay (là người chủ sở hữu vốn) để được sử dụng
vốn trong một thời gian nhất định.
Tỷ suất lợi tức (lãi suất) : tỷ số giữa lợi tức thu được (phải trả) so với vốn đầu
tư (vốn vay) trong một đơn vị thời gian.


Đơn vị thời gian là năm (trừ trường hợp cụ thể khác)
Hàm vốn hoá a(t): hàm số cho biết số tiền nhận được từ 1 đơn vị tiền tệ đầu tư
ban đầu sau một khoảng thời gian nhất định. Có thể có các dạng :
a(t) = 1 + i.t (i>0)
a(t) = (1 + i)
t
(i>0)
a(t) = (1+i.[t])
a(t) = (1+i)
[t]

Trong đó : i : lãi suất

t: thời gian đầu tư
[t]:phần nguyên của t.
Hàm tích lũy vốn A(t): giá trị tích luỹ từ khoảng đầu tư ban đầu k (k>0) sau t
kỳ:A(t) = k.a(t)
Lợi tức của kỳ thứ n: I
n
= A(n) – A(n-1)
Trong đó: A(n) và A(n-1) lần lượt là các giá trị tích luỹ vốn sau n và (n – 1)
kỳ.
Lãi suất hiệu dụng của kỳ thứ n, i
n
:

hay
Lãi đơn (Simple Interest): Phương thức tính lãi theo lãi đơn là phương thức
tính toán mà tiền lãi sau mỗi kỳ không được nhập vào vốn để tính lãi cho kỳ sau.
Tiền lãi của mỗi kỳ đều được tính theo vốn gốc ban đầu và đều bằng nhau.
Hàm vốn hoá: a(t) = 1+ i.t (t 0)
Trong đó : i: lãi suất đơn.
Hàm tích lũy vốn : A(t) = k.a(t) = k(1+ i.t)
Lợi tức của mỗi kỳ: I = k.i
Trường hợp thời gian đầu tư được tính chính xác theo ngày, lợi tức đơn
được tính bằng công thức:
Trong đó: n: thời gian đầu tư
N: số ngày trong năm
Lãi kép (Compound Interest): Phương thức tính theo lãi kép là phương thức
tính toán mà tiền lãi sau mỗi kỳ được nhập vào vốn để đầu tư tiếp và sinh lãi cho
kỳ sau. Thông thường, đối với các giao dịch tài chính, lãi suất được sử dụng là
lãi kép.
Hàm vốn hoá: a(t) = (1+i)

t
với t 0
Trong đó : i : lãi suất kép
Hàm tích lũy vốn: A(t) = k.a(t) = k.(1+i)
t

Lãi suất hiệu dụng của kỳ thứ n : i
n
= i
Lợi tức của kỳ thứ n : I
n
= k(1+ i)
t-1
.i
Vốn hoá (capitalization): xác định giá trị của vốn sau một khoảng thời gian.
Hiện tại hoá (actualization) : xác định giá trị hiện tại của một khoản vốn trong
tuơng lai.
Giá trị hiện tại của A(t) là A(t)
-1


Lãi suất chiết khấu hiệu dụng : được sử dụng trong các giao dịch tài chính có
lợi tức được trả trước. Lãi suất chiết khấu hiệu dụng của kỳ n, d
n
:
Mối quan hệ giữa lãi suất hiệu dụng và lãi suất chiết khấu hiệu dụng của 1
kỳ :
Trong đó : i : lãi suất hiệu dụng
d : lãi suất chiết khấu hiệu dụng
Chiết khấu đơn: các khoản tiền chiết khấu của mỗi kỳ đều bằng nhau và bằng

d.

Chiết khấu kép: lãi suất chiết khấu hiệu dụng của các kỳ không đổi.

Lãi suất danh nghĩa : lợi tức sẽ được vốn hoá nhiều lần trong một kỳ, ký hiệu
i
(m)
, nghĩa là lợi tức trả làm m lần trong kỳ.
Mối quan hệ giữa lãi suất danh nghĩa i
(m)
và lãi suất hiệu dụng tương
ứng :

Lãi suất chiết khấu danh nghĩa : mỗi kỳ được chia làm m kỳ nhỏ và lãi suất
chiết khấu áp dụng đối với mỗi kỳ nhỏ là .
Mối quan hệ giữa lãi suất chiết khấu danh nghĩa là d
(m)
và lãi suất chiết
khấu hiệu dụng d tương ứng :
Bài tập
1. Một người gửi vào Ngân hàng một khoản tiền là 20.000.000 VND với lãi
suất đơn là 8%/năm với mong muốn nhận được một khoản tiền là 25.000.000
VND trong tương lai. Hỏi ông ta phải mất bao nhiêu thời gian ?
ĐS : 3,125 năm

2. Bảo đầu tư 10.000.000 vào chứng chỉ tiền gửi của ngân hàng với lãi đơn
là 9%/năm trong vòng 1 năm. Sau 6 tháng, lãi suất của các chứng chỉ tiền gửi
loại này tăng lên là 10%/ năm. Bảo muốn tận dụng việc lãi suất tăng lên này nên
muốn bán lại chứng chỉ tiền gửi cho ngân hàng và đầu tư tất cả giá trị tích luỹ
vào chứng chỉ quỹ đầu tư có lãi suất đơn 10% trong 6 tháng còn lại. Hỏi số tiền

mà ngân hàng yêu cầu Bảo phải trả khi muốn bán lại chứng chỉ tiền gửi này là
bao nhiêu để Bảo từ bỏ ý định trên?
ĐS : > 69.048 VND

×