Tải bản đầy đủ (.pdf) (61 trang)

Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.19 MB, 61 trang )

BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH
------------------------



LÝ THANH NGUYÊN




KHẢO SÁT HIỆU SUẤT GHI CỦA DETECTƠ NHẤP
NHÁY THEO NĂNG LƯỢNG BỨC XẠ GAMMA
BẰNG PHƯƠNG PHÁP MÔ PHỎNG MONTE CARLO

Chuyên ngành: Vật lý nguyên tử, hạt nhân và năng lượng cao
Mã số
:
60.44.05






LUẬN VĂN THẠC SĨ VẬT LÝ




NGƯỜI HƯỚNG DẪN KHOA HỌC:


PGS.TS. NGUYỄN MINH CẢO








Thành phố Hồ Chí Minh - 2010
THƯ
VIỆN
LỜI CẢM ƠN

Để hoàn thành được luận văn này bản thân tôi đã nhận được sự quan tâm giúp đỡ tận tình và
chu đáo của rất nhiều người. Tôi xin bày tỏ lòng tri ân sâu sắc và trân trọng cảm ơn đến:
Thầy PGS.TS. Nguyễn Minh Cảo, người Thầy kính mến, người đã không những truyền cho tôi
ý tưởng, cung cấp những định hướng và phương pháp nghiên cứu khoa học mà còn dạy bảo tôi về
đạo đức trong nghiên cứu khoa học. Trong quá trình thực hiện luận văn, Thầy là người tận tình chỉ
dẫn giúp tôi gỡ bỏ những khó khăn. Những kinh nghiệm và kiến thức quý báu của Thầy là điều kiện
tiên quyết giúp tôi hoàn thành luận văn này.
Thầy TS. Nguyễn Văn Hùng, người Thầy kính mến. Sự giúp đỡ của Thầy trong giai đoạn đầu
thực hiện luận văn, thiếu thốn về điều kiện thực hiện, là nguồn động viên rất lớn giúp tôi tự tin tiến
hành những nghiên cứu để có thể hoàn thành luận văn.
Thầy ThS Hoàng Đức Tâm, người đã tạo điều kiện thuận lợi cho tôi khi làm thực nghiệm tại
phòng Thí nghiệm. Thầy cũng là người đã có những chỉ dẫn tận tình khi tôi gặp những khó khăn khi
làm việc tại đây.
Cô TS. Trương Thị Hồng Loan và ThS. Trần Thiện Thanh đã có những chỉ bảo tận tình giúp
tôi thấu hiểu về việc mô phỏng bằng MCNP và các vấn đề khác.
Bạn Phạm Nguyễn Thành Vinh và bạn Trịnh Hoài Vinh đã cung cấp tài liệu và hết sức nhiệt

tình giúp đỡ để tôi có thể vào làm thực nghiệm tại phòng Thí nghiệm cũng như tạo điều kiện tốt
nhất khi tôi làm thực nghiệm tại đây.
Ban chủ nhiệm Khoa vật lý trường ĐH Sư phạm TP. Hồ Chí Minh đã tạo điều kiện thuận lợi
về cơ sở vật chất và phòng Thí nghiệm để tôi có thể hoàn thành luận văn.
Cảm ơn cha mẹ đã tần tảo nắng mưa, hi sinh bản thân nuôi nấng và cho con được học hành.
Cảm ơn những người bạn tôi những người luôn động viên giúp đỡ cho tôi.

Tp.Hồ Chí Minh ngày 26 tháng 08 năm 2010
Lý Thanh Nguyên









LỜI CAM ĐOAN

Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi hoặc của Thầy hướng dẫn khoa
học. Kết quả nêu trong luận văn là trung thực và chưa từng ai công bố trong bất kỳ công trình nào
khác.

Tác giả
Lý Thanh Nguyên
BẢNG CÁC CHỮ VIẾT TẮT
Chữ viết tắt Tiếng Việt Tiếng Anh
ACTL Thư viện kích hoạt từ Livemore
EGS4 Chương trình mô phỏng Monte Carlo EGS4 của

nhóm Nelson et al. 1985, Stanford Linear
Accelerator Center.

ENDF Thư viện các số liệu hạt nhân ENDF Evaluated Nuclear Data File
ENDL Thư viện các số liệu hạt nhân ENDL

Evaluated Nuclear Data
Library
FOM

Thông số đánh giá độ tin cậy của phương pháp
Monte Carlo
Figure Of Merit
FWHM Full Width at Half Maximum
Ge(Li) Đầu dò germanium “khuếch tán lithium”
GEANT Chương trình mô phỏng Monte Carlo GEANT
của nhóm R. Brun et al. 1986, CERN Data
Handling Division, Geneva.

GEB

Gaussian Energy
Broadenning
HPGe High Purity Germanium
MCG Chương trình Monte-Carlo gamma xử lý các
photon năng lượng cao
Monte Carlo Gamma
MCNG Chương trình Monte-Carlo ghép cặp neutron-
gamma.
Monte Carlo Neutron Gamma

MCN Có thể giải bài toán các neutron tương tác. Monte Carlo Neutron
MCNP Chương trình Monte-Carlo mô phỏng vận
chuyển hạt N của nhóm J.F. Briesmeister, 1997,
Los Alamos National Laboratory Report, LA-
12625-M
Monte Carlo N-particle
NJOY Mã định dạng các thư viện số liệu hạt nhân
trong MCNP


P/C Tỉ số đỉnh/Compton Peak/Compton
P/T Tỉ số đỉnh / toàn phần Peak/Total
REGe Đầu dò germanium điện cực ngược

Reverse Electrode Coaxial
Germanium Detector


MỞ ĐẦU


Kể từ khi con người khám phá ra hiện tượng phóng xạ, một chân trời mới về nghiên cứu các kĩ
thuật ghi nhận bức xạ đã được mở ra. Từ đó, việc nghiên cứu các phương pháp ghi nhận trong lãnh
vực nghiên cứu hạt nhân, vật lý các hạt cơ bản được tiến hành đã hơn 70 năm nay và ngày càng phát
triển mạnh mẽ. Nhìn lại các giai đoạn phát triển của các phương pháp ghi nhận trong vật lý hạt nhân
và các hạt cơ bản, chúng ta thấy sự ra đời và phát triển của các loại detector: các buồng bọt, buồng
Strimơ, các buồng ion, buồng tỷ lệ, ống đếm Geiger Muller, ống đếm tia lửa, detector nhấp nháy,
detector tinh thể Tren-ren-cốp, detector bán dẫn…Có thể nói các detector bán dẫn siêu tinh khiết là
đỉnh cao của việc ghi nhận bức xạ với ưu điểm nổi bật về khả năng phân giải. Tuy nhiên các
detector khác cũng có ưu điểm riêng và những ứng dụng phù hợp với tính chất của nó. Detector

nhấp nháy do Hofstadter phát minh từ năm 1948 tuy không có độ phân giải năng lượng cao nhưng
lại có ưu thế về hiệu suất ghi, khả năng chế tạo ra các hình học đa dạng và kích thước khác nhau đáp
ứng các yêu cầu thí nghiệm.
Mặc dù được phát kiến đã khá lâu nhưng với những ưu điểm của nó, cho đến ngày nay trên thế
giới và ở nước ta, việc ứng dụng detector nhấp nháy vẫn diễn ra hết sức mạnh mẽ trong nhiều lĩnh
vực. Trong lĩnh vực an ninh, detector nhấp nháy được sử dụng trong các thiết bị phát hiện phóng xạ
ở các lối ra vào, các máy phát hiện phóng xạ cầm tay…Trong lĩnh vực an toàn bức xạ và môi
trường, detector nhấp nháy hiện diện trong các máy đo liều, các thiết bị kiểm soát an toàn, trong các
máy dò tìm rác thải độc hại…Bên cạnh đó, detector nhấp nháy còn được sử dụng tích cực trong
lĩnh vực giảng dạy và nghiên cứu hạt nhân. Điều này cho thấy việc nghiên cứu để sử dụng hiệu quả
các detector loại này vẫn hết sức cần thiết.
Năm 2008, Phòng thí nghiệm Vật lý hạt nhân thuộc khoa Vật lý trường Đại học Sư Phạm
Tp.HCM chính thức đi vào hoạt động để phục vụ việc giảng dạy thực hành vật lý hạt nhân. Các thiết
bị được trang bị tại phòng thí nghiệm gồm có một hệ phổ gamma đầu dò Germanium siêu tinh khiết,
hai hệ phổ kế đơn kênh dùng đầu dò nhấp nháy và hệ phổ kế 8k kênh Gamma Rad 76BR76 sử dụng
đầu dò NaI(Tl) kích thước 3 inch x 3 inch. Các thiết bị này đang trong giai đoạn triển khai sử dụng
và do đó việc nghiên cứu các thiết bị này đang được diễn ra tích cực tại phòng thí nghiệm. Phạm vi
của luận văn này hướng tới việc thực hiện nghiên cứu một khía cạnh của hệ phổ kế 8k kênh đầu dò
nhấp nháy NaI(Tl) đó là nghiên cứu sự phụ thuộc của hiệu suất ghi của detector này theo năng
lượng bức xạ gamma với sự hỗ trợ của phương pháp mô phỏng Monte Carlo.
Hiện nay trên thế giới, việc sử dụng phương pháp mô phỏng bằng máy tính để nghiên cứu các
đối tượng vật lý đã trở nên phổ biến và thu được những kết quả nhất định. Trong nước ta đã có
những nghiên cứu áp dụng các phương pháp mô phỏng trong các ngành khoa học và kỹ thuật, đặc
biệt là trong lĩnh vực nghiên cứu vật lý hạt nhân và cũng mang lại các kết quả nhất định. Việc áp
dụng các phương pháp mô phỏng cho thấy sự phù hợp với tình hình khoa học kĩ thuật hiện tại của
đất nước: cơ sở vật chất hạn chế không cho phép thực hiện các nghiên cứu trực tiếp, nhất là trong
lĩnh vực vật lý vi mô. Điều này cũng cho thấy nếu các phương pháp mô phỏng được khai thác tốt sẽ
tạo ra hướng nghiên cứu triển vọng cho lĩnh vực vật lý hạt nhân nói riêng và khoa học kĩ thuật trong
nước nói chung.
Luận văn này hướng tới hai mục tiêu chính là khảo sát sự phụ thuộc của hiệu suất ghi của

detector nhấp nháy theo năng lượng gamma để sử dụng hiệu quả thiết bị này và thông qua quá trình
khảo sát đó nắm bắt được một phương pháp nghiên cứu mới – phương pháp mô phỏng (Monte
Carlo). Trong đó, detector nhấp nháy được khảo sát ở đây có kí hiệu 76BR76 do hãng Amptek (Mỹ)
sản xuất và dãy năng lượng khảo sát được cung cấp bởi bộ nguồn chuẩn RSS8EU do hãng
Spectrum Techniques chế tạo (cả 2 thiết bị này đều thuộc phòng Thí nghiệm vật lí hạt nhân Trường
Đại học Sư Phạm Tp.HCM).
Để thực hiện các mục tiêu trên, phương pháp Monte Carlo được áp dụng thông qua việc mô
phỏng bằng chương trình MCNP4C2. Trong luận văn này, detector nhấp nháy và bố trí hình học đo
được mô hình hóa bằng chương trình MCNP4C2. Song song với mô phỏng các đo đạc thực nghiệm
cũng được tiến hành. Các kết quả mô phỏng và thực nghiệm sẽ được đem ra so sánh với nhau để rút
ra những nhận xét và những định hướng nghiên cứu nhằm cải thiện hiệu quả làm việc của detector.
Bên cạnh phương pháp mô phỏng, phương pháp thực nghiệm và các phương pháp xử lý số liệu như
phương pháp làm khớp bình phương tối thiểu phi tuyến cũng được thực hiện.
Nội dung của luận văn gồm bốn chương:
Chương 1 là phần tổng quan, trình bày về tình hình nghiên cứu trên thế giới và trong nước
trong việc ứng dụng phương pháp mô phỏng Monte Carlo trong nghiên vận chuyển bức xạ và
nghiên cứu detector nhấp nháy; trình bày khái quát về các đặc trưng của bức xạ gamma và khái quát
về các thiết bị ghi nhận bức xạ trong đó đặc biệt quan tâm đến detector nhấp nháy; trình bày về hiệu
suất ghi của detector.
Chương 2 là phần khái quát về phương pháp Monte Carlo, trình bày giới thiệu chương trình
MCNP và các đặc trưng của chương trình mô phỏng vận chuyển bức xạ này.
Chương 3 là phần xây dựng mô phỏng tính toán hiệu suất. Trong chương này, cấu trúc và đặc
điểm của nguồn chuẩn RSS8EU, hệ phổ kế Gamma Rad 76BR76 và detector nhấp nháy NaI(Tl)
kích thước 3 inch x 3 icnh được thể hiện; việc mô hình hóa detector và xây dựng tệp đầu vào của
mô phỏng tính toán hiệu suất được trình bày chi tiết. Trong chương này, việc khảo sát sự phù hợp
của chương trình mô phỏng tính toán hiệu suất detector cũng được thực hiện.
Chương 4 trình bày về kết quả luận văn và những nhận xét. Trong chương này, kết quả hiệu
suất mô phỏng và hiệu suất thực nghiệm nêu ra và so sánh với nhau từ đó nảy sinh các định hướng
nghiên cứu tiếp theo.
CHƯƠNG 1. TỔNG QUAN



1.1. TÌNH HÌNH NGHIÊN CỨU, ỨNG DỤNG PHƯƠNG PHÁP MONTE CARLO TRONG
LĨNH VỰC GHI NHẬN BỨC XẠ HẠT NHÂN
1.1.1. Tình hình nghiên cứu trên thế giới
Năm 1972, Peterman, Hontzeas và Rystephanick [39] đã xây dựng chương trình tính toán các
thông số đặc trưng của detector Ge(Li): hiệu suất đỉnh năng lượng toàn phần, hiệu suất tương đối
của đỉnh thoát kép.
Năm 1975, Grosswendt và Waibel [24] đã xây dựng chương trình tính toán hiệu suất đỉnh
thoát kép đối với detector bán dẫn Ge(Li) dạng planar và dạng hình trụ với thể tích hoạt động 26
cm
3
và năng lượng photon từ 100 keV đến 15 MeV. Đồng thời công trình cũng tính toán hiệu suất
đỉnh năng lượng toàn phần của detector có thể tích 42 cm
3
.
Năm 1982, Gardner và cộng sự [25] đã áp dụng Monte Carlo để mô phỏng phân bố độ cao
xung của tia X và gamma tức thời từ phản ứng bắt neutron đối với hai loại đầu dò Si(Li) và Ge .
Năm 1990, He, Gardner và Verghese [28] đã mở rộng nghiên cứu hàm đáp ứng của đầu dò
Si(Li) tới miền năng lượng 5 keV đến 60 keV.
Năm 1991, Sánchez và cộng sự [42] đề nghị một phương pháp tính toán hiệu suất đỉnh năng
lượng toàn phần có hiệu chỉnh sự tự hấp thụ sử dụng kỹ thuật Monte Carlo với phần mềm GEANT
3. Trong công trình này sự tự hấp thụ được các tác giả nghiên cứu đối với mẫu Petri và Marinelli.
Kết quả công trình cho thấy sự phù hợp tốt với thực nghiệm ( độ lệch lớn nhất là 12,8%).
Năm 1993, Haase, Tail và Wiechen [27] đã triển khai mô phỏng Monte Carlo đối với hệ phổ
kế gamma cho phép tính toán quãng đường đi của photon trong nguồn và đầu dò cũng như hiệu suất
toàn phần. Từ đó hệ số hiệu chỉnh tự hấp thụ và trùng phùng tổng được đánh giá. Hệ số hiệu chỉnh
trùng phùng tổng đối với các nguồn
22
Na,

57
Co,
60
Co và
88
Y phù hợp tốt với kết quả thực nghiệm và
các mô hình tính toán khác.
Năm 1997, nhóm Sima và Dovlete [43] bổ sung hiệu ứng matrix trong phép đo hoạt độ mẫu
môi trường.
Năm 2000, nhóm tác giả Talavera, Neder, Daza và Quintana [21] đã sử phần mềm GEANT3
để mô phỏng hàm đáp ứng hệ đầu dò HPGe loại n của hãng Canberra . Từ các tính toán hiệu suất
đỉnh toàn phần các tác giả đã so sánh với thực nghiệm với nhiều hình học đo để phát hiện sự không
chính xác trong mô tả các đặc trưng của detector mà nhà sản xuất cung cấp nhằm xác định lại các
thông số này.
Năm 2001, nhóm tác giả Vidmar, Korun, Likar và
cicMartin

[47] đã dùng MCNP và GEANT
để tạo bộ số liệu về đường cong hiệu suất đỉnh năng lượng toàn phần cho hệ đầu dò HPGe loại n và
loại p để kiểm tra mô hình bán thực nghiệm cho việc xây dựng đường cong hiệu suất cho các đầu dò
này trong khoảng năng lượng từ 4 keV đến 3000 keV ; trong đó có quan tâm đến hiệu ứng tự hấp
thụ đối với mẫu đo thể tích.
Năm 2002, Tsutsumi, Oishi, Kinouchi, Sakamoto và Yoshida [45] đã ứng dụng chương trình
mô phỏng Monte Carlo EGS-4 để tính toán mô phỏng và nghiên cứu thiết kế hệ phổ kế gamma
dùng detector HPGe triệt Compton được sử dụng trong việc xác định hoạt độ của mẫu đo mà bản
thân nó là nguồn phông đáng kể
Năm 2004, Hurtado, GarcíaLeón và García Tenorio [32] bằng chương trình mô phỏng Monte
Carlo GEANT4 đã xây dựng đường cong hiệu suất đặc trưng của detector REGe (Reverse Electrode
Germanium) và khi tiến hành hiệu chỉnh một số thông số vật lý của detector được nhà sản xuất cung
cấp trong tính toán đã làm cho hiệu suất tính toán phù hợp với hiệu suất thực nghiệm.

Năm 2006, Salgado, Conti và Becker [17] đã tính toán các đặc trưng của detector HPGe kiểu
planar bằng chương trình mô phỏng Monte Carlo MCNP5 đối với các tia X trong miền năng lượng
20 keV - 150 keV và đã phát hiện có sự khác biệt về hiệu suất detector giữa tính toán và thực
nghiệm khoảng 10%. Sự khác biết trên được lý giải bởi bề dày lớp chết mà nhà sản xuất cung cấp là
không chính xác và các tác giả đã thực hiện hiệu chỉnh tăng bề dày lớp chết.
Năm 2007, Hoover [31] đã sử dụng GEANT4 xác định đặc trưng của hiệu ứng đầu dò điểm ảo
đối với các đầu dò HPGe đồng trục. Khái niệm đầu dò điểm ảo để mô tả mối quan hệ phức tạp giữa
hiệu suất đầu dò, dạng đầu dò, và khoảng cách nguồn. Trong công trình này mô phỏng Monte Carlo
thể hiện rõ ưu thế của nó là tiết kiệm được thời gian và công sức. Mô phỏng Monte Carlo cho phép
đặc trưng hóa hiệu ứng điểm ảo khắp trong khoảng năng lượng khảo sát của đầu dò. Nó có cho phép
mở rộng ở những miền năng lượng cao mà việc sử dụng thực nghiệm với các nguồn chuẩn thích
hợp là khó đạt được.
Martin [36] đã dùng MCNP4C2 để mô phỏng hai hệ đầu dò Germanium đồng trục: REGe và
XtRa. Sự sai biệt lớn 10-20% giá trị hiệu suất mô phỏng so với thực nghiệm ở các năng lượng
photon khác nhau và hình học đo khác nhau cho thấy cần phải điều chỉnh thông số đầu dò từ nhà
sản xuất. Để có được thông tin chính xác tác giả đã dùng phương pháp quét (scanning) với chùm
bức xạ photon không chuẩn trực. Mô hình Monte Carlo hệ đầu dò sau đó được điều chỉnh các thông
số theo phương pháp thử và sai cho đến khi cho kết quả hiệu suất phù hợp nhất với thực nghiệm .
Huy N.Q, Binh D.Q, An V.X [34] nghiên cứu sự tăng của bề dày lớp bất hoạt trong đầu dò
Germanium siêu tinh khiết sau một khoảng thời gian dài hoạt động bằng chương trình mô phỏng
MCNP.
1.1.2. Tình hình nghiên cứu ở Việt Nam.
Ở nước ta, phương pháp Monte Carlo trong vận chuyển bức xạ cũng được triển khai và ứng
dụng khá rộng trong các cơ sở nghiên cứu vật lý hạt nhân.
Ở Viện Khoa học và Kĩ thuật hạt nhân Hà Nội, có nhóm Lê Văn Ngọc, Nguyễn Thị Thanh
Huyền, Nguyễn Hào Quang nghiên cứu về tính toán hiệu suất đỉnh cho hệ phổ kế gamma môi
trường ký hiệu GMX có tại Viện bằng chương trình mô phỏng MCNP phiên bản 4C2; Hoàng Hoa
Mai, Lê Văn Ngọc, Nguyễn Đình Dương nghiên cứu phân bố liều của thiết bị chiếu xạ tại trung tâm
chiếu xạ Hà nội bằng phần mềm MCNP và phương pháp mô phỏng Monte Carlo.
Ở Viện Vật lý và Điện tử (Viện Khoa học và Công nghệ Việt Nam), có nhóm Lê Hồng Khiêm,

Nguyễn Văn Đỗ, Phạm Đức Khuê xây dựng chương trình mô phỏng Monte Carlo để nghiên cứu về
chuẩn hiệu suất cho hình học mẫu lớn trong phép đo bức xạ; Lê Hồng Khiêm, Nguyễn Tuấn Khải
xây dựng chương trình mô phỏng Monte Carlo để tái tạo ảnh cho vật sử dụng hiệu ứng tán xạ ngược
Compton; Bùi Thanh Lan, Lê Hồng Khiêm, Chu Đình Thúy, Nguyễn Quang Hùng biến đổi ngược
mô phỏng Monte Carlo để xác định tính chất hấp thụ và tán xạ; Bùi Thanh Lan, Lê Hồng Khiêm,
Chu Đình Thúy mô phỏng Monte Carlo về sự dập tắt phổ.
Ở Viện NCHN Đà Lạt có nhóm Hồ Hữu Thắng, Nguyễn Xuân Hải, Trần Tuấn Anh, Nguyễn
Kiên Cường áp dụng chương trình MCNP4C2 xác định cấu hình che chắn tối ưu trong thiết kế dẫn
dòng và giảm phông cho hệ phổ kế cộng biên độ các xung trùng phùng tại kênh ngang số 3 lò phản
ứng hạt nhân Đà lạt .
Trung tâm Nghiên cứu &Triển khai Công nghệ Bức xạ thành phố Hồ Chí Minh có nhóm Trần
Khắc Ân, Trần Văn Hùng, Cao Văn Chung sử dụng phần mềm MCNP4C xác định vị trí liều cực
tiểu trong thùng hàng ở các tỷ trọng hàng chiếu khác nhau phục vụ công tác vận hành máy chiếu xạ
STSV-Co60/B tại trung tâm.
Ở Phân viện Y Sinh Tp.HCM và Chợ Rẫy có nhóm Nguyễn Đông Sơn, Nguyễn thị Bích Loan,
Trần Cương áp dụng Monte Carlo để tính toán phân bố liều trong phantom nước đối với chùm
photon 6MV từ máy gia tốc tại bệnh viện Chợ Rẫy.
Ở Đại học Công nghiệp Tp.HCM và Trung tâm Hạt nhân Tp.HCM có nhóm Ngô Quang Huy,
Đỗ Quang Bình, Võ Xuân Ân nghiên cứu về phổ và tối ưu hiệu suất của hệ phổ kế gamma đầu dò
HPGe đặt tại Trung tâm Hạt nhân Tp.HCM bằng MCNP4C2
Ở Bộ môn Vật lý Hạt nhân, Trường Đại học Khoa học Tự nhiên Tp.HCM có nhóm Mai Văn
Nhơn, Trương Thị Hồng Loan, Đặng Nguyên Phương, Trần Ái Khanh, Trần Thiện Thanh sử dụng
phương pháp Monte Carlo với chương trình MCNP4C2 và MCNP5 để nghiên cứu chuẩn hiệu suất
và đặc trưng đáp ứng của đầu dò HPGe có tại Phòng thí nghiệm Bộ môn Vật lý Hạt nhân, Trường
Đại học Khoa học Tự nhiên Tp.HCM.
1.1.3. Phương pháp Monte Carlo trong nghiên cứu các đặc trưng của detector nhấp nháy
Năm 1966, Snyder và Knoll [44] đã tính toán tỷ số photon hấp tụ toàn phần trong detector
nhấp nháy hình giếng đối với các chất nhấp nháy khác nhau gồm: NaI, CsI, CaI
2
với thể tích khác

nhau.
Năm 1972, Beattie và Byrne [15] đã xây dựng chương trình mô phỏng đánh giá các đặc trưng
của detector nhấp nháy NaI(Tl) với nguồn gamma đơn năng và phân tích phổ bức xạ hãm
bremsstrahlung.
Năm 1973, Grosswendt [23] đã xây dựng chương trình tính toán hiệu suất phát hãm
bremsstrahlung do tán xạ của electron thứ cấp với hạt nhân nguyên tử đối với các detector NaI, CeI,
Si và Ge.
Năm 1974, Belluscio, De Leo, Pantaleo và Vox [16] đã xây dựng chương trình tính toán đối
với detector nhấp nháy NaI(Tl) và nguồn gamma dày năng lượng lên đến 10 MeV và tất cả đều có
dạng hình trụ để tính toán một số đặc trưng gồm phân bố năng lượng theo độ cao xung, hiệu suất
đỉnh năng lượng toàn phần và hiệu suất toàn phần của detector và đối với các hình học đo giữa
nguồn và detector khác nhau.
Năm 1976, Rieppo [40] đã áp dụng phương pháp Monte Carlo trong việc tính toán sự hấp thụ
tia gamma trong nguồn thể tích đối với đầu dò mặt và giếng dùng tinh thể NaI. Sự hấp thụ của
gamma trong môi trường gồm nước, nhôm và chì cũng được khảo sát.
Năm 2000, Ghanem [22] đã xây dựng chương trình tính toán các thông số đặc trưng của
detector nhấp nháy NaI gồm đỉnh năng lượng toàn phần, đỉnh thoát đơn, đỉnh thoát kép,…. Tawara,
Sasaki, Saito và Shibamura đã ứng dụng chương trình EGS-4 trong nghiên cứu các tính chất đặc
trưng của detector nhấp nháy NaI(Tl) dựa trên cơ sở phổ gamma của nguồn
137
Ce.
Năm 2000, Orion và Wielopolski [38] đã nghiên cứu hàm đáp ứng của phổ gamma dùng
detector nhấp nháy BGO và NaI(Tl) tại các giá trị năng lượng 0.662, 4.4 và 10MeV. Trong công
trình này có sử dụng ba chương trình mô phỏng Monte Carlo là EGS-4, MCNP4B và PHOTON.
Năm 2001 Yoo, Chunand và Ha [46] đã sử dụng EGS4 mô phỏng hàm đáp ứng của hai đầu dò
NaI và HPGe đối với tia tới năng lượng lên đến 662 keV. Sau đó sử dụng phổ tính toán để giải cuộn
phổ đo.
Năm 2002, Henndriks, Maucec và Meiger bằng chương trình mô phỏng Monte Carlo
MCNP4C đã mô phỏng phổ gamma của các chuỗi
40

K,
232
Th,
238
U được đo trên hệ phổ kế gamma
dùng detector nhấp nháy BGO.
Năm 2002, Hu-Xia Shi, Bo-Xian Chen, Ti-Zhu Li, Di Yun [33] thuộc trường đại học Tsinghua
ở Bắc Kinh Trung Quốc đã khảo sát hàm đáp ứng phổ gamma của detector nhấp nháy NaI(Tl) trong
miền năng lượng 0.4118 đến 7.11 theo phương pháp Berger–Seltzer’s và Monte Carlo.Trong đó, các
tính toán bằng phương pháp Monte Carlo sử dụng các chương trình EGS4, MCNP4B và Petrans
1.0 được sử dụng.
Năm 2003, Robin P. Gardner, Avneet Sood [41] đã dùng phương pháp mô phỏng Monte Carlo
xây dựng hàm đáp ứng của detector NaI giải thích nguyên nhân gây nên sự không tuyến tính và
nhấp nhô ở vùng Compton liên tục. Trong công trình này chương trình CEARPGA đã được các tác
giả sử dụng.
Năm 2004, Fayez H.H. Al-Ghorabie [20] đã dùng chương trình EGS4 trong nghiên cứu hàm
đáp ứng của detector NaI(Tl) đối bức xạ gamma có năng lượng nhỏ hơn 300 keV. Nghiên cứu cho
kết quả mô phỏng phù hợp tốt với kết quả thực nghiệm. Nghiên cứu cho thấy hiệu quả cao trong
việc sử dụng các chương trình mô phỏng trong việc nghiên cứu các tham số vật lý vốn rất khó xác
định bằng thực nghiệm.
Năm 2007, Hashem Miri Hakimabad, Hamed Panjeh, Alireza Vejdani-Noghreiyan [26] đã
dùng MCNP4C tính toán hàm đáp ứng của detector NaI 3 inch x3 inch. Các kết quả mô phỏng được
so sánh với các số liệu thực nghiệm được đo với các nguồn chuẩn trong dãy năng lượng 0.081 MeV
đến 4.438 MeV.
Năm 2010, N. Ghal-Eh, G.R. Etaati and M. Mottaghian [37] công bố nghiên cứu mô phỏng
Monte Carlo đối với hàm đáp ứng của các detector nhấp nháy vô cơ. Nghiên cứu có sử dụng chương
trình GEANT4 và EGS4 và có chỉ rõ độ tin cậy của các kết quả mô phỏng.

1.2. TƯƠNG TÁC CỦA BỨC XẠ GAMMA VỚI VẬT CHẤT
Khi hạt nhân chuyển từ trạng thái kích thích cao về trạng thái kích thích thấp hay trở về trạng

thái cơ bản nó sẽ phát kèm theo một bức xạ điện từ có bước sóng rất ngắn đó là bức xạ gamma. Bức
xạ gamma có khả năng xuyên sâu rất lớn. Các nhân phóng xạ xác định phát ra bức xạ gamma có
năng lượng xác định. Năng lượng bức xạ gamma cao nhất có thể tới 8 MeV -10 MeV.
Khi đi qua vật chất, bức xạ gamma bị mất năng lượng do 3 quá trình chính là hiệu ứng quang
điện, hiệu ứng Compton và hiệu ứng tạo cặp.
1.2.1. Sự truyền của bức xạ gamma trong vật chất
Cũng giống như các hạt tích điện, bức xạ gamma bị hấp thụ khi đi qua vật chất. Tuy nhiên cơ
chế của quá trình hấp thụ bức xạ gamma khác với các hạt tích điện do hai nguyên nhân. Nguyên
nhân thứ nhất, lượng tử gamma không có điện tích nên không chịu ảnh hưởng của trường lực
Coulomb. Tương tác của lượng tử gamma với electron xảy ra trong miền với bán kính cỡ 10
-13
m tức
là ba bậc nhỏ hơn kích thước nguyên tử. Vì vậy khi đi qua vật chất lượng tử gamma ít va chạm với
các electron và hạt nhân do đó ít lệch khỏi phương bay ban đầu của mình. Nguyên nhân thứ hai, bức
xạ gamma là một lượng tử ánh sáng nên không có khối lượng nghỉ và luôn chuyển động với vận tốc
ánh sáng. Điều này có nghĩa là lượng tử gamma không bị làm chậm trong môi trường. Nó hoặc bị
hấp thụ hoặc bị tán xạ và thay đổi phương bay.
Sự suy giảm của bức xạ gamma khi đi qua môi trường khác với sự suy giảm của các bức xạ
alpha và beta. Bức xạ alpha và beta có tính chất hạt nên chúng có quãng chạy hữu hạn trong vật
chất, nghĩa là chúng có thể bị hấp thụ hoàn toàn. Bức xạ gamma khi truyền qua môi trường, sự va
chạm làm suy giảm từ từ cường độ chùm tia. Xét một chùm tia hẹp gamma đơn năng với cường độ
ban đầu I
0
. Sự thay đổi cường độ khi đi qua lớp dx bằng:
dI = -Idx (1.1)
Trong đó

là hệ số hấp thụ. Đối với một môi trường đồng chất

là một hằng số và ta dễ

dàng lấy tích phân phương trình trên:
I = I
0
e
-x
(1.2)
Trong đó I
0
là cường độ ban đầu. Một khái niệm thông dụng là hệ hấp thụ khối τ =

/ρ , với ρ
là mật độ vật chất. Trong trường hợp này, để thuận tiện bề dày được đo bằng đơn vị cm
2
/g. Hệ số
hấp thụ mô tả sự dịch chuyển của bức xạ gamma qua môi trường; nó phụ thuộc vào tính chất của
môi trường và năng lượng của lượng tử gamma
Nếu quá trình hấp thụ là kết quả của một số quá trình khác nhau, hệ số hấp thụ tổng cộng sẽ là
tổng của tất cả các hệ số hấp thụ μ
i
của các quá trình:


i
i
(1.3)
Chia hệ số hấp thụ μ
i
ứng vói một quá trình cho số tâm hấp thụ n
i
trong 1cm

3
ta thu được từng
tiết diện tán xạ σ
i
của quá trình:
μ
i
= n
i
σ
i
(1.4)
Do đó để xác định μ chúng ta cần biết quá trình nào đóng góp chủ yếu vào sự hấp thụ tổng
cộng và tìm sự phụ thuộc của tiết diện tán xạ của những quá trình này vào năng lượng lượng tử
gamma và vào loại môi trường.
1.2.2. Các cơ chế tương tác của tia gamma với vật chất
Trong luận văn này đề cập đến việc ghi nhận các bức xạ gamma có năng lượng thấp do đó
chúng ta sẽ giới hạn khoảng năng lượng khảo sát từ 60 keV đến 2 MeV. Ở trong khoảng năng lượng
này có ba loại tương tác chính:
+ Tán xạ Compton.
+ Hiệu ứng quang điện.
+ Hiệu ứng tạo cặp.
Trong hai quá trình đầu lượng tử gamma va chạm với electron, còn ở quá trình thứ ba là với
nhân. Sự va chạm với electron vượt trội ở vùng năng lượng thấp, ở vùng năng lượng cao tương tác
với trường hạt nhân là chiếm ưu thế. Bên cạnh đó còn có các quá trình khác như tán xạ Rayleigh và
tán xạ Thomson ở miền năng lượng thấp. Các tương tác khác chẳng hạn như hiện tượng hấp thụ
quang hạt nhân (photonuclear absorption) hay sự quang phân hạch (photofission) chỉ xảy ra ở năng
lượng cao (trên 6 MeV) . . . sẽ được bỏ qua.
1.2.2.1. Hiệu ứng quang điện
Khi lượng tử gamma va chạm với electron liên kết của nguyên tử, lượng tử gamma truyền

toàn bộ năng lượng E của nó cho electron liên kết. Năng lượng này một phần giúp electron thắng
lực liên kết 
lk
, một phần trở thành động năng E
e
của electron. Theo định luật bảo toàn năng lượng:
E
e
= E - 
lk
(1.5)
Trong đó 
lk
= 
K
đối với electron lớp K, 
lk
= 
L
đối với electron lớp L, 
lk
=


M
đối với
electron lớp M và 
K
> 
L

> 
M
.
Biểu thức (1.5) cho thấy năng lượng của lượng tử gamma tới ít nhất phải lớn lượng liên kết
của electron thì hiệu ứng quang điện mới xảy ra.






Hình 1.1. Hiệu ứng quang điện.
Hiệu ứng quang điện xảy ra mạnh nhất với lượng tử gamma có năng lượng có thể so được với
năng lượng liên kết của nguyên tử và tăng mạnh theo bậc số Z của môi trường.Tiết diện tán xạ
quang điện có thể được mô tả bởi công thức gần đúng sau:
σ
photo
= constZ
-5

E
-3.5
khi E ≥ 
K

σ
photo
= constZ
-5


E
-3.5
khi E >> 
K

Theo đó hiệu ứng quang điện là cơ cấu hấp thụ trội hơn ở vùng năng lượng thấp, vai trò của nó
trở nên không đáng kể ở vùng năng lượng cao.

Bên cạnh việc tạo ra các electron quang điện, tương tác còn tạo ra các lỗ trống. Lỗ trống này
nhanh chóng được lấp đầy bằng cách bắt một electron tự do trong môi trường hay chuyển dời từ
một electron ở tầng khác trong nguyên tử làm phát sinh ra các tia X đặc trưng. Trong một vài trường
hợp sự phát electron Auger sẽ thay thế cho các tia X đặc trưng.
1.2.2.2. Hiệu ứng Compton
Khi tăng năng lượng gamma đến giá trị năng lượng lớn hơn nhiều so với năng lượng liên kết
của các electron lớp K trong nguyên tử thì hiệu ứng quang điện không còn đáng kể và bắt đầu hiệu
ứng Compton. Khi đó có thể bỏ qua năng lượng liên kết của electron so với năng lượng gamma và
tán xạ gamma lên electron có thể coi như tán xạ với electron tự do. Tán xạ Compton là tán xạ đàn
hồi của gamma tới với các electron chủ yếu ở quỹ đạo ngoài cùng của nguyên tử. Sau tán xạ lượng
tử gamma thay đổi phương bay và bị mất một phần năng lượng truyền electron được giải phóng ra
khỏi nguyên tử.
Trên cơ sở tính toán động học của quá trình tán xạ đàn hồi của hạt gamma chuyển động với
năng lượng E lên electron đứng yên ta có các công thức sau đây đối với năng lượng gamma E và
electron E
e
sau tán xạ phụ thuộc vào góc bay θ của gamma sau tán xạ
E = E
( )
1
1+ α 1- cosθ
(1.6)

E
e
= E
( )
( )
α 1- cosθ
1+ α 1- cosθ
(1.7)
Trong đó
2
e
cm
E

; m
e
= 9,1.10
-31
kg và c = 3.10
8
m/sec; m
e
c
2
= 0,511 MeV.

Hình 1.2. Hiệu ứng tán xạ Compton
Góc bay φ của electron sau tán xạ liên hệ với các góc θ như sau:
tanφ =
1

θ
1+ α tan
2
(1.8)
φ
Sau khi tán xạ Compton, năng lượng tia gamma giảm và phần năng lượng giảm đó truyền cho
electron giật lùi. Năng lượng electron giật lùi càng lớn khi gamma tán xạ với góc θ càng lớn. Đối
với photon có góc tán xạ nhỏ thì năng lượng của electron tiến đến không, và do đó năng lượng của
photon tán xạ gần bằng năng lượng của photon tới.
Trong quá trình tán xạ Compton có một photon được phát ra nên năng lượng của photon tới
không được hấp thụ hoàn toàn tại vị trí đầu tiên. Ngay cả với góc tán xạ 180º , photon tán xạ cũng
có năng lượng đáng kể và được tính bởi:

21
'


E
E
. Để theo dõi sự phân tán năng lượng của photon
tới ta cần phải xem xét các photon tán xạ thứ cấp và các quá trình tương tác của chúng.
Tiết diện tán xạ Compton vi phân biểu diễn theo công thức Klein-Nishima:
















2
2
2
2
2
e
)cos1(1
)cos1(
cos1
))cos1(1(2
r
d
d
(1.9)
Tiết diện tán xạ Compton toàn phần thu được bằng cách lấy tích phân biểu thức (1.9) theo tất
cả góc tán xạ θ:

 






















2
2
2
eCompton
α21
α31
)α21ln(
α2
1
)α21ln(
α
1
α21
)α1(2

α
α1
rπ2σ
(1.10)
- Khi α rất bé, tức là khi E<<m
e
c
2
, thì tiết diện tán xạ Compton tăng tuyến tính khi năng lượng
giảm và đạt giá trị giới hạn :
2
2
e
2
sonhomT
cm
e
3
8










(tiết diện tán xạ do Thomson tính cho trường hợp

năng lượng tia gamma rất bé) (1.11)
- Khi α rất lớn , tức là khi E>>m
e
c
2
, tiết diện tán xạ Compton biến thiên tỉ lệ nghịch với năng
lượng E và do trong nguyên tử có Z electron nên sự phụ thuộc của tiết diện tán xạ Compton được
mô tả như sau:
EZconst
Compton

(1.12)
1.2.2.3. Hiệu ứng tạo cặp electron - positron
Nếu gamma tới có năng lượng E lớn hơn hai lần năng lượng nghỉ của electron (2m
e
c
2
=1,022
MeV) thì khi đi qua điện trường của hạt nhân nó sinh ra một cặp electron – positron. Đó là hiệu ứng
tạo cặp electron-positron.
Quá trình tạo cặp xảy ra gần hạt nhân, do động năng chuyển động giật lùi của hạt nhân rất bé
nên phần năng lượng còn dư biến thành động năng của electron và positron. Hiệu số năng lượng E –
2m
e
c
2
bằng tổng động năng của electron E
e-
và positron E
e+

bay ra. Do hai hạt này có khối lượng
giống nhau nên có xác suất lớn để hai hạt có năng lượng bằng nhau E
e-
= E
e+
. Electron mất dần năng
lượng của mình để ion hóa các nguyên tử của môi trường. Positron mang điện tích dương nên khi
gặp electron của nguyên tử, điện tích của chúng bị trung hòa, chúng hủy lẫn nhau gọi là hiện tượng
hủy cặp. Khi hủy electron - positron hai lượng tử gamma được sinh ra bay ngược chiều nhau, mỗi
lượng tử có năng lượng 0,511 MeV.

Hình 1.3. Hiệu ứng tạo cặp
Trong miền năng lượng 5m
e
c
2
<E< 50m
e
c
2
tiết diện tạo cặp tỉ lệ với Z
2
và lnE:

pair
=constZ
2
lnE (1.13)
Theo công thức trên tiết diện tạo cặp electron – positron gần tỉ lệ với Z
2

nên có giá trị lớn đối
với chất hấp thụ có nguyên tử số Z lớn.
1.2.2.4. Tổng hợp các hiệu ứng gamma tương tác với vật chất
Khi gamma tương tác với vật chất có 3 hiệu ứng chính xảy ra, đó là hiệu ứng quang điện, hiệu
ứng Compton, và hiệu ứng tạo cặp electron-positron. Tiết diện vi phân tương tác tổng cộng của các
quá trình này bằng:
 = 
photo
+
compton
+ 
pair
(1.14)
Trong đó: 
photo

 
EE
Z
2/7
5
; 
compton

E
Z
; 
pair
 Z
2

lnE
Từ sự phụ thuộc các tiết diện vào năng lượng E của gamma và điện tích Z của vật chất như
trên suy ra rằng :
- Trong miền năng lượng thấp cơ chế phản ứng của gamma tương tác với vật chất là hiệu ứng
quang điện.
- Trong miền năng lượng trung bình cơ chế hiệu ứng Compton chiếm ưu thế.
-
Tiết diện tương tác của hiệu ứng quang điện và Compton khi năng lượng h

>>2m
e
c
2
trở nên
rất nhỏ và sự hấp thụ tia  trong vùng năng lượng này xảy ra chủ yếu do quá trình tạo cặp.
Hệ số hấp thụ toàn phần tia  trong vật chất là tổng hệ số hấp thụ 
photo
, 
compton
, 
pair
, tức là:

 = 
photo
+
ompton
+
pair



Hình 1.4. Đồ thị hàm số của các hệ số hấp thụ theo năng lượng tia 
và hệ số hấp thụ toàn phần đối với chì [3]

1.3. CÁC DETECTOR GHI NHẬN BỨC XẠ TIA X VÀ TIA GAMMA
1.3.1. Khái quát về các detector
Trong vật lý hạt nhân thực nghiệm, các detector ghi đo bức xạ đóng vai trò rất quan trọng. Các
detector được sử dụng từ việc đo đạc bức xạ đến xử lý kết quả đo. Chúng là các thiết bị hoạt động
dựa trên sự tương tác của các bức xạ với vật chất. Detector ghi bức xạ tia X và tia gamma ban đầu
chỉ dùng để xác định sự có mặt của bức xạ tia X và tia gamma và sau đó là xác định cường độ của
chùm bức xạ này. Các detector ghi bức xạ tia X và tia gamma ngày nay cho phép xác định đặc trưng
phân bố độ cao xung theo năng lượng tia X và tia gamma.
Năm 1895, Roentgen đã thực hiện phép đo tia X phát ra từ ống phóng điện chứa khí. Phổ kế
quang học ứng dụng hiện tượng tán sắc ánh sáng có thể được dùng để đo bước sóng tia X nhưng chỉ
đo được bước sóng tia X lớn hơn 0,1 nm. Bằng phương pháp nhiễu xạ tia X trên mặt phẳng tinh thể,
Bragg đã đo được tia X có bước sóng bé hơn và nhận thấy rằng phổ tia X có cấu trúc vạch phân biệt
rõ trên nền phông liên tục.
Năm 1896, Becquerel đã khám phá ra hiện tượng phóng xạ tự nhiên. Đến năm 1900, Villard đã
nhận thấy rằng các chất phóng xạ tự nhiên không những phát ra các tia α và β mà còn phát ra một
loại bức xạ có khả năng đâm xuyên rất mạnh được gọi là tia gamma. Cùng với những nghiên cứu
về tia X và tia gamma, các thiết bị ghi bức xạ tia X và tia gamma cũng không ngừng được phát kiến
và ứng dụng.
Sự phát triển của các detector nhìn chung chia làm 3 nhóm chính: các detector chứa khí được
phát triển sớm nhất, sau đó đến các detector nhấp nháy, và hiện đại nhất là các detector bán dẫn.
1.3.1.1. Các detector chứa khí
Nguyên tắc chung của detector bức xạ là khi bức xạ đi qua môi trường vật chất của detector
chúng tương tác với các nguyên tử, phân tử khí gây nên ion hóa và kích thích các nguyên tử, phân
tử khí này. Trong detector chứa khí, môi trường vật chất của nó là môi trường khí. Một số loại
detector chứa khí phổ biến: buồng ion hóa, ống đếm tỉ lệ, ống đếm Geiger – Muller.
Trong trường hợp buồng ion đơn giản hay trong ống đếm tinh thể, các ion và electron được tạo

nên bởi các hạt trong khối vật chất của detector chuyển động dưới tác động của điện trường và do
đó gây nên dòng điện chạy trong mạch bên ngoài của detector . Trị số của dòng điện này là thước đo
hiệu ứng ion hóa tạo nên trong buồng ion. Buồng ion hóa có tín hiệu lối ra rất bé nên không thích
hợp để đo các gamma riêng biệt nó thường được sử dụng để đo dòng tổng cộng cho chùm gamma
có thông lượng lớn như tại các trạm quan trắc bức xạ.
Trong các buồng ion có khuếch đại khí (ống đếm tỷ lệ) điện trường được sử dụng không những
chỉ để thu nhận ion và electron, mà còn dùng để khuếch đại hiệu ứng ion hóa, nhờ hiện tượng ion
hóa thứ cấp. Cường độ dòng điện trong mạch ngoài của detector trong trường hợp này phụ thuộc
vào mật độ ion hóa ban đầu của các hạt, và đồng thời phụ thuộc vào hệ số khuếch đại khí của
detector. Ống đếm tỉ lệ được dùng để đo các tia X và tia gamma thường có độ phân giải năng lượng
vừa phải.
Khi hệ số khuếch đại khí rất lớn thì hiệu ứng ion hóa sẽ không còn phụ thuộc vào mật độ ion
hóa ban đầu do hạt gây nên nữa, mà nó chỉ phụ thuộc vào tính chất của bản thân detector đó thôi.
Detector loại này (ống đếm Geiger – Muller) gọi là ống đếm với sự phóng khí tự lập, giá trị ban đầu
của hiệu ứng ion hóa (hoặc mật độ ion hóa ban đầu) không thể nào xác định được mà người ta chỉ
có thể kết luận là có hạt bay qua detector hay không mà thôi.
1.3.1.2. Các detector nhấp nháy
Trong các chất nhấp nháy, khi có hạt mang điện đi qua thường xuất hiện hiện tượng phát
quang khá rõ rệt, do sự chuyển mức năng lượng của các nguyên tử hay phân tử bị kích thích bởi các
hạt. Năng lượng của photon (sự phát quang) được dùng để làm bật ra các electron từ các lớp nhạy
quang đặc biệt (các electron này được gọi là các photon electron). Số lượng các photon electrton
này sau đó có thể được khuếch đại lên rất nhiều lần, nhờ những ống nhân điện tử. Các detector hoạt
động dựa trên hiện tượng này (được gọi là ống đếm nhấp nháy) cho phép ta thực hiện đo đạc thông
qua cường độ của các xung ánh sáng được tạo nên bởi các hạt trong các chất phát quang. Detector
loại này sẽ được trình bày kĩ hơn ở phần sau.
1.3.1.3. Các detector bán dẫn
Nguyên lý chung của các loại detector bán dẫn như sau: Khi lượng tử gamma đi vào chất bán
dẫn, nó sẽ tạo nên electron tự do thông qua ba hiệu ứng chủ yếu là quang điện, tán xạ Compton và
tạo cặp. Electron tự do di chuyển với động năng lớn sẽ làm kích thích các electron chuyển lên vùng
dẫn và để lại lỗ trống. Như vậy thông qua các hiệu ứng tương tác, bức xạ gamma đã tạo nên một

loạt các electron và lỗ trống trong tinh thể bán dẫn. Dưới tác động của điện trường các electron sẽ
chuyển động về cực dương, các lỗ trống chuyển động về phía cực âm, kết quả ta có một xung dòng
điện ở lối ra.
Để ghi được các tia gamma có độ đâm xuyên lớn thì detector bán dẫn phải có thể tích lớn,
nghĩa là bề dày miền nghèo vào khoảng 1cm trở lên. Hai phương pháp được sử dụng là phương
pháp khuếch tán Lithium và phương pháp làm sạch vật liệu Germinium. Trong các năm của thập kỉ
1960 và 1970, các detector Si(Li), Ge(Li) được sử dụng phổ biến. Từ 1980 là sự xuất hiện sử dụng
ngày càng phổ biến của detector Germinium siêu tinh khiết HPGe trong ghi đo bức xạ gamma.
Detector HPGe thường có dạng trục để đạt thể tích lớn. Các detector dạng trục hiện nay có vùng
năng lượng gamma nhạy từ 50 keV đến hơn 10MeV và có hiệu suất từ 15% đến 100%. Độ phân
giải năng lượng rất tốt từ 1,8 keV đến 2 keV tại vạch năng lượng 1,33MeV. Khả năng phân giải
năng lượng là một ưu điểm nổi bật của detector bán dẫn so với detector nhấp nháy NaI khiến nó
được sử dụng phổ biến hiện nay trong các phép đo năng phổ gamma khi yêu cầu về độ phân giải
năng lượng cần được đặt lên hàng đầu. Một thông số khác rất quan trọng đối với detector HPGe là tỉ
số đỉnh trên Compton bởi vì tỉ số này càng cao thì càng có lợi cho các phép đo hoạt độ thấp và phổ
gamma phức tạp; tỉ số này đạt từ 30 đến 80 đối với đỉnh 1,33MeV đối với các detector HPGe hiện
đại.
Ngoài các detector dạng trục các detector Ge cũng đang được áp dụng. Đó là các detector Ge
năng lượng thấp và rất thấp. Ngoài ra còn có detector dạng giếng để mẫu đo theo hình học 4Π.
1.3.2. Detector nhấp nháy
1.3.2.1. Nguyên tắc làm việc
Detector nhấp nháy là một tổ hợp gồm 2 thành phần: chất nhấp nháy và ống nhân quang điện.
Khi một tia bức xạ đập vào một tinh thể nhấp nháy, nó ion hóa và kích thích các phân tử chất nhấp
nháy. Sau một thời gian (10
-6
s – 10
-9
s), các phân tử nhấp nháy này chuyển về trạng thái cơ bản bằng
cách phát ra các nhấp nháy sáng. Ánh sáng từ bản tinh thể nhấp nháy đi vào trong ống nhân quang
điện, từ đó biến thành dòng điện. Tính hiệu thế lối ra của detector nhấp nháy cũng được lấy qua

mạch RC.
1.3.2.2. Cấu tạo của detector nhấp nháy
Một detector nhấp nháy thông thường gồm có ba phần: phần dẫn quang (nếu cần thiết), chất
nhấp nháy và ống nhân quang điện.
1.3.2.2.1. Phần dẫn quang
Nếu trong điều kiện vật lý mà tinh thể nhấp nháy và ống nhân quang điện phải đặt cách xa
nhau ra (ví dụ tinh thể nhấp nháy phải đặt trong từ trường mà ống nhân quang điện không thể làm
việc trong từ trường) thì ta phải dùng phần dẫn quang. Phần dẫn quang thường được chế tạo từ
thạch anh, polisterol hoặc thủy tinh hữu cơ. Phần dẫn quang có thể có hình dạng và kích thước khác
nhau, nhưng các mặt bên phải được đánh bóng rất cẩn thận để đảm bảo sự phản xạ ánh sáng toàn
phần. Trong detector 76BR76 mà sẽ khảo sát trong luận văn này, phần dẫn quang rất mỏng và chỉ
đóng vai trò liên kết tinh thể nhấp nháy với ống quang điện.
1.3.2.2.2. Chất nhấp nháy
Chất nhấp nháy được sử dụng để chế tạo detector nhấp nháy phải thỏa mãn một số yêu cầu cơ
bản. Thứ nhất, chất nhấp nháy phải có hiệu suất biến đổi cao, tức là tỷ số năng lượng của các photon
trên năng lượng của hạt đi qua môi trường phải lớn. Thứ hai, tỉ số giữa năng lượng photon đi ra từ
chất nhấp nháy này trên năng lượng mà hạt mất mát trong thể tích chất nhấp nháy được gọi là hiệu
suất kỹ thuật hay suất ra kỹ thuật phải tốt tức là đòi hỏi môi trường nhấp nháy phải trong suốt đối
với bức xạ nhấp nháy phát ra. Và cuối cùng, để bảo đảm độ phân giải cao theo thời gian, thời gian
phát sáng của chất nhấp nháy phải tốt tức là độ kéo dài của xung ánh sáng phải tương đối nhỏ
Chất nhấp nháy rất đa dạng, hai loại chất nhấp nháy được sử dụng phổ biến là chất nhấp nháy
vô cơ và chất nhấp nháy hữu cơ. Ở đây chỉ trình bày phần chất nhấp nháy vô cơ và tinh thể nhấp
nháy NaI(Tl).
Chất nhấp nháy vô cơ:
Số loại chất nhấp nháy vô cơ tương đối ít. Những chất này thường là muối hoạt hóa ( như NaI,
LiI, ZnS, CdS...) có pha một lượng bé tạp chất làm chất kích hoạt cho quá trình huỳnh quang.
Những hỗn hợp kiềm halogen này thường được sử dụng dưới dạng đơn tinh thể mà kích thước của
chúng có thể rất lớn.
Cơ chế hình thành nhấp nháy sáng có thể được giải thích theo lý thuyết miền năng lượng. Thời
gian phát sáng của chất nhấp nháy vô cơ lớn hơn chất nhấp nháy hữu cơ hàng trăm, hàng nghìn lần.

Bên cạnh sự dịch quang, người ta còn thấy sự phát lân quang mà cường độ bức xạ của nó cũng
ngang hàng với bức xạ dịch quang.
Tinh thể nhấp nháy NaI(Tl):
Tinh thể nhấp nháy NaI(Tl) thuộc phân loại chất nhấp nháy vô cơ. Tinh thể NaI sạch là chất
nhấp nháy ở nhiêt độ -192
o
C. Để nó là chất nhấp nháy ở nhiệt độ phòng thí nghiệm khi thêm vào
một lượng nhỏ Thallium (0,1%). Tinh thể NaI được hoạt hóa bằng Thallium (0,1%) có hiệu suất
biến đổi cao và thời gian phát sáng tương đối ngắn. Có thể nói đây là một loại chất nhấp nháy vô cơ
vào loại phổ biến nhất và tốt nhất.
Tinh thể nhấp nháy NaI(Tl) có hiệu suất biến đổi lớn, cường độ sáng rất cao và phụ thuộc
tuyến tính vào năng lượng bức xạ do đó NaI(Tl) được được sử dụng tốt trong các hệ phổ kế gamma.
Tinh thể NaI(Tl) còn có ưu điểm là dễ nuôi cấy những đơn tinh thể trong suốt có kích thước lớn.
Nhược điểm của NaI(Tl) là xung ánh sáng có độ dài khá lớn cỡ 230ns nên không thuận tiên
khi sử dụng trong các sơ đồ đếm nhanh. Nhược điểm khác của tinh thể NaI là độ hút ẩm lớn. Để
chống ẩm, người ta thường giữ NaI trong dầu vazelin hoặc trong những hộp kín có cửa sổ trong
suốt.
1.3.2.2.3. Ống nhân quang điện
Các nhấp nháy sáng đi qua cửa sổ trong suốt của ống nhân quang điện và đập vào bề mặt của
photocatốt. Những photon ánh sáng với năng lượng h sẽ làm bức xạ các electron từ lớp màn nhạy
quang của photocatốt. Những photoelectron này sẽ được gia tốc và hội tụ bằng điện trường, sao cho
chúng lại đập vào một điện cực đặc biệt (được gọi là dinốt). Đinốt được chế tạo bằng vật liệu có
công thoát điện tử nhỏ và khi bị các electron bắn phá, sẽ bức xạ những electron thứ cấp, với số
lượng lớn hơn số lượng electron ban đầu từ 1 đến 10 lần. Những electron thứ cấp này lại được gia
tốc và hội tụ lên đinốt tiếp theo và đinốt này lại đóng vai trò phát xạ electron thứ cấp và v.v… Số
lượng đinốt có thể rất lớn (khoảng 10 đinốt). Cứ mỗi lần chuyển tiếp từ đinốt này sang đinốt tiếp
theo, số lượng electron sẽ nhân lên nhiều lần, và thông thường số lượng electron được bức xạ ở
đinốt cuối cùng sẽ lớn hơn số lượng electron ban đầu hàng vạn đến hàng triệu lần. Như vậy, ống
nhân quang điện đồng thời đóng vai trò biến tín hiệu quang học thành tín hiệu điện và khuếch đại
chúng.

Tín hiệu từ ống nhân quang điện được lấy ra qua mạch RC, đưa đến các khối tiền khuếch đại,
khuếch đại, rồi được đưa đến ngưỡng tích phân hình thành các xung có dạng vuông và độ rộng thích
hợp.

Hình 1.5. Cấu tạo của ống nhân quang điện
Một đặc điểm cần lưu ý khi sử dụng các ống nhân quang điện là tạp âm nhiệt của chúng do
hiện tượng bức xạ electron nhiệt ngay từ đinốt đầu tiên. Đôi khi, do điện áp trên các đinốt cao quá
giá trị bình thường, có thể xảy ra hiện tượng bức xạ lạnh các electron từ bề mặt của đinốt.
Nếu như biên độ xung tín hiệu lớn hơn biên độ tạp âm, thì việc khử tạp âm trong chuỗi xung
ra rất đơn giản, bằng cách dùng bộ hạn chế biên độ. Trong trường hợp mức tạp âm quá lớn, ta phải
tìm mọi cách để giảm nó đến mức tối thiểu để có thể tiến hành đo đạc được các tính hiệu cần thiết.
Vì xác suất bức xạ electron nhiệt phụ thuộc vào nhiệt độ, do đó để giảm tạp âm nhiệt, ta cần hạ thấp
nhiệt độ của photocatốt (khi hạ thấp nhiệt độ, thì cứ 10
0
C, số xung tạp âm nhiệt giảm đi cỡ hai lần).
Khó khăn đáng kể nhất là khi ghi nhận những xung ánh sáng yếu với biên độ của chúng bằng
cỡ mức tạp âm. Khi đó, trong điều kiện thí nghiệm vật lý, thường là số tín hiệu cần thiết lại nhỏ hơn
số xung tạp âm. Trong trường hợp này, để tách các tín hiệu cần thiết, ta nên dùng một hệ hai ống
nhân quang điện, được mắc theo sơ đồ trùng phùng theo thời gian. Sơ đồ trùng phùng này sẽ ghi
được các xung ánh sáng từ tinh thể nhấp nháy, còn các xung tạp âm phân bố theo quy luật thống kê
theo thời gian sẽ bị loại bỏ, tất nhiên có tồn tại một số xung trùng phùng giả tạo do sự trùng hợp
ngẫu nhiên của các xung tạp âm.
Ngoài những xung tạp âm do sự bức xạ các electron nhiệt, trong ống nhân quang điện, có thể
xảy ra sự ion hóa các nguyên tử hay phân tử còn lại bởi những chùm electron thứ cấp. Những
nguyên tử hay phân tử khí này bị kích thích lên mức năng lượng cao hơn và sau đó, khi trở về trạng
thái cơ bản, chúng bức xạ ra photon ánh sáng. Những photon ánh sáng này lại đập vào photocatốt
(một cách trực tiếp hoặc sau nhiều lần phản xạ) làm bức xạ các photoelectron và do đó sinh ra xung
tín hiệu giả tạo. Xác suất gây nên những xung giả tạo loại này tỷ lệ thuận với mật độ electron thứ
cấp ở những tầng cuối cùng của ống nhân quang điện, do đó để giảm bớt xung giả tạo, người ta
thường giảm hệ số khuếch đại và điện áp nguồn nuôi cho ống nhân quang điện.

1.3.3. Phân giải năng lượng
Trong các ống đếm nhấp nháy thực tế có hàng loạt những nguyên nhân khác nhau đưa đến sự
làm xấu khả năng phân giải theo năng lượng của chúng. Trước hết là bản thân chất nhấp nháy có thể
không hoàn toàn đồng nhất (ví dụ nồng độ tạp chất hoạt hóa không đều nhau trong toàn thể tích
detector) do đó cường độ bức xạ sẽ khác nhau, tùy theo vị trí mà hạt đi qua. Hơn nữa, trong thể tích
chất nhấp nháy còn có khả năng hiệu ứng biên, do đó khi hạt đi gần bề mặt bên của tinh thể, nó có
thể đi ra ngoài tinh thể và chỉ mất một phần năng lượng mà thôi. Hệ số thu góp photon trên
photocatốt của ống nhân quang điện, đối với những photon sinh ra từ những vị trí khác nhau, sẽ
khác nhau. Hơn nữa, những photoelectron bức xạ từ catốt dưới những góc khác nhau, từ những vị trí
khác nhau sẽ có hiệu suất thu góp khác nhau trên đinốt đầu tiên. Ngoài ra, hệ số khuếch đại của ống
nhân quang điện có thể biến đổi theo sự không ổn định của nguồn nuôi và v.v… Nói tóm lại, sự mở
rộng vạch phổ năng lượng của ống đếm nhấp nháy có nhiều nguyên nhân khác nhau gây nên, bắt
đầu từ sự thăng gián thống kê của sự tiêu tán năng lượng của bản thân hạt cơ bản và kết thúc bằng
sự thăng gián của hệ số khuếch đại của ống nhân quang điện và các nhiễu điện tử của hệ đo.
1.3.4. Phổ năng lượng của detector nhấp nháy kích thước trung bình:
Nếu xét theo kích thước đầu dò, các detector nhấp nháy có thể chia làm 3 loại: detector có kích
thước nhỏ (dưới 2cm), detector kích thước lớn (cỡ vài chục cm) và detector kích thước trung bình
(có kích thước nằm giữa 2 khoảng trên). Với từng loại kích thước đầu dò khác nhau, hàm hưởng
ứng và phổ năng lượng của detector có những đặc trưng khác biệt. Do tính chất luận văn là khảo sát
hệ phổ kế Gammar Rad 76BR76 sử dụng đầu dò NaI(Tl) hình trụ kích thước 3 inch x 3 inch là loại
đầu dò có kích thước trung bình. Vì vậy trong luận văn này chỉ trình bày về các hiệu ứng xảy ra bên
trong đầu dò và phổ năng lượng của detector kích thước trung bình.
Trường hợp năng lượng trung bình (hiện tượng tạo cặp không đáng kể), trên phổ xuất hiện
miền Compton liên tục và đỉnh quang điện. Vì kích thước detector là đáng kể nên có xảy ra các sự
kiện tia gamma tán xạ Compton bị hấp thụ hoàn toàn đóng góp vào đỉnh quang điện. Năng lượng
gamma tới càng thấp, năng lượng trung bình gamma tán xạ càng nhỏ và khả năng bị hấp thụ càng
cao dẫn đến miền Compton càng giảm. Tại năng lượng gamma tới rất thấp (nhỏ hơn 100 keV).
Miền liên tục Compton hầu như biến mất. Do hiện tượng tán xạ nhiều lần, trên phổ xuất hiện một
miền liên tục nằm giữa cạnh Compton và đỉnh năng lượng.
Nếu năng lượng gamma đủ lớn để hiệu ứng tạo cặp trở nên quan trọng, hàm đáp ứng sẽ phức

tạp hơn do tương tác của các gamma hủy trong thể tích detector. Các tia này có thể thoát khỏi thể
tích detector hoặc tương tác nhiều lần với môi trường detector dẫn đến sự hấp thụ một phần hay
toàn bộ năng lượng của tia gamma sơ cấp. Trên phổ tương tác thấy đỉnh thoát đơn, đỉnh thoát cặp
tương ứng với sự thoát một hay hai gamma hủy. Các sự kiện khác trong đó năng lượng của tia
gamma hủy bị hấp thụ một phần hay toàn bộ sẽ đóng góp vào vùng nằm giữa đỉnh thoát cặp và đỉnh
quang điện.

×