Tải bản đầy đủ (.pdf) (51 trang)

CÁC BÀI TOÁN TÍCH PHÂN HÀM VÔ TỈ pot

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (544.8 KB, 51 trang )

1
www.vietmaths.com Kinh Toán học

Tích phân hàm vô tỉ: 3
1/
1 ax b
I dx
x cx d




5
2/
2
1 ax b
I dx
cx d
x




8
3/
3 3
dx
I
x a




9
4/
3 3
dx
I
x a



10
5/
4 4
dx
I
x a



11
6/
4 4
dx
I
x a



13
7/

6 6
dx
I
x a



13
8/
6 6
dx
I
x a



14
9/
8 8
dx
I
x a



14
*
8
dx
I

1 x



15
10/
*
2n
dx
I n
1 x
  


¥
16
11/
n n
dx
I
x a



20
6/
2
dx
I
ax bx c



 
21
7/


2
mx n dx
I
ax bx c



 
22
8/
 
2
dx
I
x q ax bx c


  
22
*
 
3
2

dx
I
x 4x 7


 
25
*
3
2
x x 1
I dx
x 2x 2
 


 
25
*
 
1
n
n n
0
dx
I
1 x 1 x


 

26
*
dx
I
x 1 x 1 2


   
26
4
1
dx
* I
x x




*
x
2 2
0
I 1 u du 1 x dx
   
 
28
*
x a
I dx
x a





29
a x
* I dx
x a





 
2000
2004
x .dx
* I
x 1




2
2
dx
* I
ax bx c



 

 
2
2
dx
* I
ax bx c


 

2
mx n
* I dx
ax bx c



 

2 2 2
* I x x a .dx
 


 
n
* I x ax b dx
 



 
n
x.dx
* I
ax b




 
2
x .dx
* I
ax b




 
c
b
a
x .dx
* I
x m





3
1
2
0
x dx
* I
x x 1


 

2 2 2
* I x a x .dx
 


2 2
2
a x .dx
* I
x




3 2 2
* I x a x .dx
 



2 2
* I x a x .dx
 


5 2 2
* I x a x .dx
 


2 2
dx
* I
x. x a



Error! Bookmark not defined.
 
2
2
2 2
x .dx
* I
x a





 
2
z
* x sin arctanz
1 z
 


 
2
1
* x cos arctan y
1 y
 


 
3
n
2 2
x .dx
* I
x a




 
2m 1
n

2 2
x .dx
* I m 1
x a

 



*
 
n 1
n n i n 1 i
i 0
Cm: a b a b a .b

 

 
  

 
 
43
 
4
2
2 2
x .dx
* I

x a



Error! Bookmark not defined.
 
3
2 2
dx
* I
x a






5
2 2
dx
* I
x a




3
 
3
2 2

dx
* I
a x




 
2n 1
2 2
dx
* I
a x





 
2n 1
2 2
dx
* I
x a










* I x a b x .dx
  


  
dx
* I
x a b x


 

  
 
3
dx
* I
x a b x


 

  
 
2n 1
dx
* I

x a b x



 

  


3
* I x a b x .dx
  


  
dx
* I
x a x b


 

dx
* I
x 1 x 1 2


   




Tích phân hàm vô tỉ:
 
 
      
 
    
 
n n n
n n
n
n n
n
' '
n n n n n 1 n n n 1
2 2
n n
n 1 n
ax b ax b ax b
a / R x, dx doi bien : t t ax b t .cx t .d
cx d cx d cx d
t .d b
x a c.t t .d b x
a c.t
t .d b a c.t t .d b a c.t n.d.t a c.t t .d b n.c.t
dx dt dt
a c.t a c.t
a.n.d.t b.n.c.t
 


 
  
      

 
  
 

     

        
  
 


 
 
 
n 1
1
2 2
n n
n.t ad bc dt
dt
a c.t a c.t




 



4
  
 
 
     
 
 
3 2
3 3
3 2
2
3
3
2 3 3 3 3 3
2 3 2 3 2 3 3
3 3 3
3 2
2
dx x 1 dx x 1 t 1 6t .dt
VD1:I . Dat t x , dx
x 1 x 1 x 1
t 1
x 1 x 1
t 1
6t .dt t 1 6t .dt 2t 6t .dt t 1 3dt
I t 1 .
t 1 t 1 2t t 1
t 1 t 1 t 1

1 1 A B.t C
t 1
t 1 t
t 1 t t 1
   
     
 
  

 

     
     
       
   
     
  
     
  

  


  
 
  
  
2
A t t 1 B.t C t 1 1
t 1

1
Cho t 1 3A 1 A cho t 0 A 1 B.t C 1
3
1 2 7 2 1
C 1 C cho t 2 7A 2B C 1 2B 1 B
3 3 3 3 3
      
 
          
                 
 
 


 


 
 
 
   
 
 
 
3 3
2 2
2
2 2 2
2
2

2
2
2
d t 1 t 2 dt
1 1 t 2 3dt
3 t 1 t 1
t 1 t 1
3 t t 1 t t 1
d t t 1
1 2t 4 1 3 dt
ln t 1 dt ln t 1
2 2 2
t t 1 t t 1 t t 1
1 3 dt
ln t 1 ln t t 1
2 2
t t 1
1
d t
3 dt 3
2
2 2
t t 1
1 3
t
2 2
  
 
     
 

 
 
   
 

        
  
     
      

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
2 2
2
2
2
2
3 2 2t 1 dx 1 x
. arctg arctg
2 a a
3 3 x a
t t 1
1 1 2t 1 2t 1
I ln t 1 ln t t 1 3.arctg ln 3.arctg
2 2
3 3
t 1

 
 


 
 

 
 
 
 

   
         
   
   





 
 
      
 
    
 
n n n
n n
n
n n
n
' '
n n n n n 1 n n n 1
2 2
n n
n 1 n
ax b ax b ax b
a / R x, dx doi bien : t t ax b t .cx t .d
cx d cx d cx d
t .d b
x a c.t t .d b x

a c.t
t .d b a c.t t .d b a c.t n.d.t a c.t t .d b n.c.t
dx dt dt
a c.t a c.t
a.n.d.t b.n.c.t
 

 
  
      

 
  
 

     

        
  
 


 
 
 
n 1
1
2 2
n n
n.t ad bc dt

dt
a c.t a c.t




 


5
1/
1 ax b
I dx
x cx d





 
 
      
 
    
 
 
n n n
n n
n
n n

n
' '
n n n n n 1 n n n 1
2 2
n n
n 1 n 1
n
1 ax b ax b ax b
a / I . dx doi bien :t t ax b t .cx t .d
x cx d cx d cx d
t .d b
x a c.t t .d b x
a c.t
t .d b a c.t t .d b a c.t n.d.t a c.t t .d b n.c.t
dx dt dt
a c.t a c.t
and.t bnc.t
a c.t
 
 
  
       

  

     

        
  
 




 
 
 
 
 
 
 
  
n 1
2 2
n
n
n 1 n
2
n n n
n
n.t ad bc dt
dt
a c.t
a c.t .t
n.t ad bc dt n.t ad bc dt
I
t .d b a c.t t .d b
a c.t







 
  
 
  



 
  
 
   
      
   
 
2
2 2 2 2
2
2 2 2
2 2 2 2
t dt M N
Cho n 2 I 2 ad bc 2 ad bc dt
a c.t t .d b a c.t t .d b
t M N
M t .d b N a c.t t
a c.t t .d b a c.t t .d b
Mb
Na Mb 0 N M 0, P 0

a a b
M N
bc ad bc
ad bc ad bc
Md Nc 1 M d 1 M 1
a a
a
I 2
 
 
      
 
 
   
 
      
   

     

  


 
   

      
   

   


 
   
2 2
b
dt
a c.t t .d b
 
 


 
 
 

 
 
 
  
2 2
22
2
2
2
2
2
2 2
a a
t t
adt adt a 1 1 a dx 1 a x

c c
. .ln . ln ln
c 2 c 2a a x
a a a a x
a c.t
a
2 t t
c t
c c c
c
b b
t t
bdt bdt b 1 1 b
d d
. .ln . ln
d 2 d
b b b
t .d b
b
2 t t
d t
d d d
d
t dt a
I 2 ad bc 2
a c.t t .d b
 

 
   

  
 

 

 

 
 
 

 
 
 
 
 

    
 
 

 
 
 

 
 
 
 
   


 
   
2 2
b
dt
a c.t t .d b
a b
t t
1 a 1 b
c d
2 . ln . ln
2 c 2 d
a b
t t
c d
 
 


 
 
 
 
 
 
 
 
 
 

 
 


1 a a c.t 1 b b d.t
2 . ln . ln
2 c 2 d
a c.t b d.t
a ax b b ax b
1 ax b a b
c cx d d cx d
I dx ln ln
x cx d c d
a ax b b ax b
c cx d d cx d
 
 
 
 
 
 
 
 
 
 

 
 
  



 
 
 
 
 
 


6
'
' '
a ax b b ax b
a b
c cx d d cx d
Kiem tra ket qua : ln ln
c d
a ax b b ax b
c cx d d cx d
a ax b b ax b
a b
c cx d d cx d
ln ln
c d
a ax b b ax b
c cx d d cx d
a a ax b a ax b
ln ln
c c cx d c cx d
 

 
 
 
 
 

 
 
 
 
 
 
   
 
 
   
 
   
 
 
   
 
   
 
   
   
 
   
  
 

  
   
 
'
'
2
'
'
b b ax b b ax b
ln ln
d d cx d d cx d
a cx d c ax b
ax b
cx d
cx d
a ax b
ax b ax b
2 2
c cx d
a ax b
cx d cx d
ln
c cx d
a ax b a ax b
a ax b
c cx d c cx d
c cx d
   
   
 

   
   
    
 
    
   
  

 
 


 
 

 

 
 

 

 
 
   
 
 

 
 


 
 
 

 
 

 

   
 
   
 
2
2
'
2
'
'
ad bc cx d
.
2 ax b
cx d ad bc cx d
a ax b
a ax b
2 cx d ax b
c cx d
c cx d
a cx d c ax b

ax b
cx d
cx d
a ax b
ax b ax b
2 2
c cx d
a ax b
cx d cx d
ln
c cx d
a ax b a ax
a ax b
c cx d c
c cx d
 

  
 
 



  
 


 
  


 
 


 
 
 

 

 
 

 

 
 
   
 
 

 


 
 
 

 



 
   
 
2
2
b
cx d
ad bc cx d
.
2 ax b
cx d ad bc cx d
a ax b
a ax b
2 cx d ax b
c cx d
c cx d


 


   
 
 



  
 



 


 
 
 
 
' '
2
2
a ax b a ax b
ln ln
c cx d c cx d
ad bc cx d
1 1
a ax b a ax b
2 cx d ax b
c cx d c cx d
a ax b a ax b
c cx d c cx d
ad bc cx d
a ax b
2 cx d ax b
c cx d
   
   
 
  

   
   
 
   
   
 
 
 
 
 
 
   
 
 
 
 
   
 
 
   
 

   
 
  

   
 
 
   




 
 

 

 

 
 
   
 
2
ad bc cx d
a 1
.2
a cx d c ax b
c
2 cx d ax b
c cx d



 
 
 

 

 
 
 

  
 
 
 

 


7
 
 
 
 
 
 
2 2
'
ad bc cx d ad bc cx d c cx d
a 1 a ac
. . .
c c ad bc
cx d. ax b
ad bc
cx d ax b cx d ax b
c cx d
a ax b

a a
c cx d
ln
c
a ax b cx d. ax b
c cx d
 
 
    
 
  
 

 
 

   
 
 

 
 
 


 

 
 
  

 

 

 






 
   
 
'
2
'
'
2
2
a cx d c ax b
ax b
cx d
cx d
b ax b
ax b ax b
2 2
d cx d
b ax b
cx d cx d

ln
d cx d
b ax b b ax b
b ax b
d cx d d cx d
d cx d
ad bc cx d
.
2 ax b
cx d ad bc cx d
b ax b
b ax b
2 cx d ax b
d cx d
d cx d
  

 
 


 
 

 

 
 

 


 
 
   
 
 

 
 

 
 
 

 
 

 
 

  
 




  




 
 
'
2
ad bc cx d
b ax b
ln
d cx d
b ax b
2 cx d ax b
d cx d

 

 
 
  

 
 
 

 

 
 
  
 

 


 
 
 
 
' '
2
2
b ax b b ax b
ln ln
d cx d d cx d
ad bc cx d
1 1
b ax b b ax b
2 cx d ax b
d cx d d cx d
b ax b b ax b
d cx d d cx d
ad bc cx d
b ax b
2 cx d ax b
d cx d
   
   
 
  
   
   
 
   

   
 
 
 
 
 
 
   
 
 
 
 
   
 
 
   
 

   
 
  

   
 
 
   



 

 

 

 

 
 
   
 
2
ad bc cx d
b 1
.2
b cx d d ax b
d
2 cx d ax b
d cx d



 
 
 

 
 
 
 


  
 
 
 

 

 
 
 
 
 
 
'
2
' '
b ax b
ad bc cx d
b 1 bd cx d b
d cx d
ln
x bc ad
d d
cx d .x ax b b ax b
cx d ax b
d cx d
d cx d
b
cx d.x ax b
a ax b b ax b

a b a
c cx d d cx d
ln ln
c d
a ax b b ax b cx d a
c cx d d cx d
 
 


 
 
 


 
 
  

 
  
  

 
 


 
 


 
   
 
 
   
 
   
 
  
   
 
   
 
   
 
b
x b cx d .x ax b
ax b ax b
x cx d ax b x cx d

  
 
 
  


8
2/
2
1 ax b

I dx
cx d
x





 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
2
2
2
2
2
2
2

2
2 2 2
2 2 2
2
2 2
2 2
2
2 2
1 ax b ax b ax b
a / I . dx doi bien : t t
cx d cx d cx d
x
2.t ad bc dt
t .d b
x dx
a c.t
a c.t
a c.t .t
2.t ad bc dt
t dt
I 2 ad bc
t .d b a c.t t .d b
t M.t N P.t Q
M.t N t .d b P.t Q t
t .d b
t .d b t .d b
Md.
  
   


  


   




   
 
  
 
       

 

3 2 2
t Nd.t Mb.t Nb P.t Q t     


 
 
 
 
 
 
2
2 2
2
2 2

2 2 2
2
2
2
Md 0, Nd 1
M 0, P 0
P Mb 0
1 b
N , Q Nb
Q Nb 0
d d
t dt dt b.dt
I 2 ad bc 2 ad bc
d t .d b
t .d b d t .d b
b
t
dt 1 dt 1 1 1 d b d.t
d
. ln ln
b b 2 b b d.t
d d d
d t .d b
b
2 t
t
d d
d
 


 

 
   
 
  
 
 


 
 
     
  
 

 
 
 

  
  
 
 


 

 


 
 
 
 


 
 
 
 
2 2 2
22
2
2 2 2 3
2 2 2
2 2
2
2
2 3 2 3
2
2
b.dt b dt b
Dat a
d
d
d t .d b
b
t
d
b dt b t 1 a x

M ln
a x
d d 4a
2a x a
t a
b
t
b t 1 b d .t b 1 1 b
d
.ln . . .ln
b b
d d
bd d
2b t b
b b
2 t
t
4 4
d d
d
d d
 
 
 

 
 

 
 

 
 
 

 
    


 


 
 
 

 
 

     
 
 
 

   
 

 

 
   

 
 
   
 
 
 
 
 
 
2
1
2 2 3
2 2 2 2 2 2
2 2
d.t
b d.t
t d b d.t
ln
4d b b d.t
2 t b
2 1
dx x x 1 a x
I ln
a x
2a 4a
2a x a 2a x a
x a

 


 
  
 


 
   


   
     


   
 

   


9
 
 
 
 
 
 
 
 
2
2

2
2
2
2
3
2
dt b.dt
I 2 ad bc
d t .d b
d t .d b
1 d b d.t t d b d.t
2 ad bc ln ln
2 b b d.t 4d b b d.td
2 t b
b d.t 1 1 t
2 ad bc ln
b d.t 4 bd
2 t b
2 bd
ax b
b d.
1 ax b
cx d
I . dx 2 ad bc ln
cx d
x
b d
 
 
   

 
 

 

 
 
 
 
 
 
   
 
 
 

 
 
 
 

 
   
 
 


 
 





   



3
ax b
1 1
cx d
ax b
ax b 4 bd
2 bd
2 b
.
cx d
cx d
 

 
 

 
 
 

 

 

 

 
 

 

 



1 x 1
* I .dx
x x 1













 
   
   

  
      
   
  
' '
2 2 2 2
2
2
2 2
2
2 2
2
2 2
2 2
2 2
2
2 2 2
2 2 2 2
2
2 2
1 t 1 t 1 t 1 t
1 x 1 x 1 1 t
* I .dx dat t x , dx dt
x x 1 x 1
1 t
1 t
2t 1 t 2t 1 t
4t.dt 4t .dt
dt I
1 t 1 t

1 t 1 t
4t a b
dat a 1 t b 1 t 4t
1 t 1 t 1 t 1 t
a b 0, b a 4 b 2, a 2
4t .dt
I
1 t 1 t
    
  
    

 


  
   

 
 
      
   
        
  

 
   
2 2
2 2 t 1
ln 2arctan t C

t 1
1 t 1 t
x 1
1
1 x 1 x 1 x 1 x 1 x 1
x 1
I .dx ln 2arctan ln 2arctan C
x x 1 x 1 x 1
x 1 x 1 x 1
1
x 1
 
   
 

 


   
     

      

   
  
   
   





3/
3 3
dx
I
x a





 
 
 
 
 
 
 
      
 
 
 
 
3 3
2 2 2 2 2 2
2 2 2 2
2
2 2
2 2
2 2

dx dx 1 m px q
1/ I
x a
x a
x a x ax a x a x ax a x ax a
m x ax a px q x a 1 x m p am.x ma ap.x q.x aq 1 1
1 a 2
Sai : Cho x a 3a m 1 m Cho x 0 m a q a 1 q 1
3
3a 3a
7 2a
Cho x 2a 7a m 2ap q a 1 2a p 1 7 6
3 3

   
 


       
              
              
          
     
2 2
2 2
2 2 2
2 2
a p 2a 3 6a p 2a 4
1 x m p x am ap q ma aq 1
m p 0 m p

2
am ap q 0 2am q 0 q 2am
3a
1 1
ma aq 1 ma 2ma 1 m , p m
3a 3a
    
       


    


           



          




10
 
 
 
 
 
 
 

 
2
2
2 2 2 2
2 2 2 2
2 2 2 2
x 2
d x a
dx 1
3a
3a
I dx
x a
3a
x a x ax a x ax a
x 2a 2x a 3a dx
ln x a ln x a
1 1
dx
3a 3a 3a 6a
x ax a x ax a
 

   
  

    
   
   
 

   

 
 


   
'
2 2
2 2 2 2
2 2 2 2 2 2
2 2
2 2
2
2
2 2
2
x ax a dx
x 2aln x a ln x a
1 1 dx
dx 3a
3a 3a 3a 6a
x ax a x ax a x ax a
a
d x
ln x a
1 1
2
ln x ax a
2a

3a 6a
a a 3
x
2 2
2ln x a ln x ax a
1 2 a
. .arctg x
2a 2
a 3
6a
 
 
 
 
    
  
 
     
 
 
 

 

 
    

 
 
 

 
 
   
 
 
 
 
   
 
  


 
2
2 2
2 2
2
3 3 2 2 2 2
2
.
a 3
ln x a ln x ax a
1 2x a
.arctg
a 36a a 3
x a
dx 1 1 2x a
I ln .arctg
a 3x a 6a x ax a a 3
 


 

 
   

 
 
 
 


 
   

 
  
 


4/
3 3
dx
I
x a




 

 
 
 
 
 
 
      
     
3 3
2 2 2 2 2 2
2 2 2 2
2 2
2 2 2
2
dx dx 1 m px q
1/ I
x a
x a
x a x ax a x a x ax a x ax a
m x ax a px q x a 1 x m p am.x ma ap.x q.x aq 1 1
1 x m p x am ap q ma aq 1
m p 0 m p
2
am ap q 0 2am q 0 q 2am
3a
1
ma aq 1 ma 2ma 1 m ,
3a

   

 


       
              
        
    
           
      
2
1
p m
3a







   




 
 
 
 
 

 
 
 
 
   
2
2
2 2 2 2
2 2 2 2
2 2 2 2
'
2 2
2 2
2 2 2 2
2 2
2 2
x 2
d x a
dx 1
3a
3a
I dx
x a
3a
x a x ax a x ax a
x 2a 2x a 3a dx
ln x a ln x a
1 1
dx
3a 3a 3a 6a

x ax a x ax a
x ax a dx
ln x a
1 dx
3a
3a 6a
x ax a x ax a
d x
ln x a
1 1
ln x ax a
2a
3a 6a
 

   
  

    
   
   
 
   
 
 

 
  
 
 

   
 
 

    
2
2
a
2
a a 3
x
2 2
 

 
 

 
 
 
 
 
 
 
 
 
 
 



11
 
 
2 2
2
2
2 2
2 2
2
3 3 2 2 2 2
2
3 3 2 2 2 2
2ln x a ln x ax a
1 2 a 2
. .arctg x .
2a 2
a 3 a 3
6a
ln x a ln x ax a
1 2x a
.arctg
a 36a a 3
x a
dx 1 1 2x a
ln .arctg
a 3x a 6a x ax a a 3
x a
dx 1 1 2x a
* ln .arctg
a 3x a 6a x ax a a 3

   
 
 
  
 
 
 
 
   

 
 
 
 


 
  

 
  
 


 
 


  
 




 
 
 
 
 
 
 
 
 
 
2
3 3 2 2 2 2
2
3 3 2 2 2 2
3 3
2
2 2 2 2
x a
dx 1 1 2x a
* ln .arctg
a 3x a 6a x ax a a 3
x a
2x a
dx dx 1 1
* ln .arctg
a 3
x a x a x a

x a
6 a a 3
x a
1 1 2x a
ln . arctg
a 36a x ax a a 3


 
 

 
  
 
 
 
 
  
 
 
 
   
 
 
 


 
 
  

 
 
 
 
 


 
 


     
 
 
   
 
 
 
 
 
3
2 2
2 2
2
2 2
2
2 2 2 2
dx dx d x 1
* I
x -1

x 1 x x 1
x 1 x 1 3 x 1 3
dt 1 t 3t 3 t 3t 1 dt t 3 dt
dt
3 3 t
t 3t 3
t t 3t 3 t t 3t 3
1 dt 1 2t 3 dt 3 dt 1 dt 1 d t 3t 3 3 dt
3
3 t 2 2 3 t 2 2
t 3t 3 t 3t 3 t 3t 3
3
t
2
4

  
  
  
    
    
 
   
   
 
 
 
   
 
  

 
     
     
 
 
 
     
 
 
 
2 2
2 2
1 1 t 2t 3 1 x 2x 1 1 2x 1
ln 3arctg c ln arctg c
3 2 6
3 3 3t 3t 3 x x 1
 
   
     
 
   
 


 
 


     
 

 
   
 
 
 
 
 
3
3
2 2
2 2
2
2 2
2
2 2 2 2
dx dx d x 1
* I =
x +1
x 1 x x 1
x 1 x 1 3 x 1 3
dt 1 t 3t 3 t 3t 1 dt t 3 dt
dt
3 3 t
t 3t 3
t t 3t 3 t t 3t 3
1 dt 1 2t 3 dt 3 dt 1 dt 1 d t 3t 3 3 dt
3
3 t 2 2 3 t 2 2
t 3t 3 t 3t 3 t 3t 3
3

t
2
4

 
  
  
    
    
 
   
   
 
 
 
   
 
  
 
     
     
 
 
 
     

 
 
2 2
2 2

1 1 t 2t 3 1 x 2x 1 1 2x 1
ln 3arctg c ln arctg c
3 2 6
3 3 3t 3t 3 x x 1

 
   
     
 
   
 


5/
4 4
dx
I
x a




 
  
 
  
 
   
 
 

 
 
 
 
 
   
 
   
 
4 4
2 2 2 2 2 2
2 2 2 2 2 2
2 2
3 3
4 4
4 4
2 2
dx dx 1 Ax B C D
2 / I
x a x a
x a
x a x a x a x a x a x a x a
Dk : x a Ax B x a C x a x a D x a x a 1 1
1 1
ko the cho x a D.2a.2a 1 D , cho x a C 2a .2a 1 C sai vi x a
4a 4a
1 Ax B C D Ax B
1 x a
x a x a
x a

x a

    
 
 

      
          
             
 
     
 


 
   
 
2 2
C D
f x
x a x a
x a
 
 
  
 
 

 




12
 


 
 
 
 
 
 
 
 
 
 
 
4 4
3 3
3
x a x a x a
4 4
3 3
3
x a x a x a
4 4
3
2
2 2
x i.a x i.a x i.a x i.a

2
D x a
1
lim f x lim lim 4x .D qui tac L'Hopital 4a .D 1 D
x a
4a
C x a
1
lim f x lim lim 4x .C 4a .C 1 C
x a
4a
Ax B x a
Ax B .4x
lim f x lim lim lim Ax B .2x
2x
x a
2a Ai.
  
  
   

      


       

 

   


 
   
 
 
 
 
   
4 4
3
2 2
x i.a x i.a x i.a
2 2
2
x i.a
Ax B x a
Ax B .4x
a B 1 lim f x lim lim
2x
x a
1
lim Ax B .2x 2a Ai.a B 1 A 0, B
2a
  

 

   

          









   
 
 
 
 
 
3 2 2 2 3 2 2 3 3 2 2 3
3 2 2 2 2 2 3 3
2
2
2
1 Ax Bx a Ax a B C x ax a x a D x ax a x a 1
x A C D x B aC aD x a A a C a D a B a C a D 1
a C D A 0 A C D
A C D 0
A C D 0 2 C D 0 C D, A 0
B aC aD 0
B aC aD 0 B
a C D A 0
a B aC aD 1
a 0
            
             


     



  
         



  


   
   


   




 
   
2 2
3
3
a C D , C D B 2aC
a B aC aD 1 a 2aC aC aC 1
1

4a C 1 C
4a
 
 
 
 

 
     

 

 
        

 

 

     
 

 


 
  
 
 
 

 
 
3 3 2
4 4 2 3 3
2 2 2 2
2 3 3 3
1 1 1
A 0, C , D , B
4a 4a 2a
d x a d x a
dx dx 1 dx 1 1
I
x a x a
x a 2a 4a 4a
x a x a x a x a
ln x a ln x a
1 1 x 1 x a 1 x
. .arctg ln .arctg C
a a x a a
2a 4a 4a 2a
      
 
      
    
 

   
  

     



         
 
 
 
 
   
   
 
 
1 1 2 2
4 4
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2
1 1 2 2
3 2 2 2 2 2
1 2 1 2 1 2 1 2
2 2 2
1 2 1 2 1 2 1 2 1 1 2
2 2
1
2 2 2
a x b a x b
dx dx 1
I
x a
x a x a x a x a x a x a
a x b x a a x b x a 1
x a a x b b x a a a a b a b a 1

1 1
a a 0, b b 0 b b , b a b a 1 2b a 1 b , b
2a 2a
dx 1 a
I
x a a
 
   
 

     
      
        
               
 


2
2 2 2
2 2 2 2 2 2 3 3
.du arctgu 1 x dx 1 a x
C arctg C I ln
a a a 2a a x
u 1 x a
1 dx 1 dx 1 a x 1 x
I ln arctg C
a x a
2a x a 2a x a 4a 2a

     

 

 

     
 

 




2 2
Ax B dx
dx
,
ax bx c ax bx c

 
   
đưa tam thức bậc 2 về dạng tổng hoặc hiệu bình phương


13
6/
4 4
dx
I
x a









 
 
 
 
2 2 2 2 2 2 2 2
4 4 2 4 2 4 4
2
2
2
2
2 2
2 4 4 2 2 2
2
2
2
2
2
2
2
2
2 2
2
dx 1 x a x a 1 x a x a

I dx dx dx
x a 2a x 1 2a x 1 x 1
a
a
a
a
1 1
d x
d x
1 1
x
x
x x
dx dx
2a a a 2a
a
a
x
x
x 2
x 2
x
x
x
x
1 1 x a
arctg
2 x 22a
 
    

   
   
 
 
   
 
 
 
 

 

 
 
 
 
 
   
   
 
 
 


 
 
 
 
 
 

 
 


2 2
2 2
1 x x 2 a
ln C
2 2 x x 2 a
 
 
 
 
 
 



7/
6 6
dx
I
x a




  
      
     

     
   
6 6
3 3 3 3
2 2
1 1 1 2 2 2
3 3 3 3 3 3 3 3
2 3 3 2 3 3
1 1 1 2 2 2
5 4 3 2 3 3 3 3 3 3
1 2 1 2 1 2 1 2 1 2 1 2
3 3
1 2 1 2 1 2 1 2
dx dx
I
x a
x a x a
a x b x c a x b x c
1
x a x a x a x a
a x b x c x a a x b x c x a 1
x a a x b b x c c x a a a a x b a b a c a c a 1
a a b b 0, c c , c a c a 1 2c
 
 

 
   
 
   

        
            
         
      
3
1 1 2
3 3
3 3
3 3 3 3 3 3 3 3
1 1
a 1 c , c
2a 2a
dx 1 dx 1 dx
I
2a 2a
x a x a x a x a
    
   
  
   

 
 
   
2
3 3 2 2 2 2
2
3 3 2 2 2 2
2 2
6 6 5 2 2 5 5 2 2

5
x a
dx 1 1 2x a
ln .arctg
a 3x a 6a x ax a a 3
x a
dx 1 1 2x a
ln .arctg
a 3x a 6a x ax a a 3
x a x a
dx 1 1 2x a 1
I ln .arctg ln
a 3x a 12a x ax a 2a 3 12a x ax a
1 2x a
.arctg
a 32a 3


 
 

 
  
 


 
 

 

  
 
 

 
    

 
    
 

 
 
 
 
 
 
 
 
2
2 2
5 2 5
2 2
x a x ax a
1 1 2x a 2x a
ln arctg arctg
a 3 a 312a 2a 3
x a x ax a
 
  

 
 
   
 
 
   
 
 
   
 
  
 



14
8/
6 6
dx
I
x a















  
 
 
   
4 4 4 4 4 2 4 2 2 2 2 2
6
6 6 6 6
2 2 4 2 4
2
2 2 2 3
2
2 2 6 6 4 2 4 2 2 2 2
2
3 3
2
2
I
dx 1 x a x a 1 x x a x x a x a dx
= dx
2 2
x + a x a
x a x x a
a
1 dx
1 dx x dx x a dx 1 dx 1 d x

x
2 2 3
x a x a x x a x a
a
x a
x 1
x
1 1 x
arctg
2 a a
        
 
  

  
 
 

 
 
 

 
     
 
     
 
 
 
    

 

 
 
 
 
 
 




 
3
2
3
3 2 3
2
3
2
2
3 2
x x
3a .arctg arctg
a
a
d x
x 3
a a
1 x 1

x
x
arctan ln
a
a
2 33a 6a
a
x 3
x 3
x
x
x x
3a .arctg arctg
a a
1 x x 3 a
ln C
2 36a x x 3 a
 
 

 
 
 

 
 
 
 
 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
  
 
  
 


9/
8 8
dx
I
x a





  
      
     
       
 
   
8 8
4 4 4 4
3 2 3 2
1 1 1 1 2 2 2 2
4 4 4 4 4 4 4 4
3 2 4 4 3 2 4 4
1 1 1 1 2 2 2 2
7 6 5 4 3 4 4
1 2 1 2 1 2 1 2 1 2
2 4 4 4 4 4
1 2 1 2 1 2
dx dx
I
x a
x a x a
a x b x c x d a x b x c x d
1
x a x a x a x a
a x b x c x d x a a x b x c x d x a 1
x a a x b b x c c x d d x a a a a
x b a b a x c a c a d a d

 
 

 
     
 
   
          
         
     
 
 
 
      
4
1 2 1 2 1 2 1 2 1 2
4 4 4
1 2 1 1 2
4 4
8 8 4 4
4 4 4 4 4 4 4 4
a 1
a a b b c c 0, d d 0 d d
1 1
d a d a 1 2d a 1 d , d
a a
dx dx 1 dx 1 dx
I
x a a a
x a x a x a x a


           
       
    
   

   

   
1
4 4 3 3
2 2 2 2
2
4 4 2 2 2
8 8 4 4
4 4 4 4
2 2 2 2
7 7 6 6 2
dx 1 x a 1 x
I ln .arctg C
x a a
x a 4a 2a
dx 1 1 x a 1 x x 2 a
I arctg ln C
2 x 2 2 2x a 2a x x 2 a
dx 1 dx 1 dx
I
x a a a
x a x a
1 x a 1 x 1 x a 1 x x 2 a

ln .arctg .arctg .ln
x a a
x 2
4a 2a 2 2a 4 2a x x

   



 
  
   

 
  
 
   
  

 
   
   


2
C
2 a






15
*
8
dx
I
1 x






2 4 2 4
8
2 2 4 2 4
2 4 2 4
2 2 4 2 4 2 2 4 2 4
2 2 4 2 2
1 2.x x 1 2.x x
dx
I dx
1 x
2 2.x . 1 2.x x 1 2.x x
1 2.x x 1 2.x x
dx dx
2 2.x . 1 2.x x 1 2.x x 2 2.x . 1 2.x x 1 2.x x
dx dx


2 2.x . 1 2.x x 2 2.x . 1 2.x
    
  
 
   

   
   
   
  
 
       
       
       
 

 
  
 
a b
4
2 4 2 4
a
2 2 4 2 2 4
2
2
2 4 2 4
2
a
3 2 4 3

J J
x
1 2.x x 2.x x
dx
J dx
2 2.x . 1 2.x x 2 2.x . 1 2.x x
dx dx x
dx
2 2.x
2. 1 2.x x 2 2. 1 2.x x
1 1 x 2 1 1
. dx .K
2 2 2 2
2.x 1 2.x x 2.x
 

 

 
 
   
 
  
 
   
   
   
   
  
   

   
   

     

 

   
 
         
2 2 2
2 2
a
2 4 2 4 2 4
2 2 2 2 2
2 4 2 4
2
2
1 2
x 1 . x 1 x 1
2
x 2 x 1 1 2
K dx dx dx
1 2.x x 1 2.x x 1 2.x x
1 2 1 2 1 2 1 2
x 1 . x 1 . x 1 x 1 . x 1
2 2 2 2
dx dx
1 2.x x 1 2.x x
1 2 x 1

.
2
1 2.x
 

    
 
   
 
   
  
     
       
   
       
       
       
  
 
   
 
 

 

 
   
2
4 2 4
2 2

2 2
2 2
2 2
1 2 x 1
dx . dx
2
x 1 2.x x
1 1
1 1
1 2 1 2
x x
. dx . dx
1 1
2 2
x 2 x 2
x x
1 1
d x d x
1 2 1 2
x x
= . dx . dx
2 2
1 1
x 2 2 x 2 2
x x
 
 
 
 
 

  
 
 
   
 
  
 
   
   
   
   
 
   
   
 
   

 
   
   
   
     
   
   


2 4 2 4
b
2 2 4 2 2 4
2

2
2 4 2 4
2
b
3 2 4 3
1 2.x x 2.x x
dx
J dx
2 2.x . 1 2.x x 2 2.x . 1 2.x x
dx dx x
dx
2 2.x
2. 1 2.x x 2 2. 1 2.x x
1 1 x 2 1 1
. dx .K
2 2 2 2
2.x 1 2.x x 2.x
 
   
 
  
 
   
   
   
   
  
   
   
   


     

 


16
   
 
         
2 2 2
2 2
b
2 4 2 4 2 4
2 2 2 2 2
2 4 2 4
2
2 4
1 2
x 1 . x 1 x 1
2
x 2 x 1 1 2
K dx dx dx
1 2.x x 1 2.x x 1 2.x x
1 2 1 2 1 2 1 2
x 1 . x 1 . x 1 x 1 . x 1
2 2 2 2
dx dx
1 2.x x 1 2.x x
1 2 x 1

. dx
2
1 2.x x
 

    
 
   
 
   
  
     
       
   
       
       
       
  
 
   
 
 


 
 
 
   
2
2 4

2 2
2 2
2 2
2 2
1 2 x 1
. dx
2
1 2.x x
1 1
1 1
1 2 1 2
x x
. dx . dx
1 1
2 2
x 2 x 2
x x
1 1
d x d x
1 2 1 2
x x
= . dx . dx
2 2
1 1
x 2 2 x 2 2
x x
 
 



 
 
 
 
   
 
 
 
   
   
   
   
 
   
   
 
   

 
   
   
   
     
   
   


10/
*
2n

dx
I n
1 x
  


¥




   
n i i n in i n
2k
i
n
n
k
n
2k 1 2k 1
2k
i i
i
2n 2n
2n
2n
2n i
2n
w z z r.e w p.e p .e r.e p r va n k2 k Z
Vay can bac n cua z là n so phuc: w r.e , k 0, 1, 2, 3 n 1

With r là can thuc duong duy nhat
1 x 0 x 1 e e e e
   
 
 
 
 
   
  
 
 
 
 
   

            
  
        
   
 
k k
n
2n
k k
k 1
2k 2k 2k 2k
x cos i.sin x cos i.sin
2n 2n 2n 2n
With k :1 n thay k tu1den n 1 x x x x x


 
 

           
   
    



n
k k
2n
k 1
k k
2n 2n
n
k k
k 1
k k
k k k k
2n
2n 1 '
k
x x
k
k
A B
1
Ta tim bieu thuc phan tich duoi dang sau :
x x x x

1 x
x 1 x 1
1 A . B .
x x x x
De tinh A và B voi k :1 n, ta cho x x và x x , khi do:
x 1 0
lim 2n.x dang , dùng LHospital
x x 0




 
 

 
 

 
 
 
  

 
 
 
 

 


 

 
 
 
2n
2n
k
x x
k
k
k k
2n 1 2n 1
k
k
x 1
lim 0 do x là ngiem cua x 1
x x
1 1
A , B voi k :1 n
2n.x
2n x

 

 

  

Thế các hệ số vừa tìm được vào dạng phân tích, ta có:


17




 
 
 
 
n n
k k k k
k k
2n
k 1 k 1
k k
k k
n
k k k k k k
2
k 1
A x x B x x
A B
1
x x x x
x x x x
1 x
x A B A .x B .x
2k
x 2x.cos 1

2n
2k 2k 2k 2k
x cos i.sin x cos i.sin
 

 
  
 
  
 
 
 
 
 

  
 
  


  
 
           
 
       
   
       
 



18
   
  
 
 
 
k k
2n 1 2n 1 2n 1 2n 1
n
k k
k k
2n
2
k 1
n n
2
2
k 1 k 1
x x
1 1
x
2n.x 2n.x
2n x 2n x
1
2k
1 x
x 2x.cos 1
2n
2k 1 2n 1 2k 1
x 1

.cos .cos 2k 1 x.cos 1
n 2n n 2n
2k
2k
x 2x.cos 1
n. x 2x.cos 1
2n
2n
   

 
   
   
  
   
   
 

  

 
    
    
 
 
  
  
 
 
 

 
 






   
   
   
 
i i
1 2
1 1 2 2
1 2 1 2 1 2 1 2
i i
1 2 1 2
1 2 1 2 1 2 1 2
i i i i
1 2 1 2
i
1 i
1 1 1 1
1 2
i i i0
2 2
2 1 1 1
e .e cos isin cos isin
cos cos sin sin i sin cos cos sin

cos isin e z .z r .r .e
z r r re .e e .e 1 1
. . .e z e
z r r r z r
e
e .e
 
   
     
 
 
  
      
           
          
    
 
 
n
n
n n in i in
z r .e Neu r 1 e e cos isin cosn isinn

  
          










     
     
     
2n 1
k
1 2n
k
2n 1
k
2n 1
k
2n 1 2k 2n 1 2k
x cos i.sin
2n 2n
1 2n 2k 1 2n 2k
1
x cos i.sin
2n 2n
x
2n 1 2k 2n 1 2k
cos i.sin
2n 2n
2n 1 2k 2n 1 2k
x cos i.sin
2n 2n





       
   
 
   
   
       
   
   
   
   
       
   
 
   
   
       
  
 
  
  
    

     
1 2n
k
2n 1
k

1 2n 2k 1 2n 2k
1
x cos i.sin
2n 2n
x
2n 1 2k 2n 1 2k
cos i.sin
2n 2n





      
   
   
   
   
       
   
 
   
   





      
   

 
2n 1 2n 1
k
k
2n 1 2n 1
k
k
2n 1 2k
1 1
2cos
2n
x
x
2n 1 2k 2n 2k 2k
1 1 1
cos cos
2 2n 2n 2n
x
x
2k 2k 2k
cos 2k .cos sin 2k .sin cos
2n 2n 2n
cos 2k 1, sin 2k
 
 
   
 
  
 
 

 
         
   
    
 
   
 
   
 
        
     
         
     
     
     
 
 
0  

     
  
  
2k
i.
2n
k
2n 1
2n 1 2k
i.
k

2n
2k
2k
i.
i.
2n
2n
2n 1 2k 2
2k
i. i
i.
2n
2n
2k 2k
cos i.sin
x
e
2n 2n
2n 1 2k 2n 1 2k
x
cos i.sin
2n 2n
e
e .e 1
e .e e

 
 
 


 
 
 
 

 

 
 
 
 
 
 
 

 
 
 
   
     
   

   
   
 
       
   

   
   

 
    
 


  
 
  
 
   
  
i 2k
i 2k
n 1 2k 2n 2k
2k
i
2n 2n 2n
i.
i. 2 2 2 2 2
1 1
e
e
e
cos 1 2k i.sin 1 2k cos 2k i.sin 2k 1 0
e .e cos i.sin cos i.sin cos i .sin cos sin 1
 

  
   



   
   


  
                    
              


19
 
     
  
  
  
  
2k
i.
2n
k
2n 1
2n 1 2k
i.
k
2n
2n 1 2k
2k
i.
i.

2n
2n
2n 1 2k
2n 1 2k
i.
i.
2n
2n
2k 2k
cos i.sin
x
e
2n 2n
2n 1 2k 2n 1 2k
x
cos i.sin
2n 2n
e
e .e
e .e

 
 
 

 
 
 
 
 

 

 
 
 
   
 
 
 

 

 

     
   

   
   
 
       
   

   
   

    


   

  
  
   
2n 1 2k 2n 2k
2k
i i
i 2k
2n 2n 2n
2n 1 2k
2n 1 2k
i.
i.
2n
2n
k k k k
2n 1 2n 1 2n 1 2n 1
k k
k k
e e e
cos 2k i.sin 2k 1 e .e 1
x x x x
1
1 1 2 1
2
x x
x x
  
   



   

   



 
 
 
 
 
 
 
 
   
  
         
 
 
          
 
 


Do tổng xích ma
 
n
k 1
f x;k


 

 
 
này hữu hạn nên ta có thể đem dấu nguyên hàm


dx

vào trong dấu
xích ma và được:




n n
2n
k 1 k 1
2 2
2 2
2k 1 2k 1
x.cos 1 x.cos 1
dx
2n 2n
I dx dx
2k 2k
1 x
n. x 2x.cos 1 n. x 2x.cos 1
2n 2n
2k 2k 2k

x.cos cos cos
2n 2n 2n
 
   
   
   
   
   
   
 
  
     
   
   

   
   
   
   
   
   
   
   
        
    
  
    
    

n

k 1
2
1
dx
2k
n. x 2x.cos 1
2n

 



 

 


  
 
 
 
 
 
 
 
 
 
 

n

2
k 1
2
2
2
2
1
2
2k 2k
cos 2x 2cos
2n 2n
. dx
2k
2n
x 2x.cos 1
2n
2k
sin
dx
2n
.
n
2k 2k
x cos sin
2n 2n
2k
x 2
2x 2cos
2n
I dx

2k
x 2x.cos 1
2n

     

   

   

   
  
 

  
 

 
 

 


  
 

 
 




     
   
 

   
   

  
 


 
 
 

  
 
 
 
 
'
2
2
2k
x.cos 1 dx
2k
2n
ln x 2x.cos 1
2k

2n
x 2x.cos 1
2n
  
 
 

 
 
  
 
 
 
  

 
  
 
 
 
 
 


2
2
2
n
2
2n

k 1
2
2k
x cos
dx 1
2n
I .arctg
2k 2k
2k 2k
sin sin
x cos sin
2n 2n
2n 2n
2k
cos
dx 2k
2n
I .ln x 2x.cos 1
2n 2n
1 x
2k
sin
1
2n
.
2k
n
sin
2


  
 

 
 
 

     
   
     
   
   
 
   
   
   
  

 
 

  
 
 
      



 
  




  
 
 
 
  
2k
x cos
2n
.arctg
2k
sin
n 2n
  

 

 

 

  
   

   

   





20
11/
n n
dx
I
x a





   
 
2 2k
i
n
n n
n n n 2 i
n n
2k
i
n
k
n
n
k
k 1

n i i n in i n
dx
I x a 0 x a .1 a. e a.e
x a
2k 2k
a.e x a cos i.sin
n n
With k :1 n thay k tu1den n 1 x x x
w z z r.e w p.e p .e r.e p r va n k2 k Z
Vay can bac n cua z là n so
 
 
 
 


 
 
 

   
      


 
 
   
 
 
   


            
2k
i
n
n
k
n
phuc: w r.e , k 0, 1, 2, 3 n 1
With r là can thuc duong duy nhat
 
 
 
 
  


n n
n n
k
k
n n
k 1 k 1
k k
k k k
n n
n 1 '
k k
n 1
x x

k
k
k
A
1 x a
Ta tim bieu thuc phan tich duoi dang sau : 1 A .
x x x x
x a
De tinh A và B voi k :1 n, ta cho x x khi do:
x a 0 1
lim n.x dang , dùng LHospital A voi k :1 n
x x 0
n.x
The cac he
 



 
 

  
 
 
 
 

 
 



 
  
 

 
 
     
  
n n
k
k
n n n 1
k 1 k 1
k
k k
1 n 1 n
k
n 1
k
1 n
so vua tim dc vào dang phan tích, ta có:
A
1 1 2k 2k
x a cos i.sin
x x n n
x a n.x x x
1 n 2k 1 n 2k
1
x a cos i.sin

n n
x
n 1 2k
a cos
n

 
 


 
 
 
 
   
   
 
 
   
 
 
 

     
 
 
 
    
   
   

 
   
   
 
 
 

 
 
  
n 1 2k
i.sin
n
  
 

 
 
 
 




       
 
 
   
2k n 1
n2k 2k

cos cos
n n n
2k 2k 2k
cos 2k .cos sin 2k .sin cos cos 2k 1, sin 2k 0
n n n
2k n 1
n2k 2k 2k 2k 2k
sin sin sin 2k .cos cos 2k .sin sin
n n n n n n
 
 
 
 
 
 
 
 
 
  
     
        
     
     
 
 
    
       
       
      
 

      
 




 
1 n
n 1
k
1 n
n n
n n n 1
k 1 k 1
k k
1 n
n
1 2k 2k
a cos i.sin
n n
x
2k 2k
a cos i.sin
1 1
n n
2k 2k
x a n.x x x
n x a cos i.sin
n n
2

cos
dx a
n
x a




 

 
 
   
  
   
 
   
 
 
 
 
   

   
 
 
 
   
 
 

  
 
 
 
 
 
 
 
 
   
 
 
   
 
 
 
   
 
 
 
 


n
k 1
1 n
n
k 1
k 2k
i.sin

n n
dx
2k 2k
x a cos i.sin
n n
a 2k 2k 2k 2k
cos i.sin .ln x a cos i.sin
n n n n n



 
 
 
   

   
 
 
   
 
 


  
 
 
   
 
   

 
 
 
   
 
 
 
   
   
       
   

       
   
       
   



21




   
   
   
 
i i
1 2

1 1 2 2
1 2 1 2 1 2 1 2
i i
1 2 1 2
1 2 1 2 1 2 1 2
i i i i
1 2 1 2
i
1 i
1 1 1 1
1 2
i i i0
2 2
2 1 1 1
e .e cos isin cos isin
cos cos sin sin i sin cos cos sin
cos isin e z .z r .r .e
z r r re .e e .e 1 1
. . .e z e
z r r r z r
e
e .e
 
   
     
 
 
  
      
           

          
    
 
 
n
n
n n in i in
z r .e Neu r 1 e e cos isin cosn isinn

  
          


6/
2
dx
I
ax bx c


 

 
   
 
2
2
2
2
2

2
2
2
2
2
2 2
2
2
2
dx dx dx
I
bx c
ax bx c
b c b
a x
a x
a a
2a a
4a
dx b 4ac b
dat x y dy dx, M
2a
4a
b 4ac b
a x
2a
4a
dx
If a 0 a a , M 0 M M
a y M

dx 1 y
I .arctg
a . M M
a y M
dx
I
  
  
   
 
 
 
 
  
 
 
 
 
 
 

 
     

 
 
 

 
 

 
 
 
 
 
      


  

 

 
 
 
2
2
2
b
x
1 4ac b
2a
.arctg M
4a
a . M M
ax bx c
 

 


 

 
 
 
 

   
 
 
2
2
2 2
2
2
2
2
2 2
2 2
ln y y M
dx
If a 0 a a , M 0 M M I
a
a y M
b ax bx c
ln x
2a a
dx
I
a

ax bx c
dx 1 a x
ln tg .arcsin ln x x a C i.arcsin
2 x a
x a
 
         

 

 
 
 
 
 
 
 
  

 
 
       

 
 








   
 
2 2
2 2
2
2 2
2
2
2 2
2 2 2 2 2 2
If a 0 a a , M 0 M M
i.ln y y M
dx dx
I
a
i. a y M
a y M
dx dx i.dx
I i.ln x x a
x a i x a x a
1 i.a i.x 1 x
ln tg .arcsin arcsin i.ln tg .arctg
2 x a 2 a 4
      
  
   
 
 


 
 
 

      
  
   

   
     
   
   


22




   
 
2 2
2
2 2
2
2
2 2
2 2
If a 0 a a , M 0 M M

dx dx 1 y
I arcsin
a M
a M y
a y M
dx x 1 a
arcsin i.ln tg .arcsin ln i.x a x
a 2 x
a x
       
   
 
 

 
 
 
 
    

 
 



7/


2
mx n dx

I
ax bx c



 

   
 
 
   
2
'
2
2 2 2
1
2 2
2
2
mb
n
mx n dx m 2ax b
mx n m mb
2a
I Ta có: mx n n
2ax b 2a 2ax b 2a 2a
ax bx c
m 2ax b
mb
n dx

ax bx c dx
2a 2a
m mb dx
I n
2a 2a
ax bx c ax bx c ax bx c
m mb dx
ax bx c .d ax bx c n
2a 2a
ax bx c


 

       

 
 

 
 
 
 
 
 
    
  
 
 
     

 
      

 
 
 
 
1
2
2
2
m ax bx c
mb dx
n
1
2a
ax bx c
2a.
2

 
 
  

 
 
 




2
x 1
* I dx
1 4x x



 

 
 
 
 
2
2 2 2 2
2
1
2x 4 3
d 1 4x x
d x 2
x 1 1
2
* I dx dx 3
2
1 4x x 1 4x x 1 4x x
x 2 5
3 x 2
1 4x x arcsin C
5 5
   

 


    
   
     
  

     


8/
 
2
dx
I
x q ax bx c


  

 
 
 
 
 
 
 
 
2

2
2
2 2
2
2 2 2
2 2
2
2
2 2
2
dx 1 dt 1
dat x q dx , t
t x q
t
x q ax bx c
1 1 1 2q 1
ax bx c a q b q c a q b q c
t t t t
t
a b 2aq 1
aq bq c a t b 2aq t aq bq c
t
t t
dt
dx
t
1 1
x q ax bx c
a t b 2aq t aq bq c
t

t
dt
t
     


  
       
            
       
       

          

 
 
  
    


 
 
 
 
 


2
2 2
2 2

2
dt
1
t aq bq c t b 2aq a
a t b 2aq t aq bq c
t
 
 
    
    



23
 
 
   


 
2
2
2 2 2
2
2
2
2 2
2 2
2
dt

Dat aq bq c A, b 2q B
b 2q
1 a
t t
aq bq c aq bq c aq bq c
dt
1 B a B
t
A 2A A
4A
B a B 4Aa B
dat t y dy dt, N
2A A
4A
4 aq bq c
      

 

 
 
 
     
 
 

 
 
  
 

 
 
 
 

 
      
 
 
 

 
   
 
 
 
2 2
2
2 2
2 2 2 2 2
2
1 dy
M I If N 0 N n , M 0 M m
A
M y N
ln y y n
dy 1 dy
I
m m
m y n y n

B 1 b 2q
y t
2A x q
2 aq bq c
         


 
      
 
 

 
   
 

 
 

 
   
 
 
 
   
 
 
 
 
 

 
2
2
2 2 2
2
2 2
2 2 2 2
2
2
2 2
2 2
2
2
2 2
b 2aq
B a B a
y n t t t
2A A
4A
aq bq c aq bq c
t aq bq c t b 2aq a t aq bq c t b 2aq a
t
t
aq bq c aq bq c
t aq bq c t b 2aq a
1 2q 1 1
a q b q c a q b
t t t
t t
 


 
 
       
 
 
 
   
 
 
         
 
 
 
   
 
    
     
         
     
     
 
 
2
2 2 2
2
2
1
q c
t

ax bx c
ax bx c y n
x q aq bq c
 
 
 
 
 
     
  


 




 
 
 
2 2
2
2
2
2
2 2
ln y y n
dx
I
1

x q ax bx c
aq bq c
1 b 2q 1 ax bx c
ln aq bq c
x q x q
2 aq bq c aq bq c
 
   

  
 
 
 
  
 
 
     
 
  
   
 
 


   
2 2
2 2 2 2 2
2 2
2 2
2 2

If N 0 N n , M 0 M m
1 n 1 n
ln tg .arcsin ln tg .arcsin
2 y 2 y
dy 1 dy
I
m m m
m y n y n
ln y y n
y
i.arcsin
m n
dx 1 a x
ln tg .arcsin ln x x a C i.arcsin
2 x a
x a
      
   

   
   
       
 
 
 
  
 
       

 

 



24
   
2 2
2 2 2 2 2
2 2
2 2
2 2
If N 0 N n , M 0 M m
dy 1 dy 1 y i 1 y
I .arcsin .ln tg .arcsin
m m n m 2 n
m y n n y
ln i.y n y
dx x 1 a
arcsin i.ln tg .arcsin ln i.x a x
a 2 x
a x
       
 
       
 
 
 
  
  
 

    

 
 




 
2
dx
* I
x 1 1 x


 

 
 
   
2
2
2 2
2
2
2
1
1
2
dx 1 dt 1 1 2t

* I doi bien :x 1 dx 1 x 1 1
t t
t t
x 1 1 x
dt
dt
t
I because1 x 0 x 1 x 1 0 t 0 t t
1 2t 1 2t
t. t
d 2t 1 1 2t
1 1 2 1 x
I 1 2t 1 C
1
2 2 x 1 1 x
1 2t
1
2
 
 
 
          

 
 
 
               
 
   
   


              

 
 
 


 
 
 
 
 
 
2
2
2
2
2 2 2 2 2
2 2 2
3x 4
VD: dx x 6x 8 1 x 3 dat x 3 t x t 3 dx dt
x 6x 8
d 1 t
3 3 t 4
3x 4 3t.dt dt 3
dx dx 13 13arcsin t
2
x 6x 8 1 t 1 t 1 t 1 t
d 1 t 2t.dt 3 1 t 13arcsin t 3 x 6x 8 13arcsin x 3 C


            

  

 

     
    
      
              

Để tính tích phân


2
R x, ax bx c
 

ta có thể dùng phép đổi biến lượng giác:
 
 
 
2
2
2
2
2
2
2 2 2

2
2
2
2 2 2
2
2
2
2 2 2
2
b c b
ax bx c a x
2a a
4a
b b 4ac
a x a u d Neu b 4ac 0, a 0
2a
4a
b 4ac b
a x a u d Neu b 4ac 0, a 0
2a
4a
b 4ac b
a x a d u Neu b 4ac 0,
2a
4a
 
 
     
 
 

 
 
 
 

 
       
 
 
 
 
 
 

 
       
 
 
 
 
 
 

 
        
 
 
 
 
 













2 2 2
2 2 2
2 2 2
a 0
d
R x, ax bx c R u, u d Dat u
sin t
R x, ax bx c R u, d u Dat u d.sin t
R x, ax bx c R u, u d Dat u d.tgt

    
 
    
 
    
 




25
*
 
3
2
dx
I
x 4x 7


 

 
 
 
   
 
2
2
3
3
2
2
2 2
2
3
2 3
dx du
VD: I x 4x 7 x 2 3 dat u x 2 I

x 4x 7
u 3
3 3
dat u 3.tgt du , u 3 3 tg t 1
cost
cos t
x 2 3
3.cos t.dt sin t u 3
I sin arctg sin arctg
3 3 3
cos t. 3
         
 
 

      
 
 

    
  
 
 
 
 



p
m n

x a bx dx


với m, n, p là các số hữu tỉ. Nhà toán học Nga Trebushep cm rằng tích phân trên
chỉ lấy được (tức là có thể biểu diễn ở dạng hàm sơ cấp) trong 3 trường hợp sau:
 
s
s s
n s
10
1 1
2 4
10
4
1/ p là so nguyen khi ay dat x t voi s là boi chung nho
nhat cua m, n
m 1
2 / là so nguyen dat a bx t voi s là mau so cua p
n
m 1
3/ p là so nguyen dat ax b t voi s là mau so cua p
n
dx
VD:I x x 1 vay p 10 là so nguyen, ta có t
x x 1






 

  
 
 
    
 
 

 
 
 
 
 
 
 
 
   
   
3
4 3
10 10 9 10
2
8 9 8 9
4 4
ruong hop1/
t 1 1 d t 1 d t 1
4t .dt
dat x t dx 4t .dt I 4 dt 4
t t 1 t 1 t 1 t 1

4 4 1 4
8 t 1 9 t 1
2 x 1 9 x 1
 
   
       
 
   
 
   
 
 
   
 
 

(cm công thức của nhà toán học Trebushep làm sao vậy?)
Người ta cm được công thức sau:


   
   
2
n
n 1
2 2
n n 1
P x dx
dx
Q x ax bx c p. 1

ax bx c ax bx c
P x là da thuc bac n Q x là da thuc bac n 1 voi cac he so c
hua xác dinh


   
 
   


Để xác định p và các hệ số của


n 1
Q x

, ta đạo hàm (1) và cân bằng hệ số 2 vế để được hệ pt
(Cm công thức này làm sao vậy?)

*
3
2
x x 1
I dx
x 2x 2
 


 


 
 
 
 
   
 
3
2 2
2 2
3
2 2
2 2 2
3 2 2
3 2 2 3 2 2
x x 1 dx
VD:I dx ax bx c x 2x 2 d.
x 2x 2 x 2x 2
Lay dao ham 2 ve, ta dc:
x x 1 2x 2 d
2ax b x 2x 2 ax bx c
x 2x 2 2 x 2x 2 x 2x 2
x x 1 2ax b x 2x 2 ax bx c x 1 d
2ax 4ax 4ax bx 2bx 2b ax bx cx ax b
 
      
 
   
  
       
     

           
          
     
 
 
 




3 2
3
2
2 2
2
2 2
2 2 2
,
x c d
3ax x 5a 2b x 4a 3b c 2b c d
3a 1, 5a 2b 0 4a 3b c 1, 2b c d 1
1 5 1 5 x x 1
a , b , c , d I I dx
3 6 6 2
x 2x 2
1 5 dx
2x 5x 1 x 2x 2 .
6 2
x 2x 2
d x 1

dx dx
ln x 1 x 2x 2 ln x x a
x 2x 2 x a
x 1 1
 
        
          
 
        

 
     

 

        
  
  
 


×