Tải bản đầy đủ (.docx) (7 trang)

BÀI TẬP PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG doc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (177.11 KB, 7 trang )

BÀI TẬP PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG
Bài 1 !"#$
%& !'#$(%& )*+, "/$0123
4,1
Giải
56),4,7684,56)94,9
"$
" $ &
"$ $:
;
/
' $( & $:
; ;
;
x
x y
B
x y
y

=

− + =


 
⇔ ⇒
 
 ÷
− + =
 




=


<)=)2568),76>?),76@A)9+
.$/ "0/ .$/ '0/ . / 0
AB BD AC
n n n a b− −
uuur uuur uuur
.với a
2
+ b
2
> 005B5C56DE4,2 1F)
,
( ) ( )
G  G 
AB BD AC AB
c n n c n n=
uuur uuur uuur uuur
" " " "
:
" ' H &
"
'
a b
a b a b a ab b
b
a

= −


⇔ − = + ⇔ + + = ⇔

= −

IDJ),%I>1K,%$

>%I$1F)E!!$%&
%∩8)L56)94,9
$ & :
.:/"0
" $ & "
x y x
A
x y y
− − = =
 
⇒ ⇒
 
− + = =
 
MK)N56ON%∩8N56)94,9
'
$ &
' ;
"
/
' $( & ;

" "
"
x
x y
I
x y
y

=

− − =


 
⇔ ⇒
 
 ÷
− + =
 


=


N56+)L4,768
( )
$( $"
(/: / /
; ;
C D

 
 ÷
 
IDJ)>%I',.5)7@PQ0
Bài 27J)9 R.0
" "
  " H H &
+ + − − =
1D)S
 GG7J) T:#I"%&76Q RUTO+T6)
>?V1
"1>,)L.$/;/(0.&/$/$0.$/"/$01K,)L+ G,T6)
WX1
Giải
Y R.0ON.I$/(0>2@AZ%;
MK) B56∆
%[∆:##%&\".7]]7J) :#I"%&0
D Q RUTO+T6)>?V%[@^2_ONS∆>?
" "
; : (− =
( )
"
( $& $
: (
 (
: $
( $& $
c
c
d I

c

= −
− + +
⇒ ∆ = = ⇔

+
= − −


.W,`\"0
D RB56
: ( $& $ &x y
+ + − =

: ( $& $ &x y
+ − − =
1
Bài 3: D)S24,,)2>)S."/I$0 ,76 O)2*+,
35B5C56.T
$
0:!(#"'%&76.T
"
0#"!;%&
Giải
PT c¹nh BC ®i qua B(2 ; -1) vµ nhËn VTCP
( )
$
+ (/:=
uur

cña (d
2
) lµm VTPT
(BC) : 4( x- 2) + 3( y +1) = 0 hay 4x + 3y - 5 =0
+) Täa ®é ®iÓm C lµ nghiÖm cña HPT :
( )
( : ; &  $
 $/:
 " ; &  :
+ − = = −
 
⇔ ⇒ = −
 
+ − = =
 
+) §êng th¼ng ∆ ®i qua B vµ vu«ng gãc víi (d
2
) cã VTPT lµ
( )
"
+ "/ $
= −
uur
∆ cã PT : 2( x - 2) - ( y + 1) = 0 hay 2x - y - 5 = 0
+) Täa ®é giao ®iÓm H cña ∆ vµ (d
2
) lµ nghiÖm cña HPT :

( )
"  ; &  :

a :/$
 " ; &  $
− − = =
 
⇔ ⇒ =
 
+ − = =
 
+) Gäi B’ lµ ®iÓm ®èi xøng víi B qua (d
2
) th× B’ thuéc AC vµ H lµ trung ®iÓm cña BB’ nªn :
( )
b a 
b a 
 "  (
b (/:
 "  :
= − =

⇒ =

= − =

+) §êng th¼ng AC ®i qua C( -1 ; 3) vµ B’(4 ; 3) nªn cã PT : y - 3 = 0
+) Täa ®é ®iÓm A lµ nghiÖm cña HPT :

 : &  ;
 . ;/:0
: ( "' &  :
− = = −

 
⇔ ⇒ = −
 
− + = =
 
+) §êng th¼ng qua AB cã VTCP
( )
 '/ (= −
uuur
, nªn cã PT :
 "  $
( ' $ &
' (
− +
= ⇔ + − =

B i 4 : à 7J)9K,1 R.0
&$"(
""
=−−−+
yxyx
76 T
&$ =++ yx
1)L-+ TG,_)L-@c
C
S.0,))S+SC7J),+d&
&
#.0ON."$076>2@AZ%
V


#
BABMA .d&
e
&
=
562)S)L0G+,
$""1"1
===
RMAMI
D-+ RON>2@AZ
]
%
$"
76-+T8 0K,W,9

( ) ( )





+−=
−=






−−=

=






=++
=−+−
"$
"
"$
"
&$
$"$"
""
y
x
y
x
yx
yx
D")LW,8+B+>6)2K,8+81
,1.f0O
0"&$. −J
>2@AZ%:
#,7
0""$.



u
.E07+P7J),8.E0

u
567
E.E0T
&"" =+−+ Dzyx
#.E0Q.f0U R>@%"8T.g.E00%
;
""
=−rR
8,
;
:
0"1."&1"$
=
+−−+ D






−−=
+−=

;:;
;:;
D
D

Giải
F<".E
$
0
&;:;""
=+−−+
zyx
76.E
"
0
&;:;""
=−−−+
zyx
6);
K,)L.$/$076 

"#:#(%&1
K,)L+ 

G, 76

C7J),+(;
&
M)^)
h

,Gi
$ :
" "
x t

y t
= −


= − +

767
. :/"0u = −
ur
h+


.$ : / " " 0A t t⇒ − − +

h,./

0%(;
&

$
G. / 0
"
c AB u⇔ =
uuuur ur

1
$
"
1
AB u

AB u
⇔ =
uuuur ur
ur

"
$; :
$Vd $;V (; &
$: $:
t t t t⇔ − − = ⇔ = ∨ = −
h2)LB56
$ "
:" ( "" :"
. / 0 . / 0
$: $: $: $:
A A− −
Bài 6: 7J)9jOxy ,) 
&;"
$
=+− yxd
1T
"
:#V!
'%&1< )*+,)LP."/I$0G, Q,) d
$
76d
"
,,)2O356),)L4,,) d
$
 d

"
1
Giải
T
$
7U3
)1;2(a
1

/T
"
7U3
)6;3(a
2
,
06.13.2a.a
21
=−=
8
21
dd ⊥
76T
$
QT
"
))LN@2E1MK)T56 )*+,E."/
I$0
0BA2ByAx0)1y(B)2x(A:d =+−+⇔=++−
TQT
$

T
"
,,)2O3N@)763@)T7J)T
$
.T
"
0(;
&



−=
=
⇔=−−⇔=
−++


A3B
B3A
0B3AB8A345cos
)1(2BA
BA2
220
2222
hkS+%:, 
05yx3:d =−+
hkS+%I:, 
05y3x:d =−−
D*+,E,) ^`8+B+>6)21
05yx3:d =−+

05y3x:d =−−
Bài 7 : 7J)9K,,)22 ,@c_376 O
)24,5B5C56:#(#$&%&76I#$%&/)L &/"0+ 
l )2)L@^>?
"
1K,23+^,)21
Giải :
MK)T
$
T
"
5B5C56 ,@c_376 O)24,
MK)-m.,/>056)Li)=4,-*+,T
"
76N56+)L4, m1
,
( )






+
−=
"
"
/
"
"/

b
ba
IbaMM
1DU34,T
"
56
( )
$/$
=
u
1
,9



=
=






=+
+

=−+








=
$
$
&$
"
"
"
&"
&1
"
b
b
a
ba
ba
dI
uMM
F)-m.$/$0+ 1-@27U3
( )
:/(
−=
v
4, ,T
$
A56
7U2+S4, 1 56(.I$0!:.I$0%&


(
!:!$%&1
ACdA
∩=
"
2n>o)9
1 0
4
5
4 3 1 0
x y
x
y
x y
- + =
ì
ì =
ï ï
ï ï
Û
í í
=
- - =
ï ï
ï
ï
î
î
1D

( )
4;5A
E 
1&H(:
:
"
(";
"
&(
&
=+−⇔

=⇔


=


yx
yxyx
ABdB
∩=
$
2n>o)9
3
3 4 10 0
1
.
3 4 8 0
4

x
x y
x y
y
= -
ì
ï
ì
+ + =
ï
ï
ï ï
Û
í í
- + =
= -
ï ï
ï
î
ï
ï
î
D
1
( 3; )
4
B - -
Y (!:!$%&T
1
:

$(
/






−c
cC
( )
















=
=
⇔=









+⇔=
1
";
::
/
";
:$
$/$
";
:$
$
""
:
$(
"
"
$
"
"
C
C
c

c
c
cMC
,X
$
AC
76
"
AC
p)q+1
FS5+
( ) ( )
1$/$
(
$
/:;/( CBA






−−
a
( )
1
";
::

";

:$

(
$
/:;/(












−−
CBA
Bài 8 : 7J)9K,K,234,,)2>)S? 
 ,@c_76 ++S@c_5B5C56#(!"%&"!:#'
%&76"#:!d%&1
Giải :
K,356)94,9
( " &
. "/$0
" : ' &
x y
A
x y

+ − =

⇒ −

− + =

K,356)94,9
( " &
.V/ $0
" : d &
x y
B
x y
+ − =

⇒ −

+ − =

Y *+,767+P7J) ,@c_856:.!V0#".#$0%&
⇔:#"!$V%&1
+)L+ ++S@c_8K,)L56)99
: " $V &
."/;0
" $
" : d &
" "
x y
C
x y

+ − =




− +
+ − =


1
FS5+.I"/$0.V/I$0."/;01
Bài 9 : 7J)9K, R.0.I(0
"
#
"
%(76)Lr.(/$01K,
)L-8j+G,_-@cC,))S+S--S R.07J)562)S
)LG, )*+,)Lr
Giải :
MK)N56O R.0G+,N.(/&01st &/,0+j+6_@cC,))S+S-
-S R.01M)^Gu
.
$
/
$
0/.
"
/
"
01,

( )
/
$$
ayxMA
−=

( )
$$
/( yxIA
−=
1
D
MAIA

8
( ) ( ) ( ) ( )
1&(((&(
$$
"
$
"
$$$$$
=−−++−⇔=−+−
ayxyxayyxx
D+.08
1&$"(
$$
=−−
ayx
f+,+ 

(!,!$"%&1
v+ (!,!$"%&1 56(!,!$"%&1
Y )*+,r.(/$08,%(1
Y)LB56 &/(01
2@2)S+S).
$
/
$
0T
( )
1 1
4 ( 4) 4 0x x y y- - + - =
D)S+S*+, &/,08
( )
1 1
4 ( 4) 4 0x ya- - + - =
vK,.
"
/
"
0W,
( )
2 2
4 ( 4) 4 0x y a- - + - =
f+,56(!,!$"%&1
Bài 10 : 7J)9K, R.0
$
""
=+
yx

12)2nv4,L
8 %l)w")L6_x))LL@cC,))S+S7J).0G,
),,))S+S>?V&

1
Giải :
Y RO.&/&076>2@AZ%$1
M)^GuEE56,))S+S.562)S)L01
• kS+
POPBPA
o
⇒=⇒=
"V&
e
+ R.
$
0O>2@AZ%"1
• kS+
POPBPA
o
⇒=⇒=
:
"
$"&
e
+ R.
"
0O>2@AZ%
:
"

1
Y %W,`8+B+>6)2Q R.
$
076@P)L+7J) R
.
"
01
• Y %Q.
$
0
"" <<−⇔ m
1
• Y %@P)L+7J)
.
"
0
:
"
−<⇔ m

1
:
"
>m
f+,2)2nB4,56
1"
:
"
:
"

"
<<−<<−
mvam 
Bài : 7J)9K,>, 
T
$
"#!:%&T
"
#"!(%&76T
:
"!!"%&1
D)S RO+T
$
76)Swl )7J)T
"
T
:
1
Giải :
MK)N56O76@A)9+Z56>2@A4, R1
D
$
I d

8K,4,NTN%./:!"01
Y R.N0)Sw7J)T
"
76T
:
@)763@)

T.N/T
"
0%T.N/T
:
01.h0
,
( )
( ) ( )
" : " ( " : " "
h
; ;
t t t t
+ − − − − −
⇔ =

:
: " ( ;
$
t
t t
t
=

⇔ − = − ⇔

=

I DJ)%:,N%.:I:076
'
;

R
=
/
I DJ)%$,N%.$/$076
$
;
R
=
1
D,) RW,`8+B+>6)2/4,w56
( ) ( ) ( ) ( )
" " " "
(d $
: : 6 I$ $
; ;
x y v y− + + = + − =
Bài 11: 7J)9K, .I$0
"
#.#:0
"
%d76 T
!#$%&185X)L-768T5X)LkG,iK,56+)L4,-k1K,
4,2)L-76k
Giải :
D
N d

8K,4,kTk%./#$01
D-76ki)=7J),+*+,8-%.I/II$01
D

M C

8
( ) ( ) ( )
" "
$ $ : d1 ht t
− − + − − + =
,
( )
"
h " & $ "1
⇔ − − = ⇔ = − =
t t t hay t
I DJ)%I$,-%.$/&076k%.I$/&01
DJ)%",-%.I"/I:076k%."/:01
Bi 12 : 7J)9K,,) T
$
#!"%&76
T
"
"!#:%&18T
$
5X)L-768T
"
5X)LkG,
" &OM ON
+ =
uuuur uuur r
1K,4,
)L-76k1

Gii :
D
$
M d

8K,4,-T-%.,/"!,01
D
"
N d
84,kTk%.>/">#:01
,
( )
" &
" &
" &
" " " : &
( H
a b
a b
OM ON
a b
a b
+ =

+ =


+ =

+ + =

=



uuuur uuur r
H (
1
: :
a b = =
D
H " ( $
/ 6 k% I / 1
: : : :
M v

=
ữ ữ

Bi 13: 7J)9K,,)27J)
; . $/ $0AB C
=

#"!:%&76KO4,,)2+ #!"%&1a`K,
23761
Gii :
MK)N./056+)L4,76M.
M
/
M
056KO4,1


"
:
CG CI
=
8
" $ " $
/ 1
: :
G G
x y
x y

= =
f+,K,)LNW,`9
" : &
.;/ $0
" $ " $
" &
: :
x y
I
x y
+ =




+ =



1
;
" "
AB
IA IB
= = =
8K,2)L56,))9@2,+4,9
" "
" : & (
; $
. ;0 . $0
( "
x y x
x y y

+ = =




+ + = =




V
:
1
"

x
y
=



=


1K,4,2)L56
$ :
(/ V/ 1
" "


ữ ữ

Bi 14 : Trong mặt phẳng Oxy cho tam giác ABC biết A(2; - 3), B(3; - 2), có diện tích bằng
:
"
và trọng tâm
thuộc đờng thẳng

: 3x y 8 = 0. Tìm tọa độ đỉnh C
Gii
Ta có: AB =
"
, trung điểm M (
; ;
/

" "

), pt (AB): x y 5 = 0. S
ABC
=
$
"
d(C, AB).AB =
:
"

d(C, AB)=
:
"
Gọi G(t;3t-8) là trọng tâm tam giác ABC thì d(G, AB)=
$
"

d(G, AB)=
.: H0 ;
"
t t
=
$
"

t = 1 hoặc t = 2

G(1; - 5) hoặc G(2; - 2)


:CM GM=
uuuur uuuur

C = (-2; -10) hoặc C = (1; -1)
Bài 15 :  R.0x
2
+ y
2
= 1;76x
2
+ y
2
– 2(m + 1)x + 4my
– 5 = 0 (1)=)?.$0564, R7J)K)1MK)2 
R=56.

01L.

0)Sw7J).01
Giải:
.0O.&/&0>2@AZ%$.

0OI.#$/I"0>2@A
" "
b . $0 ( ;R m m= + + +
N
" "
. $0 (m m= + +
,NyZm
 D.076.


03)S+1%%[Zm!Z%N.7Zm[Z0
M)^),%I$/%:];
Bài 16 :K,.0,)2KOM
$$
$/
:
 
 ÷
 
 
+v4,

:#H%&76 
(#!d%&1s2nK,234,,)21
Giải
,+ 8.,/d!(,0.>/d!(>0
M.$/
$$
0
:
56KO,)28.I,I>#:/(,#(>!'0
TI:#H%&DE56
.:/$0u
r
/
MK)N56+)L,N
:
/" $
"

a
a

 
+
 ÷
 
1T56+v4,


1 &
I d
BC u




=


uuur r
( )
:
:." $0 H &
"
:1 : " .( H $V0 &
a
a
b a a b



− + + =




− − + + − =

$
:
a
b
=



=


D.$/;0.:/I:076.I$/d0

×