-fRU'oNG
rr-rpr
EAo
ouv
rrj
un
Tnr
rgtl
D4.I
HQC
LAN
lv
(2710212011)
mON
roAr'{
Hqc
xHOr
a
Tttdi
gian
lam
biti
lB{)
phitt; khong
k€ thdi
gian
phdt
di
PHAN
cHUNG
cHo
rAr
ca
cAc
rni
SmH
Ciu
I:
Cho
hirm'6
Y:
mx-4m-r3
x-m
1)
Lrhao
s5t
vir
vE
d0
thi
hdm
s0
khi
m=
2'
2),chf11;;;
;il;;;
ili;
;1
"-ao
t
i
.h'r.'?
1u6n
di
q"i
lT
di6m
c0
dinh
A
va
B.
Tri hai
di6m
A
vi
B hdy
lap
phucmg
fiinh
cua
hai
duong
thangc6
hQ
s6
g6c
bang
1,5'
Tinir
diQn
tich
hinh
thang
gi6i han bdi
AB,
hai
dumrg
thdng
niry
vd trlic
Ox'
CAu
il;
i; GiAi
b6t
phuong
trinh:
2a{4*1ra
<L
x
2)
Giai
phucrng
trinh:
sinox+cosox
i
^
1
5 sin
2x
2
Ssin
2x
Ciu
III:
Tinh
tich
phAn:
ft
?
,.
' rl+cosr
l= lln(l+srnx)
&.
'l
1 + cosx
'0
CAU
IV:
Cho
hinh
chop
S.ABCD,
co
da,v
ABCD
lA
hinh
vu6ng,
dulng
cao
SA'
Gqi
M
lir
trung
rli6m SC;
N,
P lan
luqt
nam
tr€n
SB
va SD
sao
cho
*
=
+
=
1
ta,
phang
GvO-lP)
chia
hinh
-'^"
sB
sD
3
chop
thdnh
hai
ph6n. Tinh
ti sO
AC
tich
cuahal
pUan dO'
Cfiu
V:
Chimg
t6 rang
vsi
mqi
916
ui
cua
tham
s0
m,
hQ
phuong
trinh
sau
lufin
co
nghiQm:
l*+*Y+Y=2m+1
i
1xY(x+
!)=m2
+m'
X6c
dinh
m ae ne
cO ngtriem
duY
nhdt.
pHAN
mtNC
(
rgi SINH
CHi
LAIVI
MQT
TRONG
HAI
PHAN
A
HOAC
B
)
A. Theo
chuong trinh
chuAn:
CAuVIa:
_
j
'
l) Tinh diQn tich
tanr
gi6c
dAu
nQi
tii5p
elip
(E),
;+'r-
=
i. nhan
dii5m
A
(u;2)
la
dinh
i,ir trpc turig
lirm
truc ddi xirng.
.
?)Trong
kh6ng
gian voi h0
uuc
tga
dQ
oxyz,
tim
ba di6m
M,
N, P
lan
lugt
thu0c
c6c
rJucrng
thing:
(d,)
+
='='
=+,
(dr)
+
=*=+t
tor)
i
=+=+
sao
cho
M'
1 2
-)'
\"j/
2
7
-1'
2
1
i
N.
P
thang hAng,
dOng
thoi N lir
trung
di6m
ciia doan
flrang
MP'
Ciu
VII a:
.lnx1
Cho
x
>
0, x *1.
Chimg minh
rang:
,_l.G'
B"
Theo
chucrng
trinh
ning
cao
Ciu
VI b:
1) Tinh
di€n rich
tam
gi6c
dAu
nQi
ti0p
paraboi
(P):
1p
:2x,
nhan
dinh
ctra
parabol
ldm
mQt
dinh
vir
tryc hoanh
Ox
ldm trgc ddi
ximg.'
2)
Trong
khOng
gian
voi
h0
truc
tga
dQOxyz:
a) Tinh
khoang crlch
gita
hai duong
thdng:
I x
=2-I
(o,l?
=+:-i,^
o',
1r-::t*,
l.! -
r
b)
Tinh
goc gitadudrng therrg
(dr)
+
=+=+
voi m{tphang
(a):x+y-z+Z:0'
\r'
4 |
-2
Cfru
VII b:
Gi6su
u1v.
Chrmgminhring:u'-3u
<
v3-3v+4'
Gi6m
thi coi
thi
khdng
gi6i
thich
gi
th6m-:
www.laisac.page.tl
TRCSTqG
TEtrT
SAG
FUV
T'EI
*Ap
AN
- T'E{ANG
Bstreg
s'sgs
sg{€t
PAH
E{Qa
E"AN
Hv
G7
tfiztzw1l}
e{0lN
, T'o6nu,
umoi
a
N$i
dung
cho
-
^
2x-5
-,.)
1-
,.,-
I
=
, 0.
Khi
m:2:)
y=
/ Y -
x-Z
"
x-2-'
(x-2)'
TiQrn
c$n
dimg
x =
2,
tiQm
cin
ngang
y
:2'Ei0m
dac
Uiat
(
J;O)
;
O;|)
Phucrng
hinh:
xY
e
(x+
y-4)m+
.ltoy-4=0
O<
'[3-xY=g
-
my
= rnx
-
4m
+
3
ching
Vre
3
-
xY
=
0
dirng
v6i
Ym
+1'
I lr=1
lx+y-4=o ltr=,
otr'
-4x+3=o€lJ"=''
LL'''=t
cO
dinh
lA
A
(1;
3);
B
(3;
1
-
Phuong
trinh
dudng
thing
qua
A
c6
hg
s0
g6c
i
=1r+1.
rcrt
\t
-3
=
1G
-l)
e
y
-
:x
*;.
(d
t)
2\-"'
r
2
2
- Fhuong
trinh
clubng
thdng
qua
B
c6
h0
sA
gOc
1
b
y +
=){r-
3)
<+
,
=1*
-f,.
Orl-
Giao
diAm
ciia
(d1)
vdi
ox
ld
c
(-1
;
0),
cria
(d2)
vdi
ox
ld
D
(1;o).
J
Khoang
c6ch
gita
(d1),
(d2) cfing
ohinh
ld
chiAu
cao
cta
hinh
thang
Vpy,
diQn
tich
hinh
thang
Phf,i
tim
li:
5
=(AC
+BD\t=(Ji3.*'#=
Xdt
hai
trudrng
hgP:
2a"[j;
aaa
<2x e
{zx-z>
o
J1x'
+x+4
<2x-2o
l-r"'+x+4
>
o
I
f-:"t
* x+4<(7x-2)'z=4x2
-Bx+4
4n;5
20
{lJ.=-=-'
3
J13
3
:-
i"t
t4
o1-1{x{;
fzr'-0"
r o
(4
lt'''=, is
4
s
4
*1
s'
o\1.,=;
(v\
t<1e27<28:duns-)
IJC>-
lz
2
BiiII/I
1
1
0.5
ong
duong
v6i:
2a'[4;
a xa
>
2x a't4r'
+ x
+
4
> 2x
-2'
Nh$n
xdt
rAng
khi
x
<
0
thi
2x-2
<
0
n6n
b6t
phuortg toinh
trOn
sE
tiring
khi
-3x'
+ x+
4>-0 <+
-1
=
t 11.Vi
x
<
0
:>
-1
<
x
<
0'
a
J
0.5
a
l"orzr=21lopi1
,-'l
z
o
f'orr'
=
1,
,nuu mdn
(*) vi
sin2x
:
xf
*
o
'l
bieu
kign
sin2x
r
0.
(*).
Vcyi
tfi6u
kiQn
ndy,
phucrng trinh
ffiong
ouong
vo.t
l-2sin2xcos'x
I
1
-
o
<
=
-
coszx-l
€'
cos'
2x
-
5
coslx
+
I
=
o'
-s
z-""''"
I
'-
4
i
CAU
HI
BAi
XV
r
=
[t [(1
+ cos
x;
in(l
+
s
inx)
-
lrr(l
+ cos;r][dx
:
{i nrt+ s inx)d;r
*
[i
ror
r
ln(l
+ sinx)d;c
-
[i
fn(f
+ cos
x)dx.
Chri
y
ring
nrSu
.lo
",
'
Jo
"'-
""-
/
-:i-
Jo
lr
AaTt: x
'2
^Toro'no
trri
fi
lnlr
+
cos x)d:r
=
Ii
t,
+
sin
l)(-)dr
=
f
m{t
+ sin
t)dt
=
f
m{l
+ s inx)dx'
Y
4y,
I=
j'u
"out
lntr * lin*Vt'
D?t
t
:
l+5inx,
ta
c6:
Jcosx
ln(l
+ s inx)dx
=
J
tn{t
+ s
inx).
d(l+sinx)
:
llntdt
=lnt.t
-
l
r.L.a,
=
tlnt
-t
+c=
(1
+ sinx)ln(l+
s inx)
-
(1
+ sinx)
+c.
JJt
l+
:>
I
:
(l+sinx)ln(l+sinx)-lsinxl =21n2-1.
t'
Gqi
ffiacdi6md6i
ximg
cria
C
qua
B
vd
qua
D.
S
C
F
LEFC
+A
le
trung
ctiam
cria
EF*(MNP)
di
qua
A. Theo
da
bdi'
ta
ph6i
tinh
ti
T/
-A
'
SAPMN
JU
Vrou.,
0r5
005
v"".,"
s,4.si/.sP
22
4
l/,u*u
2
.fac6:
/sANp
=Dtar)iv'Di
::-a-'3'sANl'
-1.
!auv'
/rnr,r-
sl.sB.st
3'3
9
vrro,,,,
9
Vrrr,,
=l-Vrnrr,
-
'-
Vr^rr,,
9 Vrnur
o
Vdy,
ti sO
hai
phdn trOn
vd
duOi
bane
j
11)
')
=-,
=
-
323
I
(x=l
DE th6y:
]-
- '
Id
nghipnn
cfia
hQ
v6iYm.
Ngodi
ra
n6u
(xo;
Yo)
1d
nghigm
ly
=m
cria
hQ
thi
(ys; x6)
ctng
ld
nghiQrn
cria
h6.
vfly,
da
hQ
c6
nghiQm
duy
nhSt
thi
m
=
;
2"+2'-2"),
N
(2b+2
;
2b
;
-b+1),
P
(2c
;
c
;
c+l
)'
Gii sir
M thudc
(dl)
c6 tqa d0
M
(a+l
Ba di6m
M,
N,
P thing
hdng
khi
m
trung
diiim
MP,
tatim
dugc
M
( -14
;
cing
phucrng
vot
MP.
Sir
dgng
gin
thi5t
N ld
11
-28
;
30
)
;
N
(-17
;
-1s
; ?)
;
P
(
-20
;
-10
;
-9
)'
'?,"
X6t
trudng
hqp:
")
x>
1:
Bdtphuongtrinh
ban
dAu
<+
fnt'f
e
f
@)=lnx-Jx*f
'O'
(")
I
1
I
-i zJi-x-r
Ta
c5:
-f
'(x)=t ^ v
z
= 7-'
x
'/Jx
2 ZxJx
Theob6tdingthr?ccdsi:
x+
i.>zJ;=.f
'(x)<0
khix>
1'
f(x)
nghfch
biiin
trom
[r;+o)
+
f(x)
<
f(1)
:
0
khi
x
)
1
:)
Bat
d$ng
thirc
(*)
CAU
Vla
Ggi
B,
C
ld
hai dinh
cdn
lai crla
tam
gi6c
dAu
thi
B
(
-m; n)'
C
(m;
n)'
Tam
gi6c
ABC
dAu
nQi
ti6p
elip
(E)
khi
vd
chi
khi:
l*'
*!'
=l
lntz
+4n'
=16
i16
4
€j
l'-
^
+4
l3m'=n'-4n+4
l4nt'
:
nt'+n'-4n
Tri he
tr€n
tim
du-o.c
:
,=-3
(n:2lopi
vi
A=
B
=C),
tt d6
nz=J€
no*
16.,8
o
-,"-^rr#-76BJt
*)
0
.
x
<
1: Bdt ddng thftc
ban
ddu
<>
rnx
,#.e
f
(x):lnx-G*;;'0.
(**)
2",[i
-x-1
Gi6ng tr6n
ta c6
f
'(x)
=
<
0 +
Hdm
s6
nghleh
biiln
tr6n
(
o;
1):'
f(x)
>
f(l):
0:)
eat dang th{rc
(8+)
tl6ng"
Cdu
vIb
2,0S
I
@
(n
r
0
)
ld
hai dinh
con
l4i
cria tarngtilc
otsc.
Khi d6
tam
gibcoBC d6u nQi ti6p
(p)
e
It:.
r::;:;rrim
tiuo'c ffi
:
5, n
:
2J1.
T*
d6 Soec:
nJ\.
I,00
2
Kho6ng c6ch
gifra
dr
vd
dz O**
#
Gqi
q ld
goc
gita
d3
vi m$t
phang
@)
ta
t;
v/
co Slnq=
3
.
1,S0
C6u
vHb
I,0s
Xdt hem s6
f(x):
x'- 3x.
,.t
I a co bang Dlen
mlen:
:>
f(x)
=3x'-
3:0
€
+1.
"+
+
,f'{"
@,25
Xetba
trulng
hgp:
*)u<-l
*v <-1.
-Vihdmf(x)ldd6ngbi6nh6n
[-oo;-1)
n6nf(u)
<"f
(v)'f(v)
14:]
ut-3u'
'l^
v Jv+4.
*v>-1.
-
Vi hdm f(x)
c6 mQt
cpe hi duy
ntr6t
tai x
:
I
ndn:
(v)
>
f
(l)
=
-2,
(u)
<
f
(-1)
-L.
:>(u)-(v)<2-(-21:4.
*)-1.u(1:>v>-1.
U,75
5
Vi
hdm
f(x)
nghich
bi*5n
h6n
[_t;t]
nen
f(u)
.
f
(-1)
:2'
Ngodi
ra tr6n
khoang
(-1;+*)
hdm
sO
c6
mQt
cuc
tri
duy
nh6t
tai
x
:
I
ndn
f(v)
>
f(1)
:
-2' VAy
f(u)
-
f(v)<2-{-21=4.
*)
u >l=v>1.
Vi
hdm
f(x) d6ng
bitfn
fr€n
[1;**;
ndnrf(u)
<
f(v)
+
4.
=]
u3
-
3u
.
o3
-
3v
+
4.
,Ju,-JSr;:
VrX
f/"e;