Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng Facebook: LyHung95
Tham gia trọn vẹn khóa LTĐH và Luyện giải đề tại Moon.vn để đạt được kết quả cao nhất trong kỳ TSĐH 2014!
I. BÀI TOÁN TÌM ĐIỂM THUỘC MẶT PHẲNG CÓ YẾU TỐ CỰC TRỊ
Dạng 1: Tìm điểm M thuộc (P) sao cho
= + +
u aMA bMB cMC
có
u
đạt min.
Phương pháp giải:
+ Tìm điểm I thỏa mãn hệ thức
0
aIA bIB cIC
+ + =
+ Phân tích
(
)
( ) ( )
u aMA bMB cMC a b c MI aIA bIB cIC a b c MI
= + + = + + + + + = + +
Khi đó
min
u a b c MI u
= + + ⇒ ⇔
M là hình chiếu vuống góc của I lên (P).
Tọa độ điểm
( ; ; )
M x y z
thỏa mãn hệ phương trình
( )
∈
=
P
M P
IM kn
Ví dụ 1.
Cho các
đ
i
ể
m A(2; 1; −1), B(0; 3; 1) và
( ): 3 0.
P x y z
+ − + =
Tìm
đ
i
ể
m M thu
ộ
c (P) sao cho
a)
min
+
MA MB
b)
min
2
MA MB
−
Đ/s: a)
(1;2;0), ( 1;0;2).
I M
−
b)
(4; 1; 3), (1; 4;0).
I M
− − −
Ví dụ 2. Cho các điểm
A
(1; 0; −1),
B
(2; −2; 1),
C
(0; −1; 0) và
( ): 2 2 6 0.
− + + =
P x y z Tìm điểm
M
thuộc
(
P
) sao cho
a)
min
+ +
MA MB MC
b)
min
2 4 3− +
MA MB MC
Đ/s: a)
(0;1; 2).
≡ −
M G
b)
32 89 10
( 6;5; 6), ; .
9 9 9
− − − −
I M
Ví dụ 3.
Cho các
đ
i
ể
m A(1; 1; 2), B(−2; 1; −7) và
( ): 1 0.
+ − + =
P x y z
Tìm
đ
i
ể
m M thu
ộ
c (P) sao cho
a)
min
+
MA MB
b)
min
2 +
MA MB
Đ/s:
b)
(0;1; 1)
−
I
Ví dụ 4.
Cho các
đ
i
ể
m A(0; 1; −1), B(2; 3; −2), C(6; 1; 14) và
( ): 2 1 0.
+ − + =
P x y z
Tìm
đ
i
ể
m M thu
ộ
c (P)
sao cho
min
2 3+ −
MA MB MC
Đ/s:
(
)
(2;2;1), 1;0;2 .
I M
Dạng 2: Tìm điểm M thuộc (P) sao cho
= + +
2 2 2
T aMA bMB cMC
đạt max hoặc min.
Ph
ươ
ng pháp gi
ả
i:
+) Tìm
đ
i
ể
m I th
ỏ
a mãn h
ệ
th
ứ
c
0
aIA bIB cIC
+ + =
+) Phân tích
2 2 2 2
( )= + + + + +
T a b c MI aIA bIB cIC
+) N
ế
u a + b + c > 0 thì T
đặ
t min; a + b + c < 0 thì T
đặ
t max
14. CỰC TRỊ TRONG TỌA ĐỘ KHÔNG GIAN – P1
Thầy Đặng Việt Hùng
Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng Facebook: LyHung95
Tham gia trọn vẹn khóa LTĐH và Luyện giải đề tại Moon.vn để đạt được kết quả cao nhất trong kỳ TSĐH 2014!
Khi đó
ax min min
;
⇔ →
m
T T MI M là hình chiếu vuống góc của I lên (P).
Tọa độ điểm
( ; ; )
M x y z
thỏa mãn hệ phương trình
( )
∈
=
P
M P
IM kn
Ví dụ 1.
Cho các
đ
i
ể
m A(
−
3; 5;
−
5), B(5;
−
3; 7) và
( ): 0.
+ + =
P x y z
Tìm
đ
i
ể
m M thu
ộ
c (P) sao cho
a)
2 2
= +
T MA MB
đạ
t giá tr
ị
nh
ỏ
nh
ấ
t.
b)
2 2
2
= −
T MA MB
đạ
t giá tr
ị
l
ớ
n nh
ấ
t.
Đ/s:
a)
(1;1;1); (0;0;0)
I M
b)
(13; 11;9), (6; 18;12).
− −
I M
Ví dụ 2.
Cho các
đ
i
ể
m A(1; 4; 5), B(0; 3; 1), C(2;
−
1; 0) và
( ):3 3 2 15 0.
− − − =
P x y z
Tìm
đ
i
ể
m M thu
ộ
c
(P) sao cho
a)
2 2 2
= + +
T MA MB MC
đạ
t giá tr
ị
nh
ỏ
nh
ấ
t.
b)
2 2 2
2 4
= + −
T MA MB MC
đạ
t giá tr
ị
l
ớ
n nh
ấ
t.
Đ/s:
a)
(4; 1;0)
≡ −
M G là tr
ọ
ng tâm tam giác
b)
25 74 9
(7; 16; 7), ; .
11 11 11
− − − −
I M
Ví dụ 3.
Cho các
đ
i
ể
m A(1; 1; -1), B(2; 0; 1), C(1; −1; -1) và
( ): 2 0.
+ + + =
P x y z
Tìm
đ
i
ể
m M thu
ộ
c (P)
sao cho
a)
2 2
2
= +
T MA MB
đạ
t giá tr
ị
nh
ỏ
nh
ấ
t.
b)
2 2 2
2= + −
T MA MB MC
đạ
t giá tr
ị
l
ớ
n nh
ấ
t.
Đ/s:
b)
(
)
(2;1;1), 0; 1; 1 .
− −
I M
Ví dụ 4.
Cho các
đ
i
ể
m A(0; 4; -2), B(1; 2; -1) và
( ): 1 0.
− + + =
P x y z
Tìm
đ
i
ể
m M thu
ộ
c (P) sao cho bi
ể
u
th
ứ
c
2 2
2
−
MA MB
đạ
t giá tr
ị
l
ớ
n nh
ấ
t?
Đ/s:
(
)
(2;0;0), 1;1; 1 .
−
I M
Ví dụ 5.
Cho các
đ
i
ể
m A(1; 1; 0),
5
; 1;0 ,( ) : 2 0
3
− − + =
B P x y z
. Tìm
đ
i
ể
m M thu
ộ
c (P) sao cho bi
ể
u th
ứ
c
2 2
3−
MA MB
đạ
t giá tr
ị
l
ớ
n nh
ấ
t?
Đ/s:
(
)
(2; 2;0), 1;0; 1 .
− −
I M