Tải bản đầy đủ (.doc) (45 trang)

Tài liệu ôn thi vào lớp 10 môn Toán

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (424.71 KB, 45 trang )

Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)

Các dạng toán luyện thi vào lớp 10
A. Căn thức và biến đổi căn thức
A.1. Kiến thức cơ bản
A.1.1. Căn bậc hai
a. Căn bậc hai số học
-
Với số dơng a, số
a
đợc gọi là căn bậc hai số học của a
-
Số 0 cũng đợc gọi là căn bậc hai số học của 0
-
Một cách tổng quát:
2
0x
x a
x a


=

=

b. So sánh các căn bậc hai số học
- Với hai số a và b không âm ta có:
a b a b< <
A.1.2. Căn thức bậc hai và hằng đẳng thức
2
A A=


a. Căn thức bậc hai
-
Với A là một biểu thức đại số , ngời ta gọi
A
là căn thức bậc hai của A, A đợc gọi là biểu thức lấy
căn hay biểu thức dới dấu căn
-
A
xác định (hay có nghĩa)

A

0
b. Hằng đẳng thức
2
A A=
-
Với mọi A ta có
2
A A=
-
Nh vậy: +
2
A A=
nếu A

0
+
2
A A=

nếu A < 0
A.1.3. Liên hệ giữa phép nhân và phép khai phơng
a. Định lí: + Với A

0 và B

0 ta có:
. .A B A B=
+ Đặc biệt với A

0 ta có
2 2
( )A A A= =
b. Quy tắc khai phơng một tích: Muốn khai phơng một tích của các thừa số không âm, ta có thể khai ph-
ơng từng thừa số rồi nhân các kết quả với nhau
c. Quy tắc nhân các căn bậc hai: Muốn nhân các căn bậc hai của các số không âm, ta có thể nhân các số d-
ới dấu căn với nhau rồi khai phơng kết quả đó
A.1.4. Liên hệ giữa phép chia và phép khai phơng
a. Định lí: Với mọi A

0 và B > 0 ta có:
A A
B
B
=
b. Quy tắc khai phơng một thơng: Muốn khai phơng một thơng a/b, trong đó a không âm và b dơng ta có
thể lần lợt khai phơng hai số a và b rồi lấy kết quả thứ nhất chí cho kết quả thứ hai.
c. Quy tắc chia các căn bậc hai: Muốn chia căn bậc hai của số a không âm cho số b dơng ta có thể chia số
a cho số b rồi khai phơng kết quả đó.
A.1.5. Biến đổi đơn giản biểu thức chứa căn thức bậc hai

a. Đa thừa số ra ngoài dấu căn
-
Với hai biểu thức A, B mà B

0, ta có
2
A B A B=
, tức là
+ Nếu A

0 và B

0 thì
2
A B A B=
+ Nếu A < 0 và B

0 thì
2
A B A B=
b. Đa thừa số vào trong dấu căn
+ Nếu A

0 và B

0 thì
2
A B A B=
+ Nếu A < 0 và B


0 thì
2
A B A B=
c. Khử mẫu của biểu thức lấy căn
- Với các biểu thức A, B mà A.B

0 và B

0, ta có
A AB
B B
=
d. Trục căn thức ở mẫu
LTT THCS Minh Phỳ
1
Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)

- Với các biểu thức A, B mà B > 0, ta có

A A B
B
B
=
- Với các biểu thức A, B, C mà
0A


2
A B
, ta có


2
( )C C A B
A B
A B

=


- Với các biểu thức A, B, C mà
0, 0A B

A B
, ta có

( )C A B
C
A B
A B

=


A.1.6. Căn bậc ba
a. Khái niệm căn bậc ba:
-
Căn bậc ba của một số a là số x sao cho x
3
= a
-

Với mọi a thì
3 3 3
3
( )a a a= =
b. Tính chất
-
Với a < b thì
3 3
a b<
-
Với mọi a, b thì
3 3 3
.ab a b=
-
Với mọi a và
0b
thì
3
3
3
a a
b
b
=
A.2. Kiến thức bổ xung
A.2.1. Căn bậc n
a. Căn bậc n (
2 n N

) của số a là một số mà lũy thừa n bằng a

b. Căn bậc lẻ (n = 2k + 1)
Mọi số đều có một và chỉ một căn bậc lẻ
Căn bậc lẻ của số dơng là số dơng
Căn bậc lẻ của số âm là số âm
Căn bậc lẻ của số 0 là số 0
c. Căn bậc chẵn (n = 2k )
Số âm không có căn bậc chẵn
Căn bậc chẵn của số 0 là số 0
Số dơng có hai căn bậc chẵn là hai số đối nhau kí hiệu là
2k
a

2k
a
d. Các phép biến đổi căn thức.

2 1
.
k
A
+
xác định với
A
2
.
k
A
xác định với
0A



2 1
2 1
k
k
A A
+
+
=
với

A
2
2
k
k
A A=
với

A

2 1 2 1
2 1
. .
k k
k
A B A B
+ +
+
=

với

A, B
2
2 2
. .
k
k k
A B A B=
với

A, B mà
. 0A B


2 1 2 1
2 1
. .
k k
k
A B A B
+ +
+
=
với

A, B
2 2
2
. .

k k
k
A B A B=
với

A, B mà
0B


2 1
2 1
2 1
k
k
k
A A
B
B
+
+
+
=
với

A, B mà B

0
2
2
2

k
k
k
A
A
B
B
=
với

A, B mà B

0,
. 0A B


m
n mn
A A=
với

A, mà
0A

LTT THCS Minh Phỳ
2
Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)


m

m
n
n
A A=
với

A, mà
0A

A.2.2. Bất đẳng thức và bất phơng trình

Bất đẳng thức

Bất đẳng thức chứa dấu giá trị tuyệt đối: f
1
(x), f
2
(x), ,f
n
(x) là các biểu thức bất kì
1 2 1 2
( ) ( ) ( ) ( ) ( ) ( )
n n
f x f x f x f x f x f x+ + + + + +
.
Đẳng thức xảy ra khi
( )
( ) 1,
i
f x i n=

cùng dấu

Bất đẳng thức Côsi: a
1
, a
2
, , a
n
là các số không âm, khi đó
1 2
1 2

.
n
n
n
a a a
a a a
n
+ + +

Đẳng thức xảy ra khi a
1
= a
2
= = a
n

Bất đẳng thức Bunhiacôpski: (a
1

, a
2
, , a
n
) và (b
1
, b
2
, , b
n
) là hai bộ số bất kì, khi đó
2 2 2 2 2 2 2
1 1 2 2 1 2 1 2
( ) ( )( )
n n n n
a b a b a b a a a b b b+ + + + + + + + +
Đẳng thức xảy ra khi
1 2
1 2

n
n
a
a a
b b b
= = =
(quy ớc b
i
== 0 thì a
i

= 0)

Bất phơng trình chứa dấu giá trị tuyệt đối

( ) ( 0) ( )f x f x



( ) ( 0) ( )f x f x


hoặc
( )f x


A.2.3. Dấu của nhị thức bậc nhất và dấu của tam thức bậc hai
a. Cho nhị thức f(x) = ax + b (a

0). Khi đó ta có.
x -

-b/a +

f(x) = ax + b Trái dấu với a Cùng dấu với a
b. Cho tam thức f(x) = ax
2
+ bx + c (a

0). Khi đó ta có
Nếu

0
x -

-b/2a +

f(x) = ax
2
+ bx + c Cùng dấu với a 0 Cùng dấu với a
Nếu
0
>
x -

x
1
x
2
+

f(x) Cùng dấu a 0 Trái dấu a 0 Cùng dấu a
A.2.4. Biến đổi tam thức bậc hai
Cho tam thức bậc hai f(x) = ax
2
+ bx + c (a

0). Khi đó ta có

2 2
( ) ( )
2 4

b
f x ax bx c a x
a a

= + + =
với
2
4b ac =
Nếu a > 0 thì
( )
4
f x
a


nên
min ( )
4
x R
f x
a


=
2
b
x
a

=

Nếu a < 0 thì
( )
4
f x
a


nên
max ( )
4
x R
f x
a


=
2
b
x
a

=
* Chú ý. Nếu
'
k
A
A
=
(k là hằng số dơng) khi đó ta có
Amin


Amax
Amax

Amin
A.3. Ví dụ minh họa
A.4. Bài tập chọn lọc
Bài 1. Cho biểu thức:
1 3 2 2
1 1 2 2 2
x x
P
x x x x x x

+

=






a. Rút gọn P
b. Tính giá trị của P với
3 2 2x =
LTT THCS Minh Phỳ
3
Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)


Bài 2. Cho biểu thức
1 1 2 1 2
:
1
1 1
x x x x x x
P
x
x x x x

+ +

= +




+



a. Rút gọn P
b. Tính giá trị của P với
7 4 3x =
c. Tính giá trị lớn nhất của a để P > a
Bài 3. Cho biểu thức
3 2( 3) ( 3)
2 3 1 3
x x x x
P

x x x x
+
= +
+
a. Rút gọn P
b. Tính giá trị của P với
11 6 5x =
c. Tìm giá trị nhỏ nhất của P
Bài 4. Cho biểu thức :
3 2 2
1 :
1 2 3 5 6
x x x x
M
x x x x x

+ + +
= + +
ữ ữ
ữ ữ
+ +

a. Rút gọn M
b. Tìm x để M > 0
c. Tìm các giá trị củ m để có các giá trị của x thỏa mãn:
( 1) ( 1) 2M x m x+ = +
Bài 5: Cho biểu thức:
2 2
2 2
4 4

4 4
x x x x x x
A
x x x x x x
+
=
+
a. Tìm điều kiện của x để A có nghĩa.
b. Rút gọn A.
c. Tìm x để
5A <
.
Bài 6: Cho
1
2
2 1 1
x x x x x
A
x x x

+
=
ữ ữ
ữ ữ
+

.
a. Rút gọn A.
b. Tìm x để A > -6.
Bài 7: Cho

2 1 10
: 2
4
2 2 2
x x
B x
x
x x x



= + + +




+ +


.
a. Rút gọn B.
b. Tìm x để B > 0.
Bài 8: Cho C =
1
2
1
2
1
1
+

+
+

+ xxxxx
a. Rút gọn C.
b. Chứng minh rằng C < 1.
Bài 9: Cho biểu thức:
2
4 4 12 9A x x x= +
a. Rút gọn A.
b. Tìm x để A = -15.
Bài 10: Cho biểu thức:
2
2 6 9A x x x= + +
.
a. Rút gọn rồi tìm giá trị của A khi a = -5.
b. Tìm x khi A = 15.
Bài 11: Cho biểu thức:
2
3 3
1 : 1
1
1
M x
x
x


= + +



+



.
a. Rút gọn M.
b. Tìm giá trị của M khi
3
2 3
x =
+
.
c. Tìm giá trị của x để
M M>
.
Bài 12: Cho biểu thức:
2
3 1 4 9 12A x x x= +
.
a. Rút gọn biểu thức A.
b. Tìm giá trị của x để A = 3.
LTT THCS Minh Phỳ
4
Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)

Bài 13: Rút gọn biểu thức:
2
1
2 1

4
A x x x= +
rồi tìm giá trị của x để A = 3/2.
Bài 14: Cho biểu thức:
2 9 3 2 1
5 6 2 3
x x x
Q
x x x x
+ +
=
+
a. Rút gọn rồi tìm giá trị của x để Q < 1.
b. Tìm các giá trị nguyên của x để Q có giá trị nguyên.
Bài 15: Cho biểu thức:
3 9 3 1 2
2 2 1
x x x x
P
x x x x
+ +
= +
+ +
a. Rút gọn P.
b. Tìm các giá trị nguyên của x để P có giá trị nguyên.
Bài 16: Cho biu thc : A=(
1
2

+

xx
x
+
1++ xx
x
+
x1
1
) :
2
1x
1. Rỳt gn A .
2. Chng minh rng A

0 vi mi x
1
3. Vi giỏ tr no ca x thỡ A cú giỏ tr ln nht .Tỡm GTNN ú ?
Bài 17. Cho biểu thức
2 3 3 2 2
: 1
9
3 3 3
x x x x
P
x
x x x

+
= +
ữ ữ

ữ ữ

+

, với x

0 và x

9
a. Rút gọn P
b. Tìm các giá trị của x để P < -1/3
c. Tìm x để P đạt giá trị nhỏ nhất.
Bài 18. Cho biểu thức
3 3
3 3
1 1 2 1 1
. :
x y x x y y
A
x y
x y x y
x y xy


+ + +
= + + +



+

+



với x > 0, y > 0
a. Rút gọn A
b. Biết xy = 16. Tìm giá trị của x, y để A có giá trị nhỏ nhất, tìm giá trị đó
Bài 19. Cho biểu thức
2
2 2 1 8A x x x= + +
a. Rút gọn biểu thức A
b. Với giá trị nào của x thì A = -3
Bài 20: Cho biểu thức:
2 2 2 2
2 1 2 1A x x x x= +
.
a. Tìm điều kiện của x để A có nghĩa.
b. Tính giá trị của A khi
2.x
Bài 21: Cho
2
1 1
:
x
A
x x x x x x
+
=
+ +
.

a. Tìm điều kiện của x để A có nghĩa.
b. Rút gọn A.
Bài 22: Cho
3
1 1
1 1 1
x x
B
x x x x x

=
+
.
a. Tìm điều kiện của x để B có nghĩa.
b. Tĩm x để B > 0.
Bài 23: Cho biểu thức:
( ) ( )
1
2 1 2
1 .
1
1 2 1
x x x
x x x x x x
E
x
x x x


+ +

= +



+

.
a. Tìm điều kiện để E có nghĩa.
b. Rút gọn E.
LTT THCS Minh Phỳ
5
Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)

Bài 24: Cho
3 3 2 2
1 1
:
a b a b
A ab
a b
a b




=






.
a. Tìm điều kiện của a, b để A có nghĩa.
b. Rút gọn A.
Bài 25: Cho biểu thức:
2 2
6 9 6 9A x x x x= + + +
.
a. Rút gọn A.
b. Tìm các giá trị của x để A = 1.
Bài 26: Cho biểu thức:
2 2
2 2
2 2
.
2 2
x x x x x x
A
x x x x x x
+
=
+
a. Tìm điều kiện xác định của A.
b. Rút gọn A.
c. Tìm x để A < 2.
Bài 27. Xét biểu thức
1 2
(1 ) :( )
1
1 1

a a
B
a
a a a a a
= +
+
+
a. Rút gọn B
b. Tìm các giá trị của a sao cho B > 1
c. Tính giá trị của B nếu
6 2 5a =
Bài 28. Xét biểu thức
2 3 6
2 3 6 2 3 6
a b ab
A
ab a b ab a b
+
=
+ + + +
a. Rút gọn A
b. Cho giá trị của biểu thức A sau khi đã rút gọn bằng
10
( 10)
10
b
b
b
+



. Chứng minh rằng a/b = 9/10
Bài 29. Xét biểu thức
2 2 4 3
:
4
2 2 2
x x x x
P
x
x x x x

+
=



+

a. Rút gọn P
b. Tìm các giá trị của x để P > 0, P < 0
c. Tìm các giá trị của x để |P| = 1
Bài 30. Cho biểu thức
2
4 9 12 4A x x x= +
a. Rút gọn A
b. Tính giá trị của A khi x = 2/7
Bài 31. Cho biểu thức
2
5 6 9A x x x= + + +

a. Rút gọn B
b. Tính giá trị của x để B = -9
Bài 32: Cho biểu thức:
1 5 2
.
2 6 3
x
P
x x x x

=
+
a. Rút gọn P.
b. Tìm giá trị lớn nhất của P.
Bài 33: Cho
2
: 1
1
1 1
x y x y
x y xy
P
xy
xy xy

+

+ +
= + +





+


.
a. Rút gọn P.
b. Tính giá trị của P với
2
2 3
x =
+
.
c. Tìm giá trị lớn nhất của P.
B. Hệ phơng trình
B.1. Kiến thức cơ bản
b.1.1. Hệ hai phơng trình bậc nhất hai ẩn
LTT THCS Minh Phỳ
6
Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)

a. Phơng trình bậc nhất hai ẩn
Phơng trình bậc nhất hai ẩn: ax + by = c với a, b, c

R (a
2
+ b
2



0)
Tập nghiệm của phơng trình bậc nhất hai ẩn:
Phơng trình bậc nhât hai ẩn ax + by = c luôn luôn có vô số nghiệm. Tập nghiệm của nó đợc biểu diễn
bởi đờng thẳng (d): ax + by = c
-
Nếu a

0, b

0 thì đờng thẳng (d) là đồ thị hàm số
a c
y x
b b
= +
-
Nếu a

0, b = 0 thì phơng trình trở thành ax = c hay x = c/a và đờng thẳng (d) song song hoặc trùng
với trục tung
-
Nếu a = 0, b

0 thì phơng trình trở thành by = c hay y = c/b và đờng thẳng (d) song song hoặc trùng
với trục hoành
b. Hệ hai phơng trình bậc nhất hai ẩn
Hệ hai phơng trình bậc nhất hai ẩn:
' ' '
ax by c
a x b y c

+ =


+ =

trong đó a, b, c, a, b, c

R
Minh họa tập nghiệm của hệ hai phơng trình bậc nhất hai ẩn
Gọi (d): ax + by = c, (d): ax + by = c, khi đó ta có
(d) // (d) thì hệ vô nghiệm
(d)

(d) =
{ }
A
thì hệ có nghiệm duy nhất
(d)

(d) thì hệ có vô số nghiệm
Hệ phơng trình tơng đơng
Hệ hai phơng trình tơng đơng với nhau nếu chúng có cùng tập nghiệm
c. Giải hệ phơng trình bằng phơng pháp thế
Quy tắc thế
Giải hệ phơng trình bằng phơng pháp thế
Dùng quy tắc thế biến đổi hệ phơng trình đã cho để đợc một hệ phơng trình mới trong đó có một
phơng trình một ẩn
Giải phơng trình một ẩn vừa có rồi suy ra nghiệm của hệ
d. Giải hệ phơng trình bằng phơng pháp cộng đại số
Quy tắc cộng

Giải hệ phơng trình bằng phơng pháp thế
Nhân hai vế của mỗi phơng trình với một số thích hợp (nếu cần) sao cho các hệ số của một ẩn nào
đó trong hai phơng trình bằng nhau hoặc đối nhau
áp dụng quy tắc cộng đại số để đợc hệ phơng trình mới, trong đó có một phơng trình mà hệ số của
một trong hai ẩn bằng 0 (phơng trình một ẩn)
Giải phơng trình một ẩn vừa thu đợc rồi suy ra nghiệm của hệ đã cho
b.1.2. Hệ phơng trình đa về phơng trình bậc hai
- Nếu hai số x và y thỏa mãn x + y = S, x.y = P (với S
2


4P) khi đó hai số x, y là nghiệm của phơng
trình: x
2
+ SX + P = 0
B.2. Kiến thức bổ xung
b.2.1. Hệ phơng trình đối xứng loại 1
a. Định nghĩa:
Hệ hai phơng trình hai ẩn x và y đợc gọi là đối xứng loại 1 nếu ta đổi chỗ hai ẩn x và y đó thì từng ph-
ơng trình của hệ không đổi
b. Cách giải
Đặt S = x + y, P = x.y, Đk: S
2

4P
Giải hệ để tìm S và P
Với mỗi cặp (S, P) thì x và y là hai nghiệm của phơng trình:
t
2
St + P = 0

c. Ví dụ
Giải hệ phơng trình
2 2
7
13
x y xy
x y xy
+ + =


+ + =


2 2
1 0
22
x y xy
x y x y
+ + + =


+ =

2 2
8
( 1)( 1) 12
x y x y
xy x y

+ + + =


+ + =

b.2.2. Hệ phơng trình đối xứng loại 2
a. Định nghĩa
Hệ hai phơng trình hai ẩn x và y đợc gọi là đối xứng loại 2 nếu ta đổi chỗ hai ẩn x và y thì phơng trình
này trở thành phơng trình kia và ngợc lại
LTT THCS Minh Phỳ
7
Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)

b. Cách giải
Trừ vế theo vế hai phơng trình trong hệ để đợc phơng trình hai ẩn
Biến đổi phơng trình hai ẩn vừa tìm đợc thành phơng trình tích
Giải phơng trình tích ở trên để biểu diễn x theo y (hoặc y theo x)
Thế x bởi y (hoặc y bởi x) vào 1 trong 2 phơng trình trong hệ để đợc phơng trình một ẩn
Giải phơng trình một ẩn vừa tìm đợc ròi suy ra nghiệm của hệ
c. Ví dụ
Giải hệ phơng trình

2
2
2 4 5
2 4 5
x y y
y x x

= +



= +



3
3
13 6
13 6
x x y
y y x

=


=


b.2.3. Hệ phơng trình đẳng cấp bậc 2
a. Định nghĩa
- Hệ phơng trình đẳng cấp bậc hai có dạng:
2 2
2 2
0
' ' ' 0
ax bxy cy
a x b xy c y

+ + =



+ + =


b. Cách giải
-
Xét xem x = 0 có là nghiệm của hệ phơng trình không
-
Nếu x

0, ta đặt y = tx rồi thay vào hai phơng trình trong hệ
-
Khử x rồi giải hệ tìm t
-
Thay y = tx vào một trong hai phơng trình của hệ để đợc phơng trình một ẩn (ẩn x)
-
Giải phơng trình một ẩn trên để tìm x từ đó suy ra y dựa vào y = tx
* Lu ý: ta có thể thay x bởi y và y bởi x trong phần trên để có cách giải tơng tự
c. Ví dụ
Giải hệ phơng trình
2 2
2
4 1
3 4
x xy y
y xy

+ =


=



2 2
2 2
2 3 3
2 2 6
x xy y
x xy y

+ =


+ =


B.3. Ví dụ minh họa
B.4. Bài tập chọn lọc
Bài 1. Giải các hệ phơng trình
( 2)( 2)
( 4)( 3) 6
x y xy
x y xy
+ =


+ = +


( 1)( 2) ( 1)( 3) 4
( 3)( 1) ( 3)( 5) 18

x y x y
x y x y
+ =


+ =

( 5)( 2)
( 5)( 12)
x y xy
x y xy
+ =


+ =

2 5 1 2
16
11 3
7 2( 1)
31
5 3
x y x y
x y x


+ =




+

+ =


9 2
28
7 3
3 12
15
2 5
x y
x y

=




+ =


4 3
5
15 9
3
14
x
x y
y

x y


+ =





+ =


5 1
10
1 1
1 3
18
1 1
x y
x y

+ =





+ =




4 1
1
2 2
20 3
1
2 2
x y x y
x y x y

=

+



+ =

+

4 3 13
36
6 10
1
x y
x y

+ =





+ =


2 5
3
3 3
1 2 3
3 3 5
x y x y
x y x y

=





+ =



7 4 5
3
7 6
5 3 13
6
7 6
x y

x y

=

+



+ =

+

3 2
8
3 1
3 1
1,5
3 1
x y x y
x y x y

=

+



+ =

+ +


Bài 2. Giải các hệ phơng trình
1 2 1
1 3 3
x y
x y

+ =


+ =


.
2
2
10 25 5
10 25 5
x x x
x x x

+ + = +


+ =



2 2 1 9
1 1

x y
x y

+ =


+ =


LTT THCS Minh Phỳ
8
Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)

2 2
2( 2)
6
x y xy
x y

+ = +

+ =

2 2
1 0
22
x y xy
x y x y
+ + + =



+ =

2 2
7
13
x y xy
x y xy
+ + =


+ + =

2 2
10
4
x y
x y

+ =

+ =

2 2
65
( 1)( 1) 18
x y
x y

+ =


=

2 2
6
5
x y xy
xy x y

+ =

+ + =

3 3
5 5 2 2
1x y
x y x y

+ =


+ = +


3 3 2 2
1x y
x y x y
+ =



+ = +

( 1)( 1) 10
( )( 1) 25
x y
x y xy
+ + =


+ + =

5
13
6
x y
x y
y x
+ =



+ =


3 3
2 2
2
2
x y
x y xy


+ =


+ =


4 4
2 2
97
( ) 78
x y
xy x y

+ =


+ =


Các bài HPT có chứa tham số
Bài 1. Cho hệ phơng trình
2
3
9 3 3
x y m
x m y
=




=


a. Với giá trị nào của m thì hệ phơng trình vô nghiệm
b. Với giá trị nào của m thì hệ phơng trình có vô số nghiệm? Khi đó hãy tìm dạng tổng quát nghiệm
của hệ phơng trình
c. Với giá trị nào của m thì hệ phơng trình có nghiệm duy nhất
Bài 2. Với giá trị nào của m thì hệ phơng trình
4
1
mx y
x my
+ =


=

Có nghiệm thỏa mãn điều kiện
2
8
1
x y
m
+ =
+
. Khi đó hãy tìm các giá trị của x và y.
Bài 3. Tìm các giá trị nguyên của m để hệ phơng trình
2 3
1

mx y m
x y m
+ =


+ = +

Có nghiệm nguyên, tìm nghiệm nguyên đó.
Bài 4. Cho hệ phơng trình
2 6
2 2
x y
x y
+ =


=

a. Giải hệ phơng trình đã cho bằng phơng pháp đồ thị
b. Nghiệm của hệ phơng trình đã cho có phải là nghiệm của phơng trình 3x - 7y = - 8 không ?
c. Nghiệm của hệ phơng trình đã cho có phải là nghiệm của phơng trình 4,5x + 7,5y = 25 không ?
Bài 5. Cho hai đờng thẳng (d
1
): 2x - 3y = 8 và (d
2
): 7x - 5y = -5
Tìm các giá trị của a để đờng thẳng y = ax đi qua giao điểm của hai đờng thẳng (d
1
) và (d
2

)
Bài 6. Cho ba đờng thẳng
(d
1
): y = 2x - 5 (d
2
): y = 1 (d
3
): y = (2m - 3)x -1
Tìm các giá trị của m để ba đờng thẳng đồng quy
Bài 7. Cho hệ phơng trình
2
2 1
x ay
ax y
+ =


=

Tìm các giá trị của a để hệ phơng trình đã cho có nghiệm thỏa mãn điều kiện x > 0, y < 0
Bài 8. Tìm các giá trị của a và b để đồ thị hàm số y = ax + b đi qua điểm A(-5; -3) và điểm B(3; 1)
Bài 9. Tìm các giá trị của m để
a. Hệ phơng trình:
5
2 3 7
mx y
x my
=



+ =

có nghiệm thỏa mãn điều kiện x > 0, y < 0
LTT THCS Minh Phỳ
9
Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)

b. Hệ phơng trình:
3
4 6
mx y
x my
+ =


+ =

có nghiệm thoả mãn điều kiện x > 1, y > 0
Bài 10. Cho hệ phơng trình
2
1
mx y m
x my m
+ =


+ = +

Tìm các giá trị nguyên của m để hệ phơng trình có nghiệm x, y là các số nguyên

Bài 11. Cho hệ phơng trình
2
( 1) 2 1
2
m x my m
mx y m
+ + =


=

Tìm các giá trị của m để hệ phơng trình có nghiệm thỏa mãn điều kiện xy đạt giá trị lớn nhất
Bài 12. Hãy tìm giá trị của m và n sao cho đa thức
P(x) = mx
3
+ (m + 1)x
2
- (4n + 3)x + 5n đồng thời chia hết cho (x - 1) và (x + 2).
Bài 13. Cho hệ phơng trình
( 1) 1
( 1) 2
m x y m
x m y
+ = +


+ =

Tìm các giá trị của m để hệ phơng trình có nghiệm thỏa mãn điều kiện: S = x + y đạt giá trị lớn nhất
Bài 14. Cho hệ phơng trình

2
mx my m
mx y m
+ =


+ =

m, n là các tham số
a. Giải và biện luận hệ phơng trình
b. trong trờng hợp hệ có nghiệm duy nhất hãy tìm giá trị của m để nghiệm của phơng trình thỏa mãn
điều kiện x > 0, y < 0
Bài 15. Tìm a và b để hệ phơng trình sau có nghiệmcó nghiệm với mọi giá trị của tham số m
( 3) 4 5 3
2 3 1
m x y a b m
x my am b m
+ + = + +


+ = +

Bài 16. Tìm tham số a để hệ phơng trình sau có nghiệm duy nhất:
2 3 2
2 3 2
4 .
4
y x x a x
x y y ay


= +


= +


Bài 17. Biết cặp số (x, y) là nghiệm của hệ phơng trình:
2 2 2
6
x y m
y x m
+ =


+ = +

Hãy tìm giá trị nhỏ nhất của biểu thức: P = xy + 2(x + y).
Bài 18. Giả sử (x, y) là nghiệm của hệ phơng trình:
2 2 2
2 1
2 3
x y a
y x a a
+ =


+ = +

Xác định giá trị của tham số a để hệ
thỏa mãn tích xy nhỏ nhất.

Bài 19. Cho hệ phơng trình:
2
1 1 1
xy a
x y b

=


+ =


Giải và biện luận hệ phơng trình biết rằng x, y là độ dài các cạnh của một hình chữ nhất.
Bài 20. Cho hệ phơng trình:
2 1
2 1
x my
mx y
+ =


+ =

a. Giải và biện luận theo tham số m.
b. Tìm các số nguyên m để cho hệ có nghiệm duy nhất (x; y) với x, y là các số nguyên.
Bài 21. Cho hệ phơng trình:
4
4 10
x my
mx y m

+ =


+ =

(m là tham số).
a. Giải và biện luận theo m.
b. Với giá trị nào của số nguyên m, hệ có nghiệm (x; y) với x, y là các số nguyên dơng.
LTT THCS Minh Phỳ
10
Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)

Bài 22. Cho hệ phơng trình:
( 1) 3 1
2 5
m x my m
x y m
=


= +

Xác định tất cả các giá trị của tham số m để hệ có nghiệm duy nhất (x; y) mà S = x
2
+ y
2
đạt giá trị nhỏ
nhất.
Bài 23 Cho hệ phơng trình:
2

( 1) 2 1
2.
m x my m
mx y m
+ + =


=

Xác định tất cả các giá trị của tham số m để hệ có nghiệm (x; y) mà tích P = xy đạt giá trị lớn nhất.
Bài 24. Cho hệ phơng trình:
2
1.
mx y m
x my m
+ =


+ = +

a. Giải hệ khi m = -1.
b. Tìm m để hệ có vô số nghiệm, trong đó có nghiệm: x = 1, y = 1.
Bài 25. Giải và biện luận hệ phơng trình sau đây theo tham số m:
2 1
2 3.
mx y m
x my
+ = +



+ =

Bài 26. Cho hệ phơng trình:
2
2 1.
x my
mx y
+ =


=

a. Giải hệ khi m = 2.
b. Tìm số nguyên m để hệ có nghiệm duy nhất (x; y) mà x > 0 và y < 0.
c. Tìm số nguyên n để có nghiệm duy nhất (x; y) mà x, y là các số nguyên.
Bài 27. Cho hệ phơng trình:
1
3 2 3.
x my
mx my m
+ =


= +

a. Giải hệ khi m = - 3.
b. Giải và biện luận hệ đã cho theo m.
Bài 28. Cho hệ phơng trình:
2
3 2 5

x y m
x y
+ =


=

(m là tham số nguyên).
Xác định m để hệ có nghiệm duy nhất (x; y) mà x > 0, y < 0.
Bài 29. Cho hệ phơng trình:
2
3 5.
mx y
x my
=


+ =

a. Giải và biện luận hệ đã cho.
b. Tìm điều kiện của m để hệ có nghiệm duy nhất (x; y) thỏa mãn hệ thức:
2
2
1
3
m
x y
m
+ =
+

.
Bài 30. Cho hệ phơng trình:
2 1
( 1) 2.
mx my m
x m y
+ = +


+ + =

a. Chứng minh rằng nếu hệ có nghiệm duy nhất (x; y) thì điểm M(x; y) luôn luôn thuộc một đờng thẳng
cố định khi m thay đổi.
b. Xác định m để M thuộc góc vuông phần t thứ nhất.
c. Xác định m để M thuộc đờng tròn có tâm là gốc tọa độ và bán kính bằng
5
.
Bài 31. Với giá trị nào của số nguyên m, hệ phơng trình:
4 2
.
mx y m
x my m
+ = +


+ =

có nghiệm duy nhất (x; y) với x; y
là các số nguyên.
Bài 32. Cho hệ phơng trình:

2 1
2 1.
x my
mx y
+ =


+ =

a. Giải và biện luận theo m.
b. Tìm số nguyên m để hệ có nghiệm duy nhất (x; y) với x; y là các số nguyên.
c. Chứng minh rằng khi hệ có nghiệm duy nhất (x; y), điểm M(x; y) luôn luôn chạy trên một đờng thẳng
cố định.
d. Xác định m để M thuộc đờng tròn có tâm là gốc tọa độ và bán kính bằng
2
2
.
Bài 33. Giải và biện các hệ phơng trình:
LTT THCS Minh Phỳ
11
Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)

a.
2
2 3( 1) 3
( ) 2 2
m x m y
m x y y

+ =


+ =

b.
2 1
2 .
x y m
x y m
= +


+ =

c.
1
.
x my
x y m
=


=

Bài 34. Cho hệ phơng trình:
2 5
3 1.
mx y
mx y
+ =



+ =

a. Giải hệ phơng trình lúc m = 1.
b. Giải và biện luận hệ phơng trình theo tham số.
Bài 35. Cho hệ phơng trình (m là tham số ):
1
.
mx y
x y m
=


+ =

a. Chứng tỏ lúc m = 1, hệ phơng trình có vô số nghiệm.
b. Giải hệ lúc m khác 1.
Bài 36. Với giá trị nào của x, y, z; ta có đẳng thức sau: 4x
2
+ 9y
2
+ 16z
2
- 4x - 6y - 8z +3 = 0.

Bài 37. Với giá trị nào của m, hệ phơng trình:
2 2
25
3 4
x y

mx y m

+ =

=

có nghiệm?
Bài 38. Cho hệ phơng trình:
2 2
2
2 1 2
x y a
xy a

+ =

+ =

. Xác định a để hệ có hai nghiệm phân biệt. Tìm các nghiệm đó.
Bài 39. Cho hệ phơng trình:
8
x y
m
y x
x y

+ =




+ =

. Xác định m để hệ phơng trình có nghiệm kép.
Bài 40. Cho hệ phơng trình:
2 2
1
x y m
y x
=


+ =

. Xác định m để hệ có nghiệm duy nhất. Tìm nghiệm đó.
Bài 41. Cho x, y là hai số nguyên dơng sao cho:
2 2
71
880
xy x y
x y xy
+ + =


+ =

. Tìm giá trị của biểu thức: M = x
2
+y
2
.

Bài 42. Cho hệ phơng trình:
1
3 1
x my m
mx y m
+ = +


+ =

a. Giải và biện luận hệ phơng trình trên.
b. Không giải hệ phơng trình, cho biết với giá trị nào của m thì hệ phơng trình có nghiệm duy nhất?
Bài 43. Cho hệ phơng trình:
( 1) 1
( 1) 2
a x y a
x a y
+ = +


+ =

(a là tham số).
a. Giải hệ phơng trình với a = 2.
b. Giải và biện luận hệ phơng trình.
c. Tìm giá trị nguyên của a để hệ phơng trình có nghiệm nguyên.
d. Tìm giá trị của a để nghiệm của hệ thỏa mãn điều kiện x + y nhỏ nhất.
Bài 44. Lập phơng trình đờng thẳng đi qua gốc O và song song với AB biết:
A(-1; 1), B(-1; 3).
A(1; 2), B(3; 2).

A(1; 5), B(4; 3).
Bài 45. Cho ba điểm A(-1; 6), B(-4; 4), C(1; 1). Tìm tọa độ đỉnh D của hình bình hành ABCD.
Bài 46. Cho bốn điểm: A(0; -5), B(1; -2), C(2; 1), D(2,5; 2,5). Chứng minh rằng bốn điểm A, B, C, D thẳng
hàng.
Bài 47. Cho bốn điểm A(1; 4), B(3; 5), C(6; 4), D(2; 2). Hãy xác định tứ giác ABCD là hình gì?
Bài 48. Tìm giá trị của m để hệ phơng trình sau vô nghiệm, vô số nghiệm:
2( 1) ( 2) 3
( 1) 3 7
m x m y m
m x my m
+ + + =


+ + = +

Bài 49. Cho hệ phơng trình:
( 1) 2 2 0
2 ( 1) ( 1) 0
m x m y
mx m y m
+ + =


+ =

(m là tham số).
a. Giải hệ phơng trình trên.
b. Tìm giá trị của m để hệ phơng trình có nghiệm duy nhất thỏa mãn x < 0, y < 0.
LTT THCS Minh Phỳ
12

Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)

Bài 50. Cho hệ phơng trình:
( 1) 3 4
( 1)
m x y m
x m y m
+ =


+ =

(m là tham số)
a. Giải hệ phơng trình.
b. Tìm giá trị nguyên của m để hệ có nghiệm nguyên.
c. Tìm giá trị của m để hệ phơng trình có nghiệm dơng duy nhất.
Bài 51. Cho hệ phơng trình:
1
3 1
x my m
mx y m
+ = +


+ =

(m là tham số)
a. Giải hệ phơng trình.
b. Tìm m để hệ phơng trình có nghiệm duy nhất thỏa mãn điều kiện xy nhỏ nhất.
Bài 52. Tìm giá trị của a để hệ sau có nghiệm duy nhất:

2 2
2 1
4
x y a
x y a

+ = +

+ =

Bài 53.
a. Tìm các giá trị nguyên của tham số a hoặc m để hệ phơng trình có nghiệm là số dơng, số âm.
2 1
2
ax y
x ay
=


+ =

;
3 5
2 1
x y m
x y
+ =


+ =


b. Tìm giá trị nguyên của m để hệ phơng trình sau:
2
3 2 5
x y m
x y
+ =


=

có nghiệm x > 0 và y < 0.
c. Với giá trị khác 0 nào của m thì hệ phơng trình:
2
3 5
mx y
x my
=


+ =

có nghiệm thỏa mãn
2
2
1
3
m
x y
m

+ =
+
Bài 54.
1. Cho hệ phơng trình:
. 3
1 2
a x y
x y
+ =



+ + =


a. Giải hệ phơng trình với a = 2.
b. Tìm giá trị của a để hệ có nghiệm duy nhất.
2. Tìm các giá trị của a để hệ phơng trình sau vô nghiệm.
C. Phơng trình
C.1. Kiến thức cơ bản
C.1.1. Phơng trình bậc nhất một ẩn
a. Định nghĩa
- Phơng trình có dạng ax + b = 0. Trong đó a, b

R và a

0
b. Cách giải và biện luận
-
Nếu a = 0. Khi đó: + b = 0 thì phơng trình có VSN

+ b

0 thì phong trình VN
-
Nếu a

0. Khi đó phơng trình có nghiệm duy nhất x = - b/a
C.1.2. Phơng trình bậc hai một ẩn
a. Định nghĩa
- Phơng trình có dạng: ax
2
+ bx + c = 0. Trong đó a, b, c

R và a

0
b. Cách giải và biện luận
-
Nếu a = 0. Phơng tình có dạng bx + c = 0: Phơng trình bậc nhất
-
Nếu a

0. Khi đó
2
4b ac =
(hoặc
2
' 'b ac =
)
+

0 <
(hoặc
' 0 <
): Pt vô nghiệm
+
0 =
(hoặc
' 0 =
): Pt có nghiệm kép
1 2
2
b
x x
a
= =
(hoặc
1 2
'b
x x
a
= =
)
+
0
>
(hoặc
' 0
>
): Pt có hai nghiệm phận biệt
'

1,2
'b
x
a

=
(hoặc
1,2
2
b
x
a

=
)
Chú ý: Nếu phơng trình ax
2
+ bx + c = 0 có hai nghiệm x
1
, x
2
thì ta có thể viết
ax
2
+ bx + c = a(x - x
1
)(x -x
2
)
Định lí Viet

a. Định lí thuận
LTT THCS Minh Phỳ
13
Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)

- Nếu phơng trình ax
2
+ bx + c = 0 có hai nghiệm x
1
, x
2
thì tổng và tích hai nghiệm đó là
1 2
b
S x x
a
= + =


1 2
.
c
P x x
a
= =
b. Định lí đảo
- Nếu hai số x và y có tổng
1 2
x x S+ =
và tích

1 2
.x x P=
thỏa mãn
2
4S P
thì hai số x và y là hai nghiệm
của phơng trình t
2
- St + P = 0
Bài tập chọn lọc
Bài 1. Tìm các giá trị của m để hai phơng trình sau có ít nhất một nghiệm chung
x
2
+ mx + 1 = 0; x
2
+ x + m = 0
Bài 2. Cho hai phơng trình x
2
+ p
1
x + q
1
= 0; x
2
+ q
2
x + q
2
= 0
Chứng minh rằng nếu

1 2 1 2
2( )p p q q +
thì ít nhất một trong hai phơng trình đã cho có nghiệm
Bài 3. Với giá trị bào của k thì hai phơng trình sau:
2x
2
+ (3k + 1)x - 9 = 0; 6x
2
+ (7k - 1)x - 19 = 0
Có ít nhất một nghiệm chung, tìm nghiệm chung đó
Bài 4. Chứng minh rằng phơng trình sau luôn có nghiệm với mọi a, b, c
(x - a)(x - b) + (x - b)(x - c) + (x - c)(x - a) = 0
Bài 5. Cho a, b, c là số đo độ dài 3 cạnh của m ột tam giác. Chứng minh phơng trình sau vô nghiệm:
a
2
x
2
+ (a
2
+ b
2
- c
2
)x + b = 0
Bài 6. Cho ba phơng trình
x
2
+ 2ax + ac = 0; x
2
- 2bx + ab - c = 0; x

2
+ 2cx + c = 0
Chứng minh rằng ít nhất một trong ba phơng trình trên có nghiệm
Bài 7. Cho phơng trình: ax
2
+ bx + c = 0. Chứng minh rằng phơng trình đã cho có nghiệm nếu một trong hai
điều kiện sau đợc thỏa mãn
a. a(a + 2b + c) < 0
b. 5a + 3b + 2c = 0
Bài 8. Tìm các giá trị của k để phơng trình: kx
2
- (1 - 2k)x + k - 2 = 0 có nghiệm là số hữu tỉ.
Bài 9. Cho phơng trình: 2x
2
- 3x + 1 = 0. Gọi x
1
, x
2
là các nghiệm của phơng trình . Không giải phơng trình hãy
tìm giá trị các biểu thức sau:
a.
1 2
1 1
A
x x
= +
b.
1 2
1 2
1 1x x

B
x x

= +
c.
2 2
1 2
C x x= +
d.
1 2
2 1
1 1
x x
D
x x
= +
+ +
Bài 10. Cho phơng trình: x
2
+ (2m - 1)x - m = 0
a. Chứng minh rằng phơng trình luôn có nghiệm với mọi m
b. Gọi x
1
, x
2
là các nghiệm của phơng trình. Tìm giá trị của m để biểu thức
2 2
1 2 1 2
6A x x x x= +
đạt

giá trị nhỏ nhất
Bài 11. Gọi x
1
, x
2
là các nghiệm của phơng trình: 3x
2
+ 5x - 6 = 0. Không giải phơng trình hãy lập phơng trình
bậc hai ẩn y có các nghiệm
1 1
2
1
y x
x
= +
;
2 2
1
1
y x
x
= +
Bài 12. Cho phơng trình
2
2 3 1 0x x + =
. Không giải phơng trình hãy tính giá trị của biểu thức
a.
3 3
1 2
A x x= +

b.
2 2
1 1 2 2
3 3
1 2 1 2
3 5 3
4 4
x x x x
B
x x x x
+ +
=
+
Bài 13. Cho phơng trình (k 1)x
2
2kx + k 4 = 0. Gọi x
1
, x
2
là hai nghiệm của phơng trình trên, hãy lập
hệ thức liên hệ giữa x
1
, x
2
không phụ thuộc vào k
Bài 14. Tìm các giá trị của m để các nghiệm x
1
, x
2
của phơng trình:

a.
x
2
+ (m - 2)x + m + 5 = 0 thỏa mãn
2 2
1 2
10x x+ =
b.
x
2
- (m + 3)x + 2(m + 2) = 0 thỏa mãn x
1
= 2x
2
c.
x
2
- mx + m + 1 = 0 thỏa mãn x
1
x
2
+ 2(x
1
+ x
2
) -19 = 0
Bài 15. Cho phơng trình bậc hai: mx
2
- (5m - 2)x + 6m - 5 = 0
a. Tìm các giá trị của m để phơng trình có hai nghiệm là hai số đối nhau

b. Tìm các giá trị của m để phơng trình có hai nghiệm là hai số nghịch đảo của nhau
Bài 16. Cho phơng trình: x
2
- 2(m + 1)x + 2m + 10 = 0
Tìm các giá trị của m để hai nghiệm x
1
, x
2
của phơng trình thỏa mãn

2 2
1 2 1 2
10A x x x x= + +
đạt giá trị nhỏ nhất. Tìm giá trị đó
Bài 17. Gọi x
1
, x
2
là hai nghiệm của phơng trình
2x
2
+ 2(m + 1)x + m
2
+ 4m + 3 = 0
Tìm giá trị lớn nhất của biểu thức: M = |x
1
x
2
- 2x
1

- 2x
2
|
Bài 18. Cho phơng trình: x
2
- mx + m - 1 = 0
LTT THCS Minh Phỳ
14
Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)

a. Chứng minh rằng phơng trình luôn có nghiệm với mọi m
b. Gọi x
1
, x
2
là hai nghiệm của phơng trình. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức:
1 2
2 2
1 2 1 2
2 3
2( 1)
x x
P
x x x x
+
=
+ + +
Bài 19. Cho phơng trình: x
2
+ px + q = 0

Tìm các giá trị của p và q sao cho hai nghiệm của phơng trình thỏa mãn
1 2
3 3
1 2
5
35
x x
x x
=



=


Bài 20. Cho phơng trình bậc hai: x
2
- 2x - m
2
= 0 có các nghiệm x
1
, x
2
. Lập phơng trình bậc hai có các nghiệm
y
1
, y
2
sao cho:
a. y

1
= x
1
- 3, y
2
= x
2
- 3
b. y
1
= 2x
1
- 1, y
2
= 2x
2
- 1
Bài 21. Lập phơng trình bậc hai có các nghiệm thỏa mãn:
1 2
3 3
1 2
2
26
x x
x x
=



=



Bài 22. Chứng minh rằng trong ba phơng trình sau có ít nhất một phơng trình vô nghiệm
x
2
+ ax + b - 1 = 0
x
2
+ bx + c - 1 = 0
x
2
+ cx + a - 1 = 0
Bài 23. Cho 2 phơng trình:
x
2
+ 2x + a = 0 (1) và (1 + a)(x
2
+ 2x + a) - 2(a - 1)(x
2
+ 1) = 0 (2)
Chứng minh rằng nếu phơng trình (1) có hai nghiệm phân biệt thì phơng trình (2) vô nghiệm.
Bài 24. Cho phơng trình: x
2
- 2(m + 1)x + m - 1 = 0.
a. Chứng minh rằng phơng trình luôn có hai nghiệm phân biệt với mọi m
b. Chứng minh rằng biểu thức: A = x
1
(1 - x
1
) + x

2
(1 - x
2
) tron đó x
1
, x
2
là hai nghiệm của phơng trình
không phụ thuộc vào m
Bài 25. Cho phơng trình (m - 1)x
2
- 2mx + m + 4 = 0
a. Chứng minh rằng phơng trình luôn có nghiệm với mọi m
b. Tìm các giá trị của m để phơng trình có hai nghiệm có tích bằng 5, từ đó hãy tính tổng hai nghiệm
của phơng trình
c. Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m
d. Tìm các giá trị của m để phơng trình có hai nghiệm x
1
, x
2
thỏa mãn đẳng thức:
1 2
2 1
5
0
2
x x
x x
+ + =
Bài 26. Tìm các giá trị của m và n để hai phơng trình sau tơng đơng

x
2
+ (4m + 3n)x - 9 = 0.
x
2
+ (3m + 4n)x + 3n = 0
Bài 27. Cho phơng trình ax
2
+ bx + c = 0 có hai nghiệm dơng phân biệt x
1
, x
2
a. Chứng minh rằng phơng trình cx
2
+ bx + a = 0 cũng có hai nghiệm dơng phân biệt
b. Chứng minh rằng S = x
1
+ x
2
+ x
3
+ x
4


4
Bài 28. Cho phơng trình: x
2
- (2m + 1)x + m
2

+ m = 0
a. Biết rằng phơng trình có một nghiệm x
1
= 2,tìm m rồi tìm nghiệm còn lại
b. Tìm các giá trị của m để các nghiệm của phơng trình thỏa mãn bất đẳng thức
-2 < x
1
< x
2
< 4
Bài 29. Tìm a sao cho nghiệm của phơng trình
x
4
+ 2x
2
+ 2ax + a
2
+ 2a + 1 = 0.
Đạt giá trị lớn nhất, giá trị nhỏ nhất
Bài 30. Cho a, b, c là ba số dơng khác nhau có tổng bằng 12. Chứng minh rằng trong ba phơng trình sau:
x
2
+ ax + b = 0
x
2
+ bx + c = 0
x
2
+ cx + a = 0.
Có một phơng trình vô nghiệm, một phơng trình có nghiệm

Bài 31. Cho biết phơng trình x
2
+ bx + c = 0, với b, c là các số hữu tỉ có một nghiệm là
1 2
2 4
+
. Tìm các cặp số
(b, c)
Bài 32. Biết số đo độ dài hai cạnh góc vuông của một tam giác vuông là nghiệm của phơng trình bậc hai:
(m - 2)x
2
- 2(m - 1)x + m = 0. Tìm m để số đo chiều cao ứng với cạnh huyền là
2
5
Bài 33. Tìm giá trị của m để các nghiệm x
1
, x
2
của phơng trình: mx
2
- 2(m - 2)x + (m - 3) = 0
thỏa mãn điều kiện:
2 2
1 2
1x x+ =
:
LTT THCS Minh Phỳ
15
Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)


Bài 34. Cho phơng trình: mx
2
- 2(m + 1)x + (m - 4) = 0 (m là tham số).
1. Tìm m để phơng trình có nghiệm.
2. Tìm m để phơng trình có hai nghiệm trái dấu. Khi đó trong hai nghiệm, nghiệm nào có giá trị tuyệt đối
lớn hơn.
3. Xác định m để các nghiệm x
1
, x
2
của phơng trình thỏa mãn x
1
+ 4x
2
= 3.
4. Tìm một hệ thức giữa x
1
, x
2
mà không phụ thuộc vào m.
Bài 35. Cho phơng trình x
2
- 2(m - 2)x + (m
2
+ 2m - 3) = 0.
Tìm m để phơng trình có hai nghiệm x
1
, x
2
phân biệt thỏa mãn

1 2
1 2
1 1
5
x x
x x
+
+ =
.
-Bài 36. Cho phơng trình x
2
+ 5x - 1 = 0 (1)
Không giải phơng trình (1), hãy lập một phơng trình bậc hai có các nghiệm là lũy thừa bậc bốn của các
nghiệm phơng trình (1).
Bài 37. Chứng minh rằng phơng trình sau có nghiệm với mọi a và b:
(a + 1)x
2
- 2(a + b)x + (b - 1) = 0.
Bài 38. Chứng minh rằng phơng trình sau có nghiệm với mọi m:
x
2
- (3m
2
- 5m + 1)x - (m
2
- 4m + 5) = 0.
Bài 39. Tìm giá trị của m để hệ phơng trình sau có nghiệm:
2 2
4 3 7
2 5

x y
x y m
=


+ =

Bài 40. Tìm giá trị của a để hai phơng trình sau có ít nhất một nghiệm chung:
x
2
+ ax + 8 = 0 (1) và x
2
+ x + a = 0 (2).
Bài 41. Tìm giá trị của m để phơng trình sau có ít nhất một nghiệm x 0:
(m + 1)x
2
- 2x + (m - 1) = 0.
Bài 42. Xác định m để phơng trình: (m + 1)x
2
- 2(m + 2)x + 2(m + 1) = 0 có hai nghiệm cùng âm, cùng dơng,
và trái dấu nhau
Bài 43. Tìm giá trị của m để phơng trình sau có đúng hai nghiệm phân biệt: x
3
- m(x + 1) + 1 = 0.
Bài 44. Chứng minh rằng phơng trình sau có nghiệm với mọi a, b và c:
x(x - a) + x(x - b) + (x - a)(x- b) = 0
(x - a)(x - b) + (x - b)(x - c) + (x - c)(x- a) = 0.
Bài 45. Chứng minh rằng phơng trình ax
2
+ bx + c = 0 (a 0) có nghiệm nếu

2
4
b c
a a
+
.
Bài 46. Chứng minh rằng ít nhất một trong hai phơng trình sau có nghiệm nếu bm = 2(c + n):
x
2
+ bx + c = 0 và x
2
+ mx + n = 0.
Bài 47. Cho phơng trình bậc hai: f(x) = ax
2
+ bx + c = 0 (a 0)
Chứng minh rằng nếu tồn tại số thực mà af() 0 thì phơng trình có nghiệm.
Bài 48. Cho biết các phơng trình ax
2
+ bx +2 c = 0 và ax
2
+ bx - c = 0 (a 0) có nghiệm. Vận dụng bài 22 để
chứng minh phơng trình ax
2
+ bx + c = 0 có nghiệm.
Bài 50. Với giá trị nào của a thì hệ phơng trình sau có nghiệm:
2 2
3 1x y
x y a
+ =



+ =

Bài 51. Tìm giá trị của m để hai phơng trình sau có ít nhất một nghiệm chung:
x
2
+ 2x + m = 0 (1) và x
2
+ mx + 2 = 0 (2).
Bài 52. Tìm giá trị của m để hai phơng trình sau có ít nhất một nghiệm chung:
x
2
+ (m - 2)x + 3 = 0 và 2x
2
+ mx + m + 2 = 0.
Bài 53. Tìm giá trị của m để hai phơng trình sau có ít nhất một nghiệm chung:
2x
2
+ (3m - 5)x - 9 = 0 và 6x
2
+ (7m-15)x -19 = 0.
Bài 54. Tìm giá trị nguyên của a để hai phơng trình sau có ít nhất một nghiệm chung:
2x
2
+ (3m - 1)x - 3 = 0 và 6x
2
- (2m - 3)x - 1 = 0.
Bài 55. Tìm giá trị của m để một nghiệm của phơng trình 2x
2
- 13x + 2m = 0 (1) gấp đôi một nghiệm của ph-

ơng trình x
2
- 4x + m = 0 (2).
Bài 56. Cho các số a, b, c khác nhau đôi một, c 0. Biết rằng các phơng trình
x
2
+ ax + bc = 0(1) và x
2
+ bx + ca = 0 (2) có ít nhất một nghiệm chung. Tìm nghiệm chung đó.
Bài 57. Cho các phơng trình: ax
2
+ bx + c = 0 (1) và cx
2
+ bx + a = 0 (2).
1. Biết phơng trình (1) có nghiệm dơng m,
2. Chứng minh rằng phơng trình (2) có nghiệm n sao cho m + n 2.
Bài 58. Cho các phơng trình: ax
2
+ bx + c = 0 (1) và cx
2
+ bx + a = 0 (2).
Tìm liên hệ giữa các số a, b, c biết rằng các nghiệm x
1
, x
2
của phơng trình (1), các nghiệm x
3
, x
4
của ph-

ơng trình (2) thỏa mãn đẳng thức:
2 2 2 2
1 2 3 4
4x x x x+ + + =
.
Bài 59. Phơng trình x
2
+ bx + c = 0 có nghiệm x
1
, x
2
. Phơng trình x
2
- b
2
x + bc = 0 có nghiệm x
3
, x
4
.
Biết x
3
- x
1
= x
4
- x
2
= 1. Xác định b và c.
LTT THCS Minh Phỳ

16
Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)

Bài 60. Tìm các số a, b sao cho các phơng trình: x
2
+ ax + 6 = 0 và x
2
+ bx + 12 = 0 có ít nhất một nghiệm
chung và
a b+
nhỏ nhất.
Bài 61. Tìm m để phơng trình x
2
+ mx + 2m - 4 = 0 có ít nhất một nghiệm không âm.
Bài 62. Tìm m để phơng trình
2 2
2 2 4 3 0x m x x m+ + + =
có nghiệm.
Bài 63. Tìm m để phơng trình 3x
2
- 4x + 2(m - 1) = 0 có hai nghiệm phân biệt nhỏ hơn 2.
Bài 64. Tìm m để phơng trình (m - 1)x
2
- (m - 5)x + (m - 1) = 0 có hai nghiệm phân biệt lớn hơn -1.
Bài 65. Với giá trị nào của m thì hai nghiệm của phơng trình x
2
+ x + m = 0 đều lớn hơn m?
Bài 66. Tìm giá trị của m để phơng trình sau có ba nghiệm phân biệt:
x
3

- (m + 1)x
2
+ (m
2
+ m - 3)x - m
2
+ 3 = 0.
Bài 67. Tìm giá trị của m để phơng trình sau có nghiệm: (m - 3)x
4
- 2mx
2
+ 6m = 0.
Bài 68. Tìm giá trị của m để phơng trình: mx
4
- 10mx
2
+ m + 8 = 0
1. Có bốn nghiệm phân biệt.
2. Có bốn nghiệm x
1
, x
2
, x
3
, x
4
(x
1
< x
2

< x
3
< x
4
) thỏa mãn điều kiện:x
4
- x
3
= x
3
- x
2
= x
2
- x
1
.
Bài 76. Cho phơng trình ẩn x: x
2
- 2(m - 1)x - 3 - m = 0.
1. Chứng tỏ rằng phơng trình có nghiệm số với mọi m.
2. Tìm m sao cho nghiệm x
1
, x
2
của phơng trình thỏa mãn điều kiện:
2 2
1 2
10x x+
.

Bài 78. Cho phơng trình: (m - 1)x
2
+ 2(m -1)x - m = 0.
a. Định m để phơng trình có nghiệm kép. Tính nghiệm kép này.
b. Định m để phơng trình có hai nghiệm phân biệt đều âm.
Bài 79. Cho phơng trình: x
2
- (2m - 3)x + m
2
- 3m = 0.
a. Chứng minh rằng, phơng trình luôn luôn có hai nghiệm khi m thay đổi.
b. Định m để phơng trình có 2 nghiệm x
1
, x
2
thỏa mãn: 1 < x
1
< x
2
< 6.
Bài 80. Cho hai phơng trình: x
2
+ x + a = 0 (1)
x
2
+ ax + 1 = 0 (2)
Tìm các giá trị của a để hai phơng trình:
a. Tơng đơng với nhau.
b. Có ít nhất một nghiệm chung.
Bài 81

a.
Chứng minh hằng đẳng thức: (m
2
+ m - 1)
2
+ 4m
2
+ 4m = (m
2
+ m + 1)
2
b.
Cho phơng trình: mx
2
- (m
2
+ m + 1)x + m + 1 = 0. Tìm điều kiện của m để phơng trình có hai nghiệm
phân biệt khác -1.
Bài 84. Cho phơng trình: (m + 2)x
2
- (2m - 1)x - 3 + m = 0.
1. Chứng minh rằng phơng trình có nghiệm với mọi m.
2. Tìm tất cả các giá trị của m sao cho phơng trình có hai nghiệm phân biệt x
1
, x
2
và khi đó hãy tìm giá trị
của m để nghiệm này gấp hai lần nghiệm kia.
Bài 85. Cho phơng trình: x
2

- 4x + m + 1 = 0.
1. Định m để phơng trình có nghiệm.
2. Tìm m sao cho phơng trình có 2 nghiệm x
1
, x
2
thỏa mãn:
2 2
1 2
10x x+ =
.
Bài 85. Cho phơng trình x
2
- 2mx + m + 2 = 0.
1. Xác định m để phơng trình có 2 nghiệm không âm.
2. Khi đó hãy tính giá trị của biểu thức:
1 2
E x x= +
theo m.
Bài 87. Cho phơng trình: 3x
2
- mx + 2 = 0. Xác định m để phơng trình có hai nghiệm thỏa mãn:
3x
1
x
2
= 2x
2
- 2.
Bài 88. Cho phơng trình: x

2
- 2(m - 1)x - m = 0.
1. Chứng minh rằng phơng trình luôn luôn có 2 nghiệm x
1
, x
2
với mọi m.
2. Với m 0, lập phơng trình ẩn y thỏa mãn:
1 1
2
1
y x
x
= +
,
2 2
1
1
y x
x
= +
.
Bài 89. Cho phơng trình: 3x
2
- 5x + m = 0. Xác định m để phơng trình có hai nghiệm thỏa mãn:
2 2
1 2
5
9
x x =

.
Bài 90. Cho phơng trình: x
2
- 2(m + 4)x + m
2
- 8 = 0. Xác định m để phơng trình có 2 nghiệm x
1
, x
2
thỏa mãn:
A = x
1
+ x
2
- 3x
1
x
2
đạt giá trị lớn nhất.
2 2
1 2 1 2
B x x x x= +
đạt giá trị nhỏ nhất.
Tìm hệ thức giữa x
1
, x
2
không phụ thuộc vào m.
Bài 91. Cho phơng trình: x
2

- 4x - (m
2
+ 3m) = 0.
1. Chứng minh rằng phơng trình luôn luôn có hai nghiệm x
1
, x
2
với mọi m.
2. Xác định m để:
2 2
1 2 1 2
4( )x x x x+ = +
.
LTT THCS Minh Phỳ
17
Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)

Bài 92. Cho phơng trình: x
2
+ ax + 1 = 0. Xác định a để phơng trình có 2 nghiệm x
1
, x
2
thỏa mãn:
2 2
1 2
2 1
7.
x x
x x


+ >
ữ ữ

Bài 93. Cho phơng trình: 2x
2
+ 2(m + 2)x + m
2
+ 4m + 3 = 0.
1. Xác định m để phơng trình có hai nghiệm x
1
, x
2
.
2. Chứng minh rằng các nghiệm x
1
, x
2
thỏa mãn bất đẳng thức:
2
1 2 1 2
2
3 1
2
x x x x

+ + +




.
Bài 94. Cho phơng trình: ax
2
+ bx + c = 0 (a 0). Chứng minh rằng, điều kiện cần và đủ để phơng trình có hai
nghiệm mà nghiệm này gấp đôi nghiệm kia là: 9ac = 2b
2
.
Bài 95. Cho phơng trình: ax
2
+ bx + c = 0 (a 0). Chứng minh rằng, điều kiện cần và đủ để phơng trình có hai
nghiệm mà nghiệm này gấp k lần nghiệm kia (k > 0) là: kb
2
= (k + 1)
2
ac.
Bài 96. Cho hai phơng trình: x
2
+ mx + 2 = 0 (1) x
2
+ 2x + m = 0 (2)
a. Định m để hai phơng trình có ít nhất một nghiệm chung.
b. Định m để hai phơng trình tơng đơng.
c. Xác định m để phơng trình: (x
2
+ mx +2)(x
2
+ 2x + m) = 0 có 4 nghiệm phân biệt.
Bài 100. Cho phơng trình bậc hai: ax
2
+ bx + c = 0 với a, b, c là các số hữu tỉ, a 0. Cho biết phơng trình có

một nghiệm
1 2+
. Hãy tìm nghiệm còn lại.
Bài 101. Tìm tất cả các số nguyên k để phơng trình: kx
2
- (1 - 2k)x + k - 2 = 0 luôn luôn có nghiệm số hữu tỷ.
Bài 102. Cho phơng trình: 3x
2
+ 4(a - 1)x + a
2
- 4a + 1 = 0 xác định a để phơng trình có hai nghiệm phân biệt
x
1
, x
2
thỏa mãn hệ thức:
1 2
1 2
1 1
2
x x
x x
+
= +
.
Bài 105. Cho hai phơng trình: 2x
2
+ mx - 1 = 0 (1) mx
2
- x + 2 = 0 (2)

Với giá trị nào của m, phơng trình (1) và phơng trình (2) có nghiệm chung.
Bài 106. Giả sử x
1
và x
2
là hai nghiệm của phơng trình: 3x
2
- cx + 2c -1 = 0. Tính theo c giá trị của biểu thức:
3 3
1 2
1 1
S
x x
= +
.
Bài 107. Xác định a để 2 phơng trình: x
2
+ ax + 8 = 0 và x
2
+ x + a = 0 có nghiệm chung.
Bài 108. Cho phơng trình: 2x
2
+ 6x + m = 0. Với giá trị nào của tham số m, phơng trình có hai nghiệm phân
biệt x
1
, x
2
thỏa mãn:
1 2
2 1

2
x x
x x
+ =
.
Bài 109. Cho biết x
1
, x
2
là hai nghiệm phân biệt khác 0 của phơng trình bậc hai: ax
2
+ bx + c = 0 (
0; , ,a a b c R
). Hãy lập một phơng trình bậc hai có các nghiệm là:
2 2
1 2
1 1
,
x x
.
Bài 110. Biết rằng x
1
, x
2
là hai nghiệm của phơng trình: ax
2
+ bx + c = 0. Hãy viết phơng trình bậc hai nhận
3 3
1 2
,x x

làm hai nghiệm.
Bài 111. Cho f(x) = x
2
- 2(m + 2)x + 6m + 1.
1. Chứng minh rằng phơng trình f(x) = 0 có nghiệm với mọi m.
2. Đặt x = t + 2. Tính f(x) theo t, từ đó tìm điều kiện đối với m để phơng trình f(x) = 0 có hai nghiệm lớn
hơn 2.
Bài 112. Cho phơng trình: x
2
- (2m + 1)x + m
2
+ m - 6.
1. Định m để phơng trình có hai nghiệm đều âm.
2. Định m để phơng trình có hai nghiệm x
1
, x
2
thỏa mãn:
3 3
1 2
50x x =
.
Bài 114. Cho phơng trình: x
2
- 6x + m = 0. Với giá trị nào của tham số m, phơng trình có 2 nghiệm phân biệt x
1
,
x
2
thỏa mãn

3 3
1 2
72x x+ =
.
Bài 116. Cho phơng trình: x
2
- (m - 1)x - m
2
+ m - 2 = 0.
1. Chứng minh rằng phơng trình luôn luôn có hai nghiệm trái dấu với mọi m.
2. Với giá trị nào của tham số m, biểu thức:
2 2
1 2
E x x= +
đạt giá trị nhỏ nhất.
Bài 117. Cho hai phơng trình: x
2
+ a
1
x + b
1
= 0 và x
2
+ a
2
x + b
2
= 0
Cho biết a
1

a
2
2(b
1
+ b
2
). Chứng minh ít nhất một trong hai phơng trình đã cho có nghiệm.
Bài 119. Cho phơng trình: x
2
2(m 1)x + m
2
3m + 4 = 0.
1. Xác định m để phơng trình có hai nghiệm phân biệt x
1
, x
2
thỏa mãn:
1 2
1 1
1
x x
+ =
.
2. Lập một hệ thức giữa x
1
và x
2
độc lập với m.
LTT THCS Minh Phỳ
18

Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)

Bài 120. Cho phơng trình: (m + 2)x
2
- 2(m - 1)x + 3 - m = 0.
1. Xác định m để phơng trình có hai nghiệm x
1
, x
2
thỏa mãn:
2 2
1 2 1 2
x x x x+ = +
.
2. Lập một hệ thức giữa x
1
và x
2
không phụ thuộc vào m
3. Lập một phơng trình bậc hai có các nghiệm là:
1 2
1 2
1 2
1 1
,
1 1
x x
X X
x x


= =
+ +
.
Bài 121. Cho phơng trình: x
2
+ (m + 1)x + m = 0.
1. Chứng minh rằng phơng trình luôn luôn có 2 nghiệm x
1
, x
2
với mọi m.
2. Với giá trị nào của tham số m, biểu thức:
2 2
1 2
E x x= +
đạt giá trị nhỏ nhất.
Bài 122. Cho phơng trình: (a - 3)x
2
- 2(a - 1)x + a - 5 = 0.
1. Giải phơng trình khi a = 13.
2. Xác định a để phơng trình có hai nghiệm phân biệt.
Bài 123. Cho phơng trình: 2x
2
+ (2m - 1)x + m - 1 = 0.
1. Chứng minh rằng phơng trình luôn luôn có nghiệm với mọi m.
2. Xác định m để phơng trình có nghiệm kép. Tìm nghiệm đó.
3. Xác định m để phơng trình có hai nghiệm phân biệt x
1
, x
2

thỏa mãn: -1 < x
1
< x
2
< 1.
4. Trong trờng hợp phơng trình có hai nghiệm phân biệt x
1
, x
2
, hãy lập một hệ thức giữa x
1
, x
2
không có
m.
Bài 124. Cho phơng trình: x
2
- 2(m - 1)x + m - 3 = 0.
1. Chứng minh rằng phơng trình luôn luôn có nghiệm với mọi m.
2. Xác định m để phơng trình có hai nghiệm đối nhau.
Bài 125. Cho phơng trình: x
2
+ ax + b = 0. Xác định a và b để phơng trình có hai nghiệm phân biệt x
1
, x
2
thỏa
mãn: x
1
- x

2
= 5 và
3 3
1 2
35x x =
. Tính các nghiệm đó.
Bài 126. Giả sử phơng trình: ax
2
+ bx + c = 0; (a, b, c khác 0) có hai nghiệm phân biệt trong đó có đúng một
nghiệm dơng x
1
thì phơng trình: ct
2
+ bt + a = 0 cũng có hai nghiệm phân biệt trong đó t
1
> 0 thỏa mãn: x
1
+ t
1

2.
Bài 130. Cho phơng trình: 2x
2
(2m + 1)x + m
2
9m + 39 = 0.
1. Giải phơng trình khi m = 9.
2. Xác định m để phơng trình có hai nghiệm phân biệt.
3. Xác định m để phơng trình có hai nghiệm mà một nghiệm gấp đôi nghiệm còn lại. Tìm các nghiệm đó.
Bài 131. Cho phơng trình: x

2
+ ax + b = 0. Xác định a và b để phơng trình có hai nghiệm là a và b.
Bài 132. Cho f(x) = (4m - 3)x
2
- 3(m + 1)x + 2(m + 1).
1. Khi m = 1, tìm nghiệm của phơng trình f(x) = 0.
2. Xác định m để f(x) viết đợc dới dạng một bình phơng.
3. Giả sử phơng trình f(x) = 0 có hai nghiệm phân biệt x
1
, x
2
. Lập một hệ thức giữa x
1
, x
2
không phụ thuộc
vào m.
Bài 138. Giả sử phơng trình: x
2
- 2(m + 1)x + 2m + 10 = 0 có hai nghiệm phân biệt x
1
, x
2
. Xác định m để biểu
thức:
2 2
1 2 1 2
10E x x x x= + +
đạt giá trị nhỏ nhất. Tính min E.
Bài 140. Cho phơng trình: x

2
- 2(m + 1)x + 4m = 0
a. Chứng minh rằng với mọi m, phơng trình luôn luôn có nghiệm. Tìm m để phơng trình có nghiệm kép.
Tìm nghiệm kép đó.
b. Xác định m để phơng trình có một nghiệm x = 4. Tính nghiệm còn lại.
Bài 141. Cho phơng trình: x
2
- mx + m -1 = 0. Có 2 nghiệm x
1
, x
2
. Với giá trị nào của m, biểu thức:
1 2
2 2
1 2 1 2
2 3
2(1 )
x x
R
x x x x
+
=
+ + +
đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó.
Bài 142. Cho a là số thực khác -1. Hãy lập một phơng trình bậc hai có hai nghiệm x
1
, x
2
thỏa mãn các hệ thức:
a. 4x

1
x
2
+ 4 = 5(x
1
+ x
2
) (1)
b.
( ) ( )
1 2
1
1 1
1
x x
a
=
+
(2)
Bài 145. Cho phơng trình: x
2
+ 2(a + 3)x + 4(a + 3) = 0
a. Với giá trị nào của a, phơng trình có nghiệm kép. Tính các nghiệm kép.
b. Xác định a để phơng trình có hai nghiêm phân biệt lớn hơn -1.
Bài 146. Cho phơng trình: x
2
- ax + a + 1 = 0 có hai nghiệm là x
1
và x
2

.
a. Không giải phơng trình, hãy tính giá trị của biểu thức:
2 2
1 2
2 2
1 2 1 2
3 3 3x x
M
x x x x
+
=
+
.
b. Tìm giá trị của a để:
2 2
1 2
P x x= +
đạt giá trị nhỏ nhất.
Bài 147. Cho phơng trình: x
2
- (2m + 1)x + m
2
+ m - 1= 0.
a. Chứng minh rằng phơng trình có nghiệm với mọi m.
b. Chứng minh rằng có một hệ thức giữa hai nghiệm không phụ thuộc vào m.
Bài 148. Cho phơng trình: ax
2
+ (ab + 1)x + b = 0.
LTT THCS Minh Phỳ
19

Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)

a. Chứng minh rằng với mọi a, b phơng trình đã cho đều có nghiệm.
b. Muốn cho phơng trình đã cho có nghiệm duy nhất bằng 1/2 thì a và b phải bằng bao nhiêu?
Bài 149. Cho phơng trình: x
2
- 2mx - 2m - 1 = 0.
a. Chứng minh rằng phơng trình luôn luôn có 2 nghiệm x
1
, x
2
với mọi m.
b. Tìm biểu thức liên hệ giữa x
1
, x
2
không phụ thuộc vào m.
c. Tìm m để phơng trình có 2 nghiệm x
1
, x
2
thỏa mãn:
1 2
2 1
5
2
x x
x x
+ =
.

Bài 150. Cho phơng trình: (m - 1)x
2
- 2(m + 1)x + m = 0.
a. Giải và biện luận phơng trình theo m.
b. Khi phơng trình có 2 nghiệm phân biệt x
1
, x
2
:
Tìm một hệ thức giữa x
1
, x
2
độc lập với m.
Tìm m sao cho:
1 2
2x x
.
Bài 151. Cho phơng trình : x
2
- 2x - (m -1)(m - 3) = 0.
a. Chứng minh rằng phơng trình luôn có nghiệm với mọi m.
b. Xác định m để phơng trình có hai nghiệm không âm.
c. Gọi x
1
, x
2
là hai nghiệm. Xác định m để biểu thức:
1 2
( 1)E x x= +

đạt giá trị lớn nhất.
Bài 152. Cho phơng trình: x
2
+ 2(m + 2)x - 4m - 12 = 0.
a. Chứng minh phơng trình luôn có nghiệm với mọi m.
b. Xác định m để phơng trình có hai nghiệm x
1
, x
2
thỏa mãn:
2
1 2
x x=
.
Bài 153. Gọi x
1
, x
2
là hai nghiệm của phơng trình: x
2
- 3x + a = 0
Gọi t
1
, t
2
là hai nghiệm của phơng trình: t
2
- 12t + b = 0
Cho biết:
1 2 1

2 1 2
x x t
x t t
= =
. Tính a và b.
D. Hàm số và đồ thị
Kiến thức cơ bản
Hàm số
a. Khái niệm hàm số
-
Nếu đại lợng y phụ thuộc vào đại lợng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định đợc
chỉ một giá trị tơng ứng của y thì y đợc gọi là hàm số tơng ứng của x và x đợc gọi là biến số
-
Hàm số có thể cho bởi bảng hoặc công thức
b. Đồ thị hàm số
- Đồ thị hàm số y = f(x) là tập hợp tất cả những điểm M trong mặt phẳng tọa độ có tọa độ thỏa mãn phơng
trình y = f(x) (Những điểm M(x, f(x)) trên mặt phẳng tọa độ)
c. Hàm số đồng biến, hàm số nghịch biến
* Cho hàm số y = f(x) xác định với mọi giá trị của x thuộc R
-
Nếu x
1
< x
2
mà f(x
1
) < f(x
2
) thì hàm số y = f(x) đồng biến trên R
-

Nếu x
1
< x
2
mà f(x
1
) > f(x
2
) thì hàm số y = f(x) nghịch biến trên R
* Tổng quát
+
2 1
1 2 1 2
2 1
( ) ( )
0, , ,
f x f x
x x D x x
x x

>

Hàm số f(x) đồng biến trên D
+
2 1
1 2 1 2
2 1
( ) ( )
0, , ,
f x f x

x x D x x
x x

<

Hàm số f(x) nghịch biến trên D
Hàm số bậc nhất
a. Khái niệm hàm số bậc nhất
- Hàm số bậc nhất là hàm số đợc cho bởi công thức y = ax + b. Trong đó a, b là các số cho trớc và a

0
b. Tính chất
Hàm số bậc nhất y = ax + b xác định với mọi giá trị của x thuộc R và có tính chất sau:
-
Đồng biến trên R khi a > 0
-
Nghịch biến trên R khi a < 0
c. Đồ thị của hàm số y = ax + b (a

0)
Đồ thị của hàm số y = ax + b (a

0) là một đờng thẳng
-
Cắt trục tung tại điểm có tung độ bằng b
-
Song song với đờng thẳng y = ax, nếu b

0, trùng với đờng thẳng y = ax, nếu b = 0
* Cách vẽ đồ thị hàm số y = ax + b (a


0)
Bớc 1. Cho x = 0 thì y = b ta đợc điểm P(0; b) thuộc trục tung Oy.
Cho y = 0 thì x = -b/a ta đợc điểm Q(-b/a; 0) thuộc trục hoành
Bớc 2. Vẽ đờng thẳng đi qua hai điểm P và Q ta đợc đồ thị hàm số y = ax + b
d. Vị trí tơng đối của hai đờng thẳng
LTT THCS Minh Phỳ
20
Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)

Cho hai đờng thẳng (d): y = ax + b (a

0) và (d): y = ax + b (a

0). Khi đó
+
'
// '
'
a a
d d
b b
=





+
{ }

' ' 'd d A a a =
+
'
'
'
a a
d d
b b
=



=

+
' . ' 1d d a a =
e. Hệ số góc của đờng thẳng y = ax + b (a

0)
Góc tạo bởi đờng thẳng y = ax + b và trục Ox.
- Góc tạo bởi đờng thẳng y = ax + b và trục Ox là góc tạo bởi tia Ax và tia AT, trong đó A là giao điểm của
đờng thẳng y = ax + b với trục Ox, T là điểm thuộc đờng thẳng y = ax + b và có tung độ dơng
Hệ số góc của đờng thẳng y = ax + b
- Hệ số a trong phơng trình y = ax + b đợc gọi là hệ số góc của đờng thẳng y = ax +b
f. Một số phơng trình đờng thẳng
-
Đờng thẳng đi qua điểm M
0
(x
0

;y
0
)có hệ số góc k: y = k(x - x
0
) + y
0
-
Đờng thẳng đi qua điểm A(x
0
, 0) và B(0; y
0
) với x
0
.y
0


0 là
0 0
1
x y
x y
+ =
Hàm số bậc hai
a. Định nghĩa
- Hàm số có dạng y = ax
2
(a

0)

b. Tính chất
- Hàm số y = ax
2
(a

0) xác đinh với mọi giá trị của c thuộc R và:
+ Nếu a > 0 thì hàm số nghịch biến khi x < 0, đồng biến khi x > 0
+ Nếu a < 0 thì hàm số đồng biến khi x < 0, nghịch biến khi x > 0
c. Đồ thị của hàm số y = ax
2
(a

0)
- Đồ thị hàm số y = ax
2
(a

0) là một Parabol đi qua gốc tọa độ nhận trục Oy làm trục đối xứng
+ Nếu a > 0 thì đồ thị nằm phía trên trục hoành, O là điểm thấp nhất của đồ thị
+ Nếu a < 0 thì đồ thị nằm phía dời trục hoành, O là điểm cao nhất của đồ thị
Kiến thức bổ xung
Công thức tính toạ độ trung điểm của đoạn thẳng và độ dài đoạn thẳng
Cho hai điểm phân biệt A với B với A(x
1
, y
1
) và B(x
2
, y
2

). Khi đó
-
Độ dài đoạn thẳng AB đợc tính bởi công thức
2 2
( ) ( )
B A B A
AB x x y y= +
-
Tọa độ trung điểm M của AB đợc tính bởi công thức
;
2 2
A B A B
M M
x x y y
x y
+ +
= =
Quan hệ giữa Parabol y = ax
2
(a

0) và đờng thẳng y = mx + n (m

0)
Cho Parabol (P): y = ax
2
(a

0) và đờng thẳng (d): y = mx + n. Khi đó
-

Tọa độ giao điểm của (P) và (d) là nghiệm của hệ phơng trình
2
y ax
y mx n

=

= +

-
Hoành độ giao điểm của (P) và (d) là nghiệm của phơng trình
ax
2
= mx + n (*)
-
Số giao điểm của (P) và (d) là số nghiệm của phơng trình (*)
+ Nếu (*) vô nghiệm thì (P) và (d) không có điểm chung
+ Nếu (*) có nghiệm kép thì (P) và (d) tiếp xúc nhau
+ Nếu (*) có hai nghiệm phân biệt thì (P) và (d) cắt nhau tại hai điểm phân biệt
Một số phép biến đổi đồ thị
Cho hàm số y = f(x) có đồ thị là (C)
-
Đồ thị (C
1
): y = f(x) + b đợc suy ra bằng cách tịnh tiếc (C) dọc theo trục tung b đơn vị
-
Đồ thị (C
2
): y = f(x + a) đợc suy ra bằng cách tịnh tiến (C) dọc theo trục hoành a đơn vị
-

Đồ thị (C
3
): y = f(|x|) gồm hai phần
+ Giữ nguyên phần đồ thị (C) nằm bên phải Oy, bỏ phần (C) nằm bên trái Oy
+ Lấy đối xứng phần (C) nằm bên phải Oy qua Oy
-
Đồ thị (C
4
): y = |f(x)| gồm hai phần
+ Giữ nguyên phần đồ thị (C) nằm bên trên Ox, bỏ phần (C) nằm bên dới Ox
+ Lấy đối xứng phần (C) nằm bên treen Ox qua Ox
Hàm số chẵn, hàm số lẻ
LTT THCS Minh Phỳ
21
Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)

d. Hàm số chẵn, Hàm số lẻ
-
Hàm số y = f(x) đợc gọi là chẵn nếu
+
x D x D
+ f(-x) = f(x)
x D

-
Hàm số y = f(x) đợc gọi là lẻ nếu
+
x D x D
+ f(-x) = - f(x)
x D


e. Chú ý
-
Đồ thị của hàm số chẵn đối xứng nhau qua trục tung
-
Đồ thị của hàm số lẻ đối xứng nhau qua gốc tọa độ
Sơ lợc về hàm bậc hai tổng quát y = ax
2
+ bx + c (a

0)
a. Tính chất
Hàm bậc hai y = ax
2
+ bx + c (a

0) xác định với mọi giá trị x thuộc R
-
Nếu a > 0: Hàm số nghịch biến
( ; ]
2
b
x
a

, đồng biến
[ ; )
2
b
x

a
+
-
Nếu a < 0: Hàm số đồng biến
( ; ]
2
b
x
a

, nghịch biến
[ ; )
2
b
x
a
+
a. Đồ thị
Đồ thị của hàm số y = ax
2
+ bx + c (a

0) là một Parabol có đỉnh
( ; )
2 4
b
S
a a



có trục đối xứng
2
b
x
a
=
-
Nếu a > 0: Parabol có bề lõm quay lên trên nhận S làm điểm thấp nhất
-
Nếu a < 0: Parabol có bề lõm quay xuống dới nhận S làm điểm cao nhất nhất
a. Chú ý
-
Tọa độ giao điểm của (P): y = ax
2
+ bx + c (a

0) và (D): y = mx + n là nghiệm của hệ
2
y ax bx c
y mx n

= + +

= +

-
Hoành độ giao điểm của (P): y = ax
2
+ bx + c (a


0) và (D): y = mx + n là nghiệm của phơng trình:
ax
2
+ bx + c = mx + n
-
Giao điểm của (P): y = ax
2
+ bx + c (a

0) và trục hoành là nghiệm của phơng trình
ax
2
+ bx + c = 0
Ví dụ minh học
Bài tập chọn lọc
Bài 1. Cho hai hàm số: y = x và y = 3x
a. Vẽ đồ thị của hai hàm số đó trên cùng một hệ trục tọa độ Oxy
b. Đờng thẳng song song với trục Ox, cắt Oy tại điểm có tung độ bằng 6, cắt các đờng thẳng: y = x và
y = 3x lần lợt ở A và B. Tìm tọa độ các điểm A và B, tính chu vi, diện tích tam giác OAB
Bài 2: Cho hàm số y = - 2x và
1
2
y x=
.
a. Vẽ trên cùng một hệ trục tọa độ Oxy đồ thị của hai hàm số trên;
b. Qua điểm (0; 2) vẽ đờng thẳng song song với trục Ox cắt đờng thẳng
1
2
y x=
và y = - 2x lần lợt tại

A và B. Chứng minh tam giác AOB là tam giác vuông và tính diện tích của tam giác đó.
Bài 3: Cho hàm số
y x=
.
a. Vẽ đồ thị hàm số;
b. Vẽ đờng thẳng y = 2, cắt đồ thị hàm số
y x=
ở A và B. Tam giác OAB là tam giác gì? Vì sao? Tính
chu vi và diện tích của tam giác đó.
Bài 4: Cho hàm số: y = (m + 4)x - m + 6 (d).
a. Tìm các giá trị của m để hàm số đồng biến, nghịch biến.
b. Tìm các giá trị của m, biết rằng đờng thẳng (d) đi qua điểm A(-1; 2). Vẽ đồ thị của hàm số với giá
trị tìm đợc của m.
c. Chứng minh rằng khi m thay đổi thì các đờng thẳng (d) luôn luôn đi qua một điểm cố định.
Bài 5: Cho hàm số: y = (3m 2)x 2m.
a. Xác định m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 2.
b. Xác định m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 2.
c. Xác định tọa độ giao điểm của hai đồ thị ứng với giá trị của m tìm đợc ở câu a, b.
Bài 6: Cho ba đờng thẳng y = -x + 1, y = x + 1 và y = -1.
LTT THCS Minh Phỳ
22
Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)

a. Vẽ ba đờng thẳng đã cho trên cùng một hệ trục tọa độ Oxy.
b. Gọi giao điểm của đờng thẳng y = -x + 1 và y = x + 1 là A, giao điểm của đờng thẳng y = -1 với hai
đờng thẳng y = -x + 1 và y = x + 1 theo thứ tự là B và C. Tìm tọa độ các điểm A, B, C.
c. Tam giác ABC là tam giác gì? Tính diện tích tam giác ABC.
Bài 7: Cho đờng thẳng (d): ;y = - 2x + 3.
a. Xác định tọa độ giao điểm A và B của đờng thẳng d với hai trục Ox, Oy, tính khoảng cách từ điểm
O(0; 0) đến đờng thẳng d.

b. Tính khoảng cách từ điểm C(0; -2) đến đờng thẳng d.
Bài 9: Tìm giá trị của k để ba đờng thẳng:
y = 2x + 7 (d
1
)
1 7
3 3
y x= +
(d
2
)
2 1
y x
k k
=
(d
3
)
đồng quy trong mặt phẳng tọa độ.
Bài 10: Cho hai đờng thẳng: y = (m + 1)x - 3 và y = (2m - 1)x + 4.
a. Chứng minh rằng khi
1
2
m =
thì hai đờng thẳng đã cho vuông góc với nhau.
b. Tìm tất cả các giá trị của m để hai đờng thẳng đã cho vuông góc với nhau.
Bài 11: Xác định hàm số y = ax + b trong mỗi trờng hợp sau:
a. Khi
3a =
, đồ thị hàm số cắt trục tung tại điểm có tung độ bằng

3
.
b. Khi a = - 5, đồ thị hàm số đi qua điểm A(- 2; 3).
c. Đồ thị hàm số đi qua hai điểm M(1; 3) và N(- 2; 6).
d. Đồ thị hàm số song song với đờng thẳng
7y x=
và đi qua điểm
( )
1;7 7+
.
Bài 12: Cho đờng thẳng: y = 4x (d).
a. Viết phơng trình đờng thẳng (d
1
) song song với đờng thẳng (d) và có tung độ gốc bằng 10.
b. Viết phơng trình đờng thẳng (d
2
) vuông góc với đờng thẳng (d) và cắt trục Ox tại điểm có hoành độ
bằng 8.
c. Viết phơng trình đờng thẳng (d
3
) song song với đờng thẳng (d) cắt trục Ox tại A, cắt trục Oy tại B và
diện tích tam giác AOB bằng 8.
Bài 13: Cho hàm số: y = 2x + 2 (d
1
)
1
2
2
y x=
(d

2
).
a. Vẽ đồ thị của hai hàm số đã cho trên cùng một hệ trục tọa độ Oxy.
b. Gọi giao điểm của đờng thẳng (d
1
) với trục Oy là A, giao điểm của đờng thẳng (d
2
) với trục Ox là B,
còn giao điểm của đờng thẳng (d
1
) và (d
2
) là C. Tam giác ABC là tam giác gì? Tìm tọa độ các điểm
A, B, C.
c. Tính diện tích tam giác ABC.
Bài 14: Cho các hàm số sau: y = - x - 5 (d
1
) ;
1
4
y x=
(d
2
); y = 4x (d
3
)
a. Vẽ đồ thị của các hàm số đã cho trên cùng một hệ trục tọa độ Oxy.
b. Gọi giao điểm của đờng thẳng (d
1
) với đờng thẳng (d

2
) và (d
3
) lần lợt là A và B. Tìm tọa độ các điểm
A, B.
c. Tam giác AOB là tam giác gì? Vì sao?
d. Tính diện tích tam giác AOB.
Bài 15: Cho hai đờng thẳng: y = x + 3 (d
1
) và y = 3x + 7 (d
2
).
a. Vẽ đồ thị của các hàm số đã cho trên cùng một hệ trục tọa độ Oxy.
b. Gọi giao điểm của đờng thẳng (d
1
) và (d
2
) với trục Oy lần lợt là A và B. Tìm tọa độ trung điểm I của
đoạn AB.
c. Gọi J là giao điểm của hai đờng thẳng (d
1
) và (d
2
). Chứng minh tam giác OIJ là tam giác vuông.
Tính diện tích của tam giác đó.
Bài 16: Cho hai đờng thẳng: y = (k - 3)x - 3k + 3 (d
1
) và y = (2k + 1)x + k + 5 (d
2
).

Tìm các giá trị của k để:
a. (d
1
) và (d
2
) cắt nhau.
b. (d
1
) và (d
2
) cắt nhau tại một điểm trên trục tung.
c. (d
1
) và (d
2
) song song với nhau.
d. (d
1
) và (d
2
) vuông góc với nhau.
e. (d
1
) và (d
2
) trùng nhau.
Bài 17: Cho hàm số y = (m + 3)x + n (m - 3) (d). Tìm các giá trị của m, n để đờng thẳng (d):
a. Đi qua điểm A(1; - 3) và B(- 2; 3).
b. Cắt trục tung tại điểm có tung độ bằng
1 3

, cắt trục hoành tại điểm có hoành độ
3 3+
.
c. Cắt đờng thẳng 3y - x - 4 = 0.
d. Song song với đờng thẳng 2x + 5y = - 1.
e. Trùng với đờng thẳng y - 3x - 7 = 0.
LTT THCS Minh Phỳ
23
Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)

Bài 18: Trong mặt phẳng tọa độ Oxy cho điểm
1
(0; )
4
F
a
và đờng thẳng (d):
1
4
y
a
=
(a 0). Gọi M(x; y) là
một điểm thuộc mặt phẳng, H là hình chiếu của điểm M trên đờng thẳng (d).
a. Tính MF
2
và MH
2
theo x, y là tọa độ của điểm M.
b. Biết MF = MH, hãy tìm một hệ thức liên hệ giữa x và y.

Bài 19: Cho hàm số: y = (m
2
- 6m + 12)x
2
.
a. Chứng tỏ rằng hàm số nghịch biến trong khoảng (-2005; 0), đồng biến trong khoảng (0; 2005).
b. Khi m = 2, hãy tìm x để y = 8; y = 2 và y = - 2.
c. Khi m = 5, hãy tìm giá trị của y, biết
1 2,x = + x = 1- 2

1 2
1 2
x
+
=

.
Bài 20: Cho hàm số: y = - (k
2
2k + 3)x
2
.
a. Chứng tỏ rằng hàm số đồng biến trong khoảng (0; +), hàm số nghịch biến trong khoảng (-; 0).
b. Khi k = 1, tính giá trị của y, biết
2 3x =
,
2 3x = +

2 3
2 3

x

=
+
.
c. Tìm các giá trị của k khi x = 2, y = 10.
Bài 21: Cho hàm số: y = (2m + 1)x
2
.
a. Tìm m, biết rằng đồ thị hàm số cắt đờng thẳng y = 4x 2 tại điểm A có hoành độ 1.
b. Với giá trị tìm đợc của m hãy vẽ đồ thị hàm số y = (2m + 1)x
2
và đồ thị y = 4x 2 trên cùng một
mặt phẳng tọa độ.
c. Bằng đồ thị, hãy xác định tọa độ giao điểm thứ hai của hai đồ thị vẽ trong ý b.
Bài 22. Cho hàm số y = ax2 + bx + c (a

0). Tìm các giá trị của a, b, c biết đồ thị của hàm số thỏa mãn một
trong các điều kiện sau:
a. Hàm số nhận giá trị 1 khi x = 0, x = 1 và nhận giá trị bằng 1 khi x = -1
b. Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 1 và cắt trục hoành tại điểm có hoành độ bằng
1/2 và 1
c. Đồ thị hàm số đi qua các điểm A(-1, 0), B(1, 3) và C(3, 2).
Bài 23. Cho đờng thẳng (d): y = (k - 2)x + q. Tìm các giá trị của k và q biết rằng đờng thẳng (d) thỏa mãn một
trong các điều kiện sau:
a. Đi qua điểm A(-1; 2) và B(3; 4)
b. Cắt trục tung tại điểm có tung độ
1 2
và cắt trục hoành tại điểm có hoành độ
2 2+

c. Cắt đờng thẳng -2y + x - 3 = 0
d. Song song với đờng thẳng 3x + 2y = 1
Bài 24. Trong mặt phẳng tọa độ Oxy cho điểm A(-2; 2) và đờng thẳng (d): y = -2x - 2.
a. Chứng minh A

(d)
b. Tìm các giá trị của a để Parabol: y = ax2 đi qua A
c. Tìm đờng thẳng đi qua A và vuông góc với đờng thẳng (d)
d. Gọi A và B là giao điểm của (P) với đờng thẳng tìm đợc trong câu c, và C là giao điểm của đờng
thẳng (d) với trục Oy. Tìm tọa độ các điểm B, C và tính diện tích tam giác ABC.
Bài 25. Trong mặt phẳng tọa độ Oxy cho parabol (P): y = x
2
/4 và đờng thẳng (d): y = mx + n. Tìm các giá trị
của m và n biết đờng thẳng (d) thỏa mãn một trong các điều kiện sau:
a. Song song với đờng thẳng y = x và tiếp xúc với (P)
b. Đi qua điểm A(1,5; -1) và tiếp xúc với (P).
Tìm tọa độ tiếp điểm của (P) và (d) trong mỗi trờng hợp trên.
Bài 26. Cho hàm số:
2
1
2
y x=
.
1. Vẽ đồ thị (P) của hàm số trên.
2. Trên (P) lấy hai điểm M và N lần lợt có hoành độ là - 2; 1. Viết phong trình đờng thẳng MN.
3. Xác định hàm số y = ax + b biết rằng đồ thị (D) của nó song song với đờng thẳng MN và chỉ cắt (P) tại
1 điểm.
Bài 27. Cho hàm số
2
1

2
y x=
.
1. Khảo sát và vẽ đồ thị (P) của hàm số trên.
2. Lập phong trình đờng thẳng (D) qua A(- 2; - 2) và tiếp xúc với (P).
Bài 28. Cho hàm số:
2
( ) 2 2 1y f x x x= = +
.
1. Vẽ đồ thị hàm số trên.
2. Tìm tất cả các giá trị của x sao cho f(x) 1.
Bài 29. Cho hàm số: y = x
2
và y = x + m (m là tham số).
1. Tìm m sao cho đồ thị (P) của hàm số y = x
2
và đồ thị (D) của y = x + m có hai giao điểm phân biệt A và
B.
2. Tìm phong trình của đờng thẳng (d) vuông góc với (D) và (d) tiếp xúc với (P).
LTT THCS Minh Phỳ
24
Các dạng toán luyện thi vào lớp 10 (tài liệu có tham khảo trên Violet.vn)

3. a). Thiết lập công thức tính khoảng cách giữa hai điểm theo tọa độ của hai điểm ấy.
b). áp dụng: Tìm m sao cho khoảng cách giữa hai điểm A, B (ở câu 1) là
3 3
.
Bài 30. Trong cùng hệ trục tọa độ gọi (P) là đồ thị hàm số y = ax
2
và (D) là đồ thị hàm số y = - x + m.

1. Tìm a biết rằng (P) đi qua A(2; -1) và vẽ (P) với a tìm đợc.
2. Tìm m sao cho (D) tiếp xúc với (P) (ở câu 1) và tìm tọa độ tiếp điểm.
3. Gọi B là giao điểm của (D) (ở câu 2) với tung độ. C là điểm đối xứng của A qua trục tung. Chứng tỏ
rằng C nằm trên (P) và tam giác ABC vuông cân.
Bài 31. Trong cùng mặt phẳng tọa độ cho hai đờng thẳng:
(D
1
): y = x + 1; (D
2
): x + 2y + 4 = 0
1. Tìm tọa độ giao điểm A của (D1) và (D2) bằng đồ thị và kiểm tra lại bằng phép toán.
2. Tìm a trong hàm số y = ax
2
có đồ thị (P) qua A. Khảo sát và vẽ đồ thị (P) với a vừa tìm đợc.
3. Tìm phong trình của đờng thẳng tiếp xúc với (P) tại A.
Bài 32. Cho (P) là đồ thị của hàm số y = ax
2
và điểm A(- 2; -1) trong cùng hệ trục.
1. Tìm a sao cho A thuộc (P). Vẽ (P) với a tìm đợc.
2. Gọi B là điểm thuộc (P) có hoành độ là 4. Viết phong trình đờng thẳng AB.
3. Viết phong trình đờng thẳng tiếp xúc với (P) và song song với AB.
Bài 33. Cho parabol (P):
2
1
4
y x=
và đờng thẳng (D) qua 2 điểm A và B trên (P) có hoành độ lần lợt là
- 2 và 4.
1. Khảo sát sự biến thiên và vẽ đồ thị (P) của hàm số trên.
2. Viết phong trình của (D).

3. Tìm điểm M trên cung AB của (P) (tơng ứng hoành độ)
[ ]
2;4x
sao cho tam giác MAB có diện tích
lớn nhất.
Bài 34. Trong cùng hệ trục vuông góc, cho parabol (P):
2
1
4
y x=
và đờng thẳng (D): y = mx - 2m - 1.
1. Vẽ (P).
2. Tìm m sao cho (D) tiếp xúc với (P).
3. Chứng tỏ rằng (D) luôn luôn đi qua một điểm cố định A thuộc (P).
Bài 35.Trong cùng hệ trục vuông góc có parabol (P):
2
1
4
y x=
và đờng thẳng (D) qua điểm
3
( ; 1)
2
I
có hệ số
góc m.
1. Vẽ (P) và viết phong trình của (D).
2. Tìm m sao cho (D) tiếp xúc với (P).
3. Tìm m sao cho (D) và (P) có hai điểm chung phân biệt.
Bài 36. Trong cùng hệ trục tọa độ cho parabol (P):

2
1
4
y x=
và đờng thẳng (D):
1
2
2
y x= +
.
1. Vẽ (P) và (D).
2. Bằng phép toán, tìm tọa độ giao điểm của (P) và (D).
3. Tìm tọa độ của điểm thuộc (P) sao cho tại đó đờng tiếp tuyến của (P) song song với (D).
Bài 37. Cho họ đờng thẳng có phong trình: mx + (2m - 1)y + 3 = 0 (1).
1. Viết phong trình đờng thẳng đi qua A(2; 1).
2. Chứng minh rằng các đờng thẳng trên luôn đi qua một điểm cố định M với mọi m. Tìm tọa độ của M.
Bài 38. Cho hàm số:
3 2
2
2 2 8 8
( )
4
x x x
y f x
x
+
= =

.
1. Tìm tập xác định của hàm số.

2. Vẽ đồ thị (D) của hàm số.
3. Qua điểm M(2; 2) có thể vẽ đợc mấy đờng thẳng không cắt đồ thị (D) của hàm số?
Bài 39. Cho parabol (P): y = x
2
- 4x + 3.
1. Chứng minh đờng thẳng y = 2x - 6 tiếp xúc với (P).
2. Giải bằng đồ thị bất phong trình: x
2
- 4x + 3 > 2x - 4.
Bài 40. Cho parabol
2
1
2
y x=
(P), điểm I(0; 2) và điểm M(m; 0) với m 0.
1. Vẽ (P).
2. Viết phong trình đờng thẳng (D) đi qua hai điểm M, I.
3. Chứng minh rằng đờng thẳng (D) luôn luôn cắt (P) tại hai điểm phân biệt A, B với mọi m 0.
4. Gọi H và K là hình chiếu của A và B lên trục hoành. Chứng minh rằng tam giác IHK là tam giác vuông.
5. Chứng minh rằng độ dài đoạn AB > 4 với mọi m 0.
LTT THCS Minh Phỳ
25

×