Tải bản đầy đủ (.doc) (30 trang)

ôn tập đại số lớp 8

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (231.65 KB, 30 trang )

Tài liệu ôn tập - Đại số 8
chuyên đề nhân đơn thức với đa thức, đa thức với đa thức và bẩy hằng
đẳng thức đáng nhớ.
I) Nhân đơn thức với đa thức:


!"
#$%&%

'%'( %

'%)$'%)(

1
2
%

)%
$
'
2
5
%)

'(
2
7
%*+%'$*&)(
,
1
2


%)
2
3
%

'
3
4
%)
4
5
)

( -%'%

&%(
%

)'%)%)

)
$
$%)

(
2
3
%

)&%'.*/)0(


3
7

%
+
*)

'.*1%$&(
23456!578#9
#$#'&$'# :;#
3
2


&%'+$%'1&'% :;%*
+#'.#'<#' :;#'.*
'$$&'/ :;
1
2
$=>?@!A#4
#$)

)')')'))

')

)(
%


#'#%

'#'%%#(


'
$
'$

'$
&
(
'#

$#'&+##

'#
+234
#$



'
$
'&( )0)')
$
')




(
'
1
2
%
$
'%'%'
1
8
%

( .*#
$


'.*.#
+
+#

'
& 5B5734A#4CD4E:F%
#%%'%

%%
$
'%$(
%$%

'%&'%
$

$%'0'%%

'%(
0 5B34A#4G")B.(
#%)'H)H'%H%')(
%)H')H')H%'H%H)'%
Bài tập nâng cao
1=!5734
#I%%
1
'<.%
0
<.%
&
'<.%
+
<.%& :;%1/
J%%
+
'.%
$
.%

'.%

.%

'.%.:;%/
K%%
$

'$.%

'$% :;%$
L%%
&
'&%
+
0%
$
'/%

$% :;%+
< 5B
#$&
0
'$&
&
#F$+ +$
+
+$
&
#F++
/F#:MAN4)O 5B
#4#
M
$:&#'+
M
$P#'0
M
$(

4 #
M
1P#+
M
1(
4$#+
M
P#&
M
(
II) Nhân đa thức với đa thức.
QQQ(

Nguyễn Quang Huy Trờng THCS Dơng Đức

Tài liệu ôn tập - Đại số 8
=>?@!
#&%')%

'%)( %'%%(

1
2
%

)

%)%')(
1
2

%'%'$(
,%'1%'&( -%'
1
2
%
1
2
+%'(
%%'%

%
$
'%
+
''%%%

%
$
%
+
(


''&0
$
$$

'(
+#'+#
+

#
1
0#

''$#
$
(

#%'%

'%%
$
'( %
$
%

)%)

)
$
%')%
$
')
$
(
$=>?@"
#%%'%

%
$

'%
+
'%'%%

%
$
%
+
(


''&0
$
$$

'(
+#'+#
+
#
1
0#

''$#
$
(
##



#


+#
$
'+#


,#
$
'.*.#.*+#
&
.*&#
0
'.*#

.*.$#
+

+R34A#4;SG#
##'+##'$#(
$#'#'$'0##'(
&%''<'%%'(
%#&%%'0#&#%(
& 5B5734A#4CD4E:F)
#)'&)<')+)'( )
+
')

')

(

0=P %*
#%$%'+%'&%'$%'&%'+(
<%'$$%'+%1%+%&%'(
%

$%'%&%%(
<'&%%+%'%%'%(
,+%'%&'%%&$%'%
Bài tập nâng cao
1 BGT
#
$

$

$
'$###





'#''#
<F#. KLI:;
K###(
L#(
I#(
/UN$
&.
VM!8##AN>OMOCDW

XQ=5; !8##AN>OMO#F$P.FY=:)
O45F#AN>OMOV EAN#F$P!8#9#F$*4#
ANGZ4CD#F$P!8#9#F$> UN$
&.
#F$
OCD3M!8##AN>OMO
.F
/

//
5B
M

XQ=#V
/

//

/



/



<
'
1




0


' '
11

<<


=



M M

=[#AN\ .&.
+
=[#AN#]
A A
III) Các hằng đẳng thức đáng nhớ









'



'


$

'

'
+
$

$
$

$


$

&'
$

$
'$

$



$

0
$

$


'


Nguyễn Quang Huy Trờng THCS Dơng Đức

Tµi liÖu «n tËp - §¹i sè 8
1
$
'
$
'





=!
#%)

( %'$)%$)( &'%



%'

( ,$')

 -%'





R34A#4;SP8# E^
#%

0%/( %

%

+
( %)

%

)
+

$_9`34
#%)


%')

(
%')%)%')

%)

(
%')H

H')

%')H)'H
+ BGTG;G3>?@!A#4(
#)'$)$(  

' 

(
'#+##

( #''

'#'

(
,#'%')
$
'#%')
$

( -%%

'%%'%%

(
&Xa) b\4FYA#4
#+

'0 /

$  1+

'++/(
&#

.#+

&#'( %

%%

'%'
0=!5734
#%

')

S%<1 :;)$(
%
$

'$%

$%' R;%.(
%
$
/%

1%1 :;%/1(
&%

'$.%/ :;%(
,+%

'<%+/ :;%+
1234A#4:!578#9
#0)
$
%'&)%

&)

&%) :;%'&*)'$(
#
$

$
'#

'#


#' :;#'+*+
<UcBGTG;G3>?@!A#4
####

+#'#

#'(
#'$'#$(
'%'%
$
$%

'%%
$
'$%

(
#
0
'$#
$
/#
$
$(
,#

'#

'##


#
/=P %*
#%

'+%

/( %$

'%'+%<(
$%

%'

'1%$%'$$0(
%'$%

$%/%%'%(
,%
$
'%'
$
'0%'

'/
.=!d ,FBGTANA#4
#/

(<

(<


(/

( /(/$($/+(
/

'<

(&0

'+0

(01

'&0

(
 BGTA#4
##



#

'#( #
+

+
#






'#



(
#
0

0
#



e#





'$#



f( #
0
'

0
#

'

e#





'#



f
C¸c bµi to¸n n©ng cao
 BGTA#4
g
+
)
+
%)
+
%

%))




(
$Xa):34;S^8##PF
#

#






+F#

#



 5B#
&F#





## 5B#
0F#

$## 5B#
1F#. 
#







NguyÔn Quang Huy Trêng THCS D¬ng §øc
$
Tµi liÖu «n tËp - §¹i sè 8
=!#
+

+

+

<F#. GT
##
+


+

+
#










#

(
#
+


+

+
##

(
#
+


+

+

( )
2
2 2 2
2
a b c+ +

(
/ 5B34A#4M4DM4DV57:; `578#
#/%

'0%

( %

%( %

%
.=P 57h\8#34A#4
#%

'$%&(
%'

%

(
=P 57M;\8#34
#+'%

%(
+%'%

(
F%)(%

)


.=!578#34%
$
)
$

$F%)#(%)
=!578#34A#4,F#:
#%

)

( %
$
)
$
( %
+
)
+
( %
&
)
&
(
+#F%)=!5734%
$
)
$
$%)

F%')=!578#34%
$
')
$
'$%)
&F#=!578#34A#4
K#
$

$
$##



0#



#
0_9`34A#4
#$%

'$%$%&&%&

(
$$

$
+
$

<
$
<
$
$
(
#'

#'

''

(
Q#

#''

''#

''#

(
,i#

#''

#''

#''


(
j#
$
''#
$
'#'
$
#'
$
(
X#
$

$
#
$
'$##
< GTA#4
##

#





#




#

(
#
$
'#
$
'
$
'
$
$##
/F#. 5B#
$

$

$
$#
$. 5B
#4M^#AN!PkM^8##AN!
4M^#AN!PkM^8##AN!
4M^8##AN!P

kM^8##AN!
$#F# lAN* .&'lAN. 5B#MAN… …
!
F Ea)ANVANSGm4M0*ANSA#4MANSFB:n
AN&:F!l#ANSMZ5;
0*&0*&&0*…

 5B `ANS8#a)GZ4MAN!
$ 5B#MAN!:;# lAN*…
 +lAN…
$$F#6 lAN*6 lAN*6 lAN0 5B#<
MAN!
$+ 5B34A#4MAN!
#
{
{
2
11 1 22 2
n n


{
{
2
11 1 44 4 1
n n
+ +
$&ANA#4MP8#ANFW
#
{
{
99 9 00 0 25
n n
( 
{
{
99 9800 01

n n
(

{
{
1
44 488 89
n n−
( Q
{
{
1
11 122 25
n n+

NguyÔn Quang Huy Trêng THCS D¬ng §øc
+
Tài liệu ôn tập - Đại số 8
chuyên đề Phân tích đa thức thành nhân tử
I) Phơng pháp đặt nhân tử chung
oI"!G#"c
oI"!"c
Nguyễn Quang Huy Trờng THCS Dơng Đức
&
Tµi liÖu «n tËp - §¹i sè 8
+ +
− +

+
+ −

− − −
− − −
+ − +
+ + +
− + −
− + −
− + −
− + −
 $ 
   
$ 
. 0
  

#$% ' $)
% &% % )
+% %) <% )
+% +%
,&) &)
-/% ) &% ) %)
%)  )) 
.%% ) <)) %
$% %  % 
p#  $ $
C#   
M#  &# &
#  &# &
#  
F % + + +
+ − −

− − +
− − − +
− + − + − +
+ − −
+ − + +

 
  
 
) &% &)
 #  # 
q %# % #
5#   ## 
## #  # # #  
I"!G#A#4"c
#%%$%$
+%%')<))'%
) % ) H% H)
$%% 1 % % 1 /
+ + + +
+
+ − +
− − −
− + −
− − −
− − −
+ − +
− − +
− + −
− − −


+ + +



 $

  $     $
& &
 
% 1
,% & $% &
-%% $ % $
%% 1 1 %
$%% / / %
&%%   %
p+%%  <% % 
C q  q  q q
F&% % H &% H %
.%% ) <)) %
q% %)
5%%  % 
 − + −+%% ) <)) %
( ) ( )
( ) ( )
( ) ( )

 
$ 


    
&
$I"!G#"c
#+% 0%(
% ) %) (
% % %(
$% %  1% %  (
,% ) H %) H % )H(
- % %   %  (
+% % ) <) ) %
+=!578#34
#&/*&&..*<&
&% % H


+ −
− + −
+ +
+ + +
− + −

&


&% H %S%///() (H'
+=P %*
#&%%'''%.
+%%<%
 
%%' % .

$ $
%% + % + .
,% &% .(
- $%%   % .(
&%$%  %$%  $%  .
& 5
+ −
− =
− + − =
− =
− + − =
− + − − − =
( ) ( )

B
#Pr8# EANMs#F+
Pr
Pr8# EANMs#F<
Pr
0 5B
     
M4D#F0:; `AN4)O
+ + +
NguyÔn Quang Huy Trêng THCS D¬ng §øc
0
II) Ph©n tÝch ®a thøc thµnh nh©n tö b»ng ph¬ng ph¸p dung h»ng ®¼ng thøc:
IG^G#S!tAcBGT









'



$

'

'
+
$
$

$




$
&
$
'$

$


'
$
'
$
0
$

$


'


1
$
'
$
'





I"!G#"c
#%

'/( +%

'&(
%

0
')
0
/%

0%))

(
,0%'/'%

( -%

+)

+%)
&#

.#( .#.*&#

 

/%

'+%)0)

p/%

'%)
1
36

)


C%)

'%')

M$%

'%

%
$
)
$
H
$
'$%)H
I"!G#"c
#%
$
<( 1%
$
'.* 
%
0
')
$
( &%
$

'
,%
$
'$%

$%'( -#
$
0#

#

<
$I"!G#"c
#%
0
%
&
%
+
'%
$
'%

(
K
( ) ( ) ( ) ( )
2 2
2 2 2 2 2 2 2 2
4 4abcd a b c d cd a b ab c d
   

+ + + − + + +
   
+ =!#
#&

'&

( <1

1$

'1

'$

1$

'1

( $1

'$

, /

'/

& =P %*
#%
$

'.*&%.( %

'.%'&
%

'$0.( %

'%'
,%
$

$%

'$%'
0I"!G#"c
#%
<
'%
+
<( #
+
0#


$
/
&
(
'#
0

'<#
$
'<

( +%+%)
0
%)


1  5BG#A#4ul57CD"
#%

'%))


#

(
%

%))

)(
/

'0+

(
%


)

%0).(
<  5BG#A#4CD" :;\CP57F8#l
#%

)

'%)%')
%

/)

$H

0%)'%H0)H
<%

)

H

+%)'%H'&)H
&%

&)

&H

0%)'<%H'<)H

/  5B:; `AN4)O#V+$

'&#F<

III) Ph©n tÝch ®a thøc thµnh nh©n tö b»ng ph¬ng ph¸p nhãm c¸c h¹ng tö.
=P G#GaFV Sc!vA#FF
C"! wV Sc"cP%4\?"c4

 I"!G#A#4"c
#%

'%)%')( %H)H'&%) $%

'$%)'&%&)
%

+%')

+( ,$%

0%)$)

'$H

(
-%

'%))

'H


H'

(
%

'%')

')( %

'%))

'H

( &%'&)#%'#)(
p#
$
'#

%'#%%)( C1#

'1#%'/#/%( M%#'%$#'$(
 I"!G#A#4"c(
# #' #''#( %

#%

')'#%%

')(

#%'%'%#)')')( #%

&)'%

#)&%

')(
$ I"!G#"c
#%
$
)
$
%

'%))

( #
+
#
$
'#
$
'
+
(
#
$
'
$
$#


$#$

( %
+
%
$
)'%)
$
')
+
(
+ I"!G#"c
#1.#'<+'.#'+

( )'/%

$0'$%

)(


'0'$
$
+( $.#
$
'<#

'1.#
& I"!G#"c

#%
$
$%

)%$%

)))
$
( %
$
)'$%

%$)

'')
$
(
1%
$
1%

/%%
1
3
( %%

%%'&'&%


0 =P %*

#%
$
%

%.( %
$
'%

'%.(
%

'0%<.( /%

0%'<.
,%%'%'.( -&%%'$'%$.
1 =!#578# wG#A#4(
#%

'%)'+H

)

S%0()'+(H+&
$%'$%1%'+

+<S%.*&
< =!#
#$1*&0*&'1*&$*+'0*01*&$*&$1*&(
+&


+.

'&

<.+&
/I"!G#A#4"c
I##''#'#
.I"!G#A#4"c
#%
$
H%

)H'%

H

'%)H

( 

q'

q
$
'

q

q
$


IV) Ph©n tÝch ®a thøc thµnh nh©n tö b»ng c¸ch phèi hîp nhiÒu ph¬ng ph¸p.

'2Y"c4
'QxBGT
'LV Z4Sc:C

I"!G#A#4"c
#%
$
'%

%( %

+%')

( %)'%

')

0(
#
+
#
$
#
$
#

 ,#

$
$#

+#( -#
$
+#

+#$(
%

)%)

%

H%H

)

H)H

%)H( #



#''#(
+#

'+

'+#( p#

$
0#

#<(
C#
$
'#'
$
'#'
$
''#
$

I"!G#"c
#%$)

'+%$)( %)
$
'%
$
')
$
(
%')+

'%$)'

( #




'&

'+#


,#'#'##(
-#

+#

'#

#

'+



'+#(

)%'H

<%)H%)'H

'H%)

( %
&
'&%

$
+%(
%
$
'%

$.%( p+%
+
'%

)

)
+
(
C%
$
+%

'1%'.( M%

%

'%

%&(
%%$%+%&'+( %

<%1%


<%&&(
F%

$%%

$%'0
=P %*
#&%%'%'( %&'%

'&%.( %
$
'
1
4
%.(
%'

'%$

. ,%

%'$'+%.
$=!#5734
#%


1
2
%
1

16
S%+/*1&( %

')

')'S%/$:)0
Toán khó mở rộng:
+#UN1
1
1$'#F/XhAN1
<
<$'V#F/CDW
G^!34
#e#
/
#
<
#
1
#

#f
& BGTA#4
%
0
$%

)

)

0
R;%

)


%
+
%

)

)
+
#

'

:;%

)

#*%)
$#
$

$
'#
$


$

$
1#
0

0
. :;##
+

'#

'

'

#





:;#
0=!5734
#
1
'
0
'
&

'
+
' '

''
%
1
'%
0
%
&
'%
+
'%

%' :;%
1_9`
#$


+

<

0

$

0+


Kb5E
2 3 4
2 2 2 2 2
3(2 1)(2 1)(2 1)(2 1) (2 1)
n
+ + + + +
<
#
&





&
#




&
#




1
2
#
$


$

$
#
+

+

+
:;#.
/ #
&

&

&
&##





:;#.
.=^AN4)O#

*#

*#
$

* *#

#F$ 5B
#

$
#

$
#
$
$
#

$
k#F$
V) Một số phơng pháp khác để phân tích đa thức thành nhân tử.
1) Phơng pháp tách một số hạng thành nhiều số hạng khác.
2#S-%#%

%
';=P !#
';I"!#5#!8###AN4)OB `
';$`#[#AN ^B
Các bài tập áp dụng dạng này:
I"!G#"c
#+%

'+%'$( %


'+%$( %

&%+(
%

'%'0( ,%

<%

1( -%

'$%$0(
%

$%'<( %

'&%'+( $%

'0%&(
p<%

$.%1( C%

'&%'( M0%

'1%'.
2#[#5bMOt#xP ? 8#G#
#9y: nếu đa thức f(x) có nghiệm x = a thì nó chứa thừa số x - a.
Trong đó a là ớc số của a
n,

, với f(x) = a
0
x
n
+ a
1
x
n-1
+ a
2
x
n-2
+ + a
n-1
+ a
n
.
R!I"!G#"c-%%
$
'%

'+
mMvC3 5#:;%

*

*

+*#\)-
$

'

'+.
2#V? %*FGV#[#AN%'
=#A#4
$
%
$
'%

'+%
$
'%

%

'%%'+
%

%'%%'%'
%'%

%
%
$
'%

'+%
$
'<'%


+
%'%

%+'%%'
%'%

%+'%'
%'%

%
2) Phơng pháp đặt ẩn phụ: EG#S*FYV#F*#V3GYd
B z {8#G#G3"!
R!I"!G#A#4"c
#-%%

%%

%' %%%%$%+'+
XQ#2Y)%

%*CGVG#-%))')

)')'$)+
=#)v5bMS)%

%:FG#-%#Gv
-%%

%'$%


%+%

%&%

%'%'%%

%&
-%e%%+fe%%$f'+
%

&%+%

&%0'+
))'+:;)%

&%+
)

)'+
)'+)0
=#)v5bMS)%

&%+#Gv
-%%

&%+'+%

&%+0%


&%%

&%.%%&%

&%.
3) Phơng pháp thêm, bớt một hạng tử thích hợp để làm xuất hiện hằng đẳng thức hiệu
hai bình phơng.
oR!I"!G#A#4"c
#%
<
%
+
(
%
+
+(
XQ#%
<
%
+
%
<
%
+
'%
+
%
+



'%
+
%
+
%

%

'%


e%
+
%

'%

fe%
+
%

'$%

f
e%



'%


fe%



'
3
%

f
%

'%%

'
3
%%

%%


3
%
o
I"!G#"c
#-%%
+
$+ -%%
<
.+( -%%
<

$%
+
+
#I"!
+

1
4
á_9`U
4 4 4
4 4 4
1 1 1
1 2 19
4 4 4
1 1 1
2 4 20
4 4 4

+ + +
ữ ữ ữ


+ + +
ữ ữ ữ

4) Phơng pháp xét giá trị riêng:=5;#%G7S8#[#AN#8#G#
*56F573G3%G7[#AN|MS
#R!I"![#AN
I%


)'H)

H'%H

%')
j
=c#)%b)PI)

)'H')

H').L:)I#[#AN%)
4#)%b)*)bH*Hb%PICDG^QFGVI#[#ANVS%')*
)'H*H'%:)IVSIC%'))'HH'%
RPG}%

)'H)

H'%H

%')C%'))'HH'%G9:; `%*)*H*
LO#%*)*H.:FGT#Gv
+'.C'

'C

C'
:)I'%'))'HH'%
+
Các bài tập áp dụng của các dạng trên.
I"!5#[#AN4)ON

#0%

'%$( %

$%'1(
%

'&%)$)

( %

'&%)'$)


I"!5#[#AN4)ON
#%
$
%'$( %
$
'1%0(
%
$
&%

<%+( %
$
'/%

0%0(
,%

$
'%

'+( -%
$
'%

'%'(
%
$
%

'%( %
$
'0%

'%$.
$I"!G#"cBZ4
%
$
'1%'0
+I"!G#"c
#1%
$
'1%

<%'+( %
$
'%


&%$
&I"!G#"c
#%

%

'%

%'&( %

%))

'%')'(
%

%%

%'( %%$%+%&'+(
,%#%#%$#%+##
+
-%

)

H

%)H

%))HH%


(
%
+
)
+
H
+
'%

)

H



'%

)

H

%)H

%)H
+

0I"!G#"cxG^'2Yd
##
$
'+#

$

$

$
'#
XQ2Y%#*)#'
1I"!G#"c
#+%
+
'$%

( %
0
1(
$%
+
%

'%

%

( %

'+

/(
,+%
+

( -0+%
+
)
+
(
%
+
$+( %
<
%(
%
1
%
&
( p%
<
%
+
(
C#
0
#
+
#




+
'

0
( M%
$
$%))
$
'
<I"!G#"cB?AN\G7
#+%
+
+%
$
&%

%( $%

%)%$1)1)

.
%
+
'1%
$
+%

'1%( %
+
'<%0$
/I"!G#"c
%
<

/<%


.I"!G#"cQx%@57
#K#'#

#'

#'

#''##'
L# '#

'

'

'#:; #
chuyên đề chia đa thức cho đa thức
I) Chia đơn thức cho đơn thức (trờng hợp đơn thức A chia hết cho đơn thức B).
I
'#?AN8#GF?AN8#G
'#[M4~[#8#[5FFM4~[#8#GVV5F
'L"Cq4P Gv:;#4
R!:
@!#
#
&



( '1/
$$
'1/
$
(

16 14
1 1
:
2 2

ữ ữ

(
21 18
3 3
:
5 5


ữ ữ


#G
#'%)
&
H
$
1%)


H
$
(
1
2

#
$

+

&

3
2
#


&
(
%

)H%)H( %
$
)
+
%
$
)(
&

,<%

)

H0%)H( -&#
$
'#

(
1%
+
)

H/%
+
)( /%

)
$
'$%)

(

3
4




+


1
2




( p&%
+
)
$
H

$%)H

(
C'1#
$

+

&
'
$


( M
3
2
#'

&

1
2
'#

(
%)

%)( %')
&
)'%
+
(
F%')H
+
%')H
$
( .*&#




$

2
3

#


(
*<#
$




'.*/#


'

$=!578#34A#4
'%

)
&


'%

)
&
S%
1
2
:)'
+=>?@#
#%)


'
4
3
%

)
$

6
5
%
$
)

%)( %
$
'$%

)&%)


1
3

%(

3
4
#
$


0



6
5
#
+

$
'
9
10
#
&



$

3
5
#
$
(
e$#'
&
'0#'
+

'#
$
/#'

f$#'

,4
+
'4
$
:4

:

'4:
$
4

:


&R;57F8#P>?Gv@#GA#4WR;GZ4C?P G'
va)>?@#GV
#%

%
$
( $%

)


+%

)(
0%
$
)
&
&%

)

( %

)

$%
$
)
+

II) Chia ®a thøc cho ®¬n thøc
I#G#FG
'# wSc8#G#FG
'ECq4MS:;#4

=>?@!
#1$
&
'$

+
$
0
$
+
( 0
$
'0+

<
$
(
 !#
#&%
+
'$%
$
%

$%

( &%)

/%)'%

)

'%)(
%
$

)
$
'
1
2
%

)
$
'%
$
)


1
3
%

)

( +%
+
)
$
'+.%
&
)

'&0%
0

)
$
'+%
+
)

(
,e#
$
'+#
0
0#
&
'/#
+
0#

f*&#


2
3
#
+
(
-e$%

)'0%
$
)


$%)$%)'%f

.*&%


e1#'
&
&#'
$
f'#

( e1#'$
$
#'$f#'0(
%
$
$%

)

$%)

)
$
%)
$=>?@!
#$#



'

'
%'1#
&

$

&

15
4
#
 

'


%'$#
$'

&

+
(
e#'
$
#'
$
'#

$
'#
$
f+#(
e%)
1
'%
1
)
1
f1%)
 ANVS$
++
'+
$$
#F14EL
+ !#
#e&#'
$
#'

f'#

 &%')
$
&%'.)(
%
$
'<)
$

%)(
e&#
1
'#
&
1#

f+'#'
$
,e$#'
+
#
$
.#'
&
'#'
0
#f&#'
$

0
&_9`56!578#34:;%'
%

'%%$%
$
'0%

$%


$
III) Chia ®a thøc mét biÕn ®· s¾p xÕp:
I4
'#Sc#F\8#G#7#FSc#F\8#G##PGvS
c#F\8#
'L"Sc#F\8#:;G##56M\)G#7#5[G!:[#P G'
v*#Gv\
'#Sc#F\8#G#\FSc#F\8#G###Gv
Sc#8#
'L"Sc#8#:;G##56M\)\5[G!:[#P Gv*#
Gv#
'YMSq45P5OFGC
44NxB.P@#VB.:Gv`M@#
44NxC.:8#G#\8#G##P@
#GVGv`M@#V
y?4
%MG#7#(
%MG##(
J%MG#(
_%MG#(
=#M4DV%%J%_%(
'L4_%.P%%J%`M@#
'L4_%

.P%%J%_%*8#_%h8#%`M@
#V
$
 !#
#0%


$%'&%&( %
$
'$%

%'$%'$(
%
+
%
$
'&%

'$%'$%

'$(
U•AG#A#4,FM4~ m[#8#
#%

'+%$'0%
$
%
+
'+%%

(
%
&
'%

'$%
+

$%&%
$
'&&%

'$%(
%

'&%
$
%

%
+
'%

'%'(
%
$
'1%$'%

%'$(
,%
+
'$%
$
'$%

'0%%

'(

-%
$
%

'$%/%$(
/%
+
'0%
$
&%

%'$%

'%&(
0%
$
'%

'/%$$%'(
$%
+
%
$
'&%

'/%.%

$%'(
p'$%


.%
$
'%'$%
+
%$%

(
C&%$%

'%
+
'%
$
0%
&
'$%%

(
M%
$
&%

'%$%

'%(
%
$
'&%

0%'&%'&(

%
+
'%'+%'
Bµi 3D>?@#*a)%, @#A#4G")VM@#CD:
P G#5F5tvCD#(
#%
$
%

'$%/%$(
/%
+
'0%
$
&%

%'$%

'%&
XQ
#!?4ANM5*#V3
%
$
%

'$%/%$q%5
=5FGT5OGY%'$*#Gv
5'$
$
'$


'$'$//
:)5F@#M/
1
=#\)#)5F;\8#@#M$%:FGVG#
\M%'RP%'Vh$%

'%&OCD3>?@#G'
vl#QFGV@#CDM@#:G#M%'
Bµi 4  D>?@#*%@%, @#A#4G")VM@#CD:P 
G#5F5tvCD#
#<%

'0%&%'
1
2
( 0%

'$%$%'(
%
+
%
$
%

%'+%'(
<%
&
/%
+

'$%
$
0%

$%'0%

$%'
&=!#
#/#

'0

+'$#(
&#

'$.#/

$'&#(
1#
$
'1#

/#'/#

'0#(
0+#
$
'
1
27


$
0#


4
3
#
1
9



4) Mét sè ph¬ng ph¸p kh¸c ®Ó t×m ®a thøc th¬ng vµ ®a thøc d:
+IGY@#
R!
gG7ANl4€#:G3G#%
$
#%#FG#%

%
j
=>?@#
%
$
  #%   %

%'
%
$

 %

' %
 '%

#%  %'
'%

' % 
#$%'
23#*G#G6\}.*O
3 0 3
2 0 2
a a
b b
+ = = −
 

 
− = =
 
:):;#'$(P%
$
#%#F%

%
+I?AN\G7
'L4#G#-%:%B#4:; `578#AN%Pt#FM#G#
BGTFY#G#G6\!?4-%


%
'X#G#Ga:;S4`Gv`MG6\BGTC:uC?
AN8#GG6S#5F#G#GVMB#4
oR!
gG7ANl4€#:G3G#%
$
#%#FG#%

%
j
2#7#VM#*G##V#*OM E7\*S
c\M%
$
%

%
j`8#@#M%*#V
%
$
#%%

%'%
%
$
#%%
$
%

'%'
X#G#5OG6\O

1 0 1
2 3
2 2
c c
c a a
c b b
+ = = −
 
 
− = ⇔ = −
 
 
− = =
 
R):;#'$*P%
$
#%#F%

%'*M%'
+$I%@575O
oR!
gG7ANl4€#:G3G#%
$
#%#FG#%

%
j
<
j`8#@#%
$

#%F%

%'MJ%*#V
%
$
#%%'%J%
RPGTG9:; `%*OMmMvF%*%'#Gv
1 0 1 3
8 2 0 2 8 2
a b a b a
a b a b b
+ + = + = − = −
  
⇔ ⇔
  
− − + = − + = =
  
R;#'$(P%
$
#%#F%

%':M%'
++I::FG7My4
#27MyUN5F@#G#-%F7%'#B578#G#
-%S%#L•#M5-#
9y2#-%#F%'#C:uC-#.
C¸c bµi tËp ¸p dông cho c¸c ph ¬ng ph¸p trªn.
gG7#:G3G#%
+
'0%

$
#%

%MP8# EG#
XQAc?AN\G7*#V#GAN
%
+
'0%
$
1%

0%%

'$%'

%
+
'0%
$
%

'0%%

'$%

gG7#:G3G#%
+
'$%
$
%


'#%#FG#%

'%'
XQAc575O*#GvCq4#('+
$gG7?AN#:A#FF
#%
+
#%

#F%

%(
%
$
#%#F%'0*#F%'
XQ#VCq4
##((
#$('
+=P 574)O8#%G3
#j578#34%
$
$%

$%'#F578#34%(
j578#34%

%'1#F578#34%'
XQ
#=>?@#%

$
$%

$%'%%

%M'$
U4)5#'$
M
(% + 1)

%

‚.('(('+ƒ
%

‚$((&('ƒ
&FG#%#

%
$
$#%

'0%'##4EJgG7#A#FF%#
F%
XQ
o2Y@#G#
%#

%
$

$#%

'0%'##FG#%GvM
#

%

$#'#

%#

'$#'0:G#M'#

#0
'23G#%#FG#%PG#B.*M
'#

#0.*5P#Gv#'(#$
oQx?AN\G7
=P Sc#F\#

%
$
%#

%

*Sc\\'#'#
34„%#


%

%'#%*A#4GVxG6\G3P 
5##'(#$:CM4
o$Qx%@575O
0gG7BAN#A#FF
#.%

'1%##F%'$(
%

#%#F%'$+(
#%
&
&%
+
'/#F%'
1gG7BAN#:A#FF
#%
+
#%

#F%

'%(
#%
$
%

&%'&.#F%


$%'.(
#%
+
%
$
#FG#%'

(
%
+
+#F%

#%
<=P BAN#:A#FF%
$
#%#F%P1*#F%'$P'
&
/
Chuyªn ®Ò ph©n thøc ®¹i sè
I) Ph©n thøc ®¹i sè:

#27•#KE"GSAN#)V`M"M E34V
S
A
B
*5FGV*MlG#*MG#CG#.
Mcc
M …4
Kw EG#kGvFM EG#V …4M

X#"T#4
R;#"
A
B
:
C
D
*#V
A
B

C
D
4Q

QxG7•##"B#4 GTA#4
#
2 3 3 4
7
5 35
x y x y
xy
=
( 
( )
( )
2
2
2
2

2
x x
x
x
x x
+
=
+
+
(

2
2
3 6 9
3 9
x x x
x x
− − +
=
+ −
( 
3 2
4 2
10 5 5
x x x x
x
− − −
=

(

,
5 20
7 8
y xy
x
=
( -
( )
( )
3 5
3
2 5 2
x x
x
x
+
=
+
(

( ) ( )
2
2 1
2
1 1
x x
x
x x
+ +
+

=
− −
( 
2 2
2 3 2
1 1
x x x x
x x
− − − +
=
+ −
(

3
2
8
2
2 4
x
x
x x
+
= +
− +

 QxG7•##"B#4*a)P G#5F wGTA#4à
#
2
2
6 3

2 1 4 1
A x x
x x
+
=
− −
( 
2
4 3 7 4 7
2 3
x x x
A x
− − −
=
+
(

2
2 2
4 7 3
1 2 1
x x A
x x x
− +
=
− + +
( 
2 2
2
2 2

2 3 2
x x x x
x x A
− +
=
− −

$S#:GTA#4:GNS5FV `P 5#wA#i 
a)Ac#A#FG9
#
2
2
5 3 5 13 6
2 4
x x x
x x
+ + +
=
− −
( 
2
2
1 3
3 6 9
x x
x x x
+ +
=
+ + +
(


2
2
2 2
1 1
x x
x x
− +
=
− +
( 
2 2
2 2
2 5 3 2 3
3 4 5 4
x x x x
x x x x
− + − −
=
+ − + +

&#"A#4VB#4CDW
2 2
2 2
2 2 4
; ;
1 1 2
x x x x
x x x x
+ − + −

− + − −

0=P %G78#"A#4
#
3
5 2x +
( 
2
2
3
6 9
x
x x
+
− +
(

2
3
x
x x+
( 
2
2 1
3 2
x
x x
+
− +


1P 578#G334A#4B.
#
2
3 1
5
x
x


( 
2
2 1
x x
x

+
(
.

2
2
3 2
1
x x
x
+
+
(
2
2

2
4 4
x x
x x

+
(
,
4 3
4 3 2
1
2 1
x x x
x x x x
+ + +
+ +
( -
4 2
4 2
5 4
10 9
x x
x x
+
+

<=P 574)O8#G3"A#4574)O
#
2
3

1x x+ +
(
6
3x
(
( )
3
2 1
1
x
x
+
+
(
II) Tính chất cơ bản của phân thức đại số:
1) Kiến thức cơ bản:
#=!\
'=!\
.
.
A A M
B B M
=
KMG#CG#.
'=!\
:
:
A A M
B B M
=

KM"c4C.
J4)G^\4
A A
B B

=


2) Bài tập áp dụng
Qx!\8#"*a)GZ EG#!v:Fw5N
5FGTA#4
#
2
2
5 5
x x x
x

=

(
2 3
8 3 24
2 1
x x x
x
+ +
=

(


( )
2
2
3 3
3
x xy
x y
y x

=


(
2 2
2 2
2 x xy y
x y y x
+
=
+
(
,
3 2
2

1 1
x x
x x
+

=

( -
2 2
5 5 5 5
2 2
x y x y
y x
+
=


G^ w"A#4 E"BV:VcMG#F
5;
#
2
2
4 3
, A= 12x +9x
5
x
x
+

(
( ) ( )
2
8 8 2
, 1 2
4 2 15 1

x x
A x
x x
+
=

(
$Qx!\8#"G3G^ wY"A#4 EY
"BV:Vxc
#
3
2x +
:
1
5
x
x

(
5
4
x
x
+
:
2
25
2 3
x
x


+
(
+Qx!\8#"FYq4)G^\4G3G^ wY"
A#4 EY"BV:Vx 4
#
3
5
x
x
:
7 2
5
x
x
+

(
4
1
x
x +
:
3
1
x
x
(

2

2
8 16x x+ +
:
4
2 8
x
x

+
(
( ) ( )
2
1 3
x
x x+
:
( ) ( )
3
1 2
x
x x
+
+
(
&"A#4VB#4CDW
#
3 3
3
x y
xy

:
2
x
y
(
2
2
x
x y+
:
2
2 2
x
x y+
(

1
( 1)(3 )
x
x x


:
1
( 1)( 3)
x
x x


(

2
3( 1)
(1 )
x
x


:
2
3( 1)
( 1)
x
x


(
0Xa):"A#4;S E"V 4M'%
$
(

#
2
3
1
x
x −
( 
1
x
x −

( 
2
1
1
x
x x
+
+ +

1q4)•G^\4G3:5PB"A#4
#
2
2
xy
x x


( 
2
1
1
x
x


(

2 2
y x
x y



( 
2 1
2
x
x
− +
− −

<R"A#4;Sl"Vx …4
#
2
x
:
1
x
x +
( 
2
x
y
:
y
x
(

3 3
2x y
x y

+

:
x
x y−
( 
5 4
1x
x y
+
:
4 5
1 x
x y


/R"A#4;Sl"Vxc
#
1
x
:
2
3
x
x

+
( 
x
y

:
y
x
(

2 2
2
2
x y
x xy


:
x y
x
+
( 
3 2
x y
x y−
:
2 3
x y
x y+
(
III) Rót gän ph©n thøc
I
'I"!c: …4"c4mG3P "c4
'#c: …4F"c4GV


_9`"A#4
#
5
2 2
14 (2 3 )
21 (2 3 )
xy x y
x y x y


( 
3
3
8 (3 1)
12 (1 3 )
xy x
x x


(

2
2
20 45
(2 3)
x
x

+
( 

2
3
5 10
2(2 )
x xy
y x


(
,
3
80 125
3( 3) ( 3)(8 4 )
x x
x x x

− − − −
( -
2
2
9 ( 5)
4 4
x
x x
− +
+ +
(

2 3
3

32 8 2
64
x x x
x
− +
+
( 
3
4
5 5
1
x x
x
+

(

2
2
5 6
4 4
x x
x x
+ +
+ +
 †
2
3
10 ( )
15 ( )

xy x y
xy x y
+
+
(
C
2
2
x xy x y
x xy x y
− − +
+ − −
( M
2
4
3 12 12
8
x x
x x
− +

(

2
2
7 14 7
3 3
x x
x x
+ +

+
( 
2
2 2a ab
ac ad bc bd

+ − −
(
F
2
2 2
x xy
y x


( 
2 2
2 2
2
x y
x xy y

− +
(

3
2 2
1
a
a



( q
2
2
6 9
8 15
x x
x x
− +
− +
(
:
4 3
4 3
2
2
x x
x x


( 4
7 4
6
1
x x
x


(



2 2
( 2) ( 2)
16
x x
x
+ − −
( %
2 2
2
24,5 0,5
3,5 0,5
x y
x xy


(
)
3 2
2
3 2 6
2
a a a
a
− + −
+
( H
2 2 2 2
( )( )

( )( )
a b c d
b a d c
− −
− −

 GTA#4
#
2 2 3 2
2 2
2
2 2
x y xy y xy y
x xy y x y
+ + +
=
+ − −
( 
2 2
3 2 2 3
3 2 1
2 2
x xy y
x x y xy y x y
+ +
=
+ − − −

$2^\4bcFYb …45659`"
#

3
45 (3 )
15 ( 3)
x x
x x


( 
2 2
3 2 3
3 2 3
y x
x x y xy y

− + −

+=!578#34A#4
#
4 4
2 2
ax a x
a ax x

+ +
:;#$*%
1
3
( 
3 2
3

6
4
x x x
x x
+ −

:;%/<

3
3 5
3
3
x x
x x
+
+
:;%
1
2

( 
4 3
2 3
2
2
x x
x x


:;%

1
2

(
,
2
2
10 5
16 8
ab a
b ab


:;#
1
6
*
1
7
( -
7
15 8
1a
a a
+
+
:;#.*(

2 2
2 4

0,2 0,8
x y
x y


:;%)&( 
2 2
9
1,5 4,5
x y
x y

+
:;$%'/)
&F$#

$

.#:‡#‡.=!578#34I
a b
a b

+

0 34A#4CD4E:F%
#
2 2
( )( )
x y
x y ay ax


+ −
( 
2 2 3 3
4 6 6 6
ax x y ay
ax x y ay
− − +
+ + +
(
Bµi tËp n©ng cao.
1_9`34
#
4
2
2 2 2
m m
m m

+ +
( 
2 3 2
3 4
ab a a b
a b b
+ −
+
(

1

1
xy x y
y z yz
+ − −
+ − −
( 
ax ay bx by
ax ay bx by
+ − −
− − +
(
,
2 2 2
2 2 2
2
2
a b c ab
a b c ac
+ − +
− + +
( -
2 2
2 2
a b
a a b b

− − −
(

3

2
1
2 4 2
a
a a
+
+ +
( 
3 2 2 3 2 2 3 2 2
2 2 2
( ) ( ) ( )
( ) ( ) ( )
a b c b c a c a b
a b c b c a c a b
− + − + −
− + − + −
(

2
2
( )
( )
x a b x ab
x a b x ab
− + +
− − −
( p
2 2 2 2
2 2 2 2
2 2

2 2
x a b bc ax c
x b a bx ac c
+ − − + −
+ − + − −
(
C
3 2
2
3 2 4 5
6 3 9
x x x
x x
− + −
+ −
( M
2
2
5 6
x x
x x

− +


2 2x x
x x
a b
a b


+
( 
2
1 (2 3 )
2 3 1
a b
a b
− +
+ +
(
F
3 3
3 3
3 3
x y
x y

+
( 
4 4
2 2
2 2
2 2
m n
n m

+
(

2 2 2

2 2 3 2
( ) ( ) ( )a b c b c a c a b
ab ac b bc
− + − + −
− − +
( q
3 2
3 2
2 7 12 45
3 19 33 9
x x x
x x x
− − +
− + −
(
$
4
3 3 3
2 2 2
3
( ) ( ) ( )
x y z xyz
x y y z z x
− + +
+ + + + −
( 
3 3 3
2 2 2
3
( ) ( ) ( )

x y z xyz
x y y z z x
+ + −
− + − + −

<=P 578#%G3"A#4B.
#
4 3
4 3 2
1
2 1
x x x
x x x x
+ + +
− + − +
( 
4 2
4 2
5 4
10 9
x x
x x
− +
− +

/R`34A#4;S E"
%

'%%
+

'%

%
<
'%
+
%
0
'%
<
%
$
'%
0

XQL"34:;%

%*[GV%4\?l34MOv#4
._9`
2 2 2
2 2 2
( ) ( ) ( )
x y z
y z z x x y
+ +
− + − + −
5B%)H.
=!578#"
3 2
3 2

x y
x y

+
*5B/%

+)

.%)*:)ˆ$%ˆ.
XQ
=#V


2 2
2 2
9 4 12 20 12 8 1
9 4 12 20 12 32 4
x y xy xy xy xy
x y xy xy xy xy
+ − −
= = =
+ + +
QF)ˆ$%ˆ.
3 2 0,3 2 0 0x y x y A⇒ − > + < ⇒ <
:)
1
2


_9`34I

4 4 4 4
4 4 4 4
(1 4)(5 4)(9 4) (21 4)
(3 4)(7 4)(11 4) (23 4)
+ + + +
+ + + +

XQ
g@
+
+



'+





'e'fef
QFGVI
( 1.1 2)(1.3 2) (3.5 2)(5.7 2) (19.21 2)(21.23 2) 1.1 2 1

(1.3 2)(3.5 2) (5.7 2)(7.9 2) (21.23 2)(23.25 2) 23.25 2 577
− + + + + + + − +
× × × = =
+ + + + + + +
$F"AN
1

1,00 01
 …4V//lAN.=!578#:; lAN
"
XQ
=#V
100
100
10
10 1+
L"c: …4:;.

'*#Gv

}
}
{
{
{
100 100
100 100
200
100 100
200
10 (10 1) 99 9 00 0
0,99 9 00 0
10 1 99 9

= =

=,Fq4)•G^AN"4mFG5#"AN

+F"K
2 2 2 2 2
2
( )( ) ( )
( ) ( )
a b c a b c ab bc ca
a b c ab bc ca
+ + + + + + +
+ + − + +
#=P 578##**G3"V•#
_9`34K
XQ
#2Z4C?G3"KV•#M …4C.
g@#

'##.

#





##.

#






##.

#



#

.

##

#
:)GZ4C?G3"KV•#M#**CDG6tB.*
M#







.
QF#

#






##*FGVY#





%(
+
##)GV#

%)
=#VK
2 2 2 2
2 2 2
( 2 ) 2 ( )
2
x x y y x xy y x y
x y a b c ab bc ca
x y y x y x y
+ + + + +
= = = + = + + + + +
+ + +
2Z4C?M#








.
IV) Quy đồng mẫu thức.
=P 448#Z4"
'I"! 4"c4m
'!"cBAN:l
L"cBANMLL8#ANb 4
L"cBlMM4~[#:;AN kM;\

Các bài tập cơ bản và nâng cao.
J4)G6 4"A#4
#
2 5
25 14
,
14 21x y xy
(
4 3
11 3
,
102 34x y xy
(

4 2 3
3 1 2
,
12 9
x y
xy x y

+
(
3 2 2 4 3
1 1 1
, ,
6 9 4
x x
x y x y xy
+
(
,
4 2 2 5
3 2 5 2
, ,
10 8 3
x
x y x y xy
+
( -
4 4 3
, ;
2 ( 3) 3 ( 1)
x x
x x x x

+ +

3 2
2 2
,

( 2) 2 ( 2)
x x
x x x

+ +
(
3
5 3
,
3 12 (2 4)( 3)x x x x + +

J4)GD 4"A#4
#
2 2
7 1 5 3
,
2 6 9
x x
x x x

+
(
2 2
1 2
,
2 4 2
x x
x x x x
+ +
+

(

2
3 2
4 3 5 2 6
, ,
1 1 1
x x x
x x x x
+
+ +
(
2 2
7 4
, ,
5 2 8 2
x y
x x y y x


(
,
2
3 2 2
5 4 3
, ,
6 12 8 4 4 2 4
x x
x x x x x x+ + + + + +
( -

3 2 2
1 1
, ,
1 1
x x x
x x x x x
+
+ +
(

2 2 2 2
,
6 2 3 4 4
a x a x
x ax a x ax a
+
+
(
2 2
,
a d a d
a ab ad bd a ab ad bd
+
+ + + +
(

2 2 2 2 2 2 2 2 2
, ,
2 2 2
x y z

x xy y z x y yz z x xz y z + + +
(
p
3 2
1 3 2
, ,
1 2 2 1x x x x+ + +
( C
2 2
2 2
, ,
2
x x y
x y
x y x xy y

+
+
(
M
2
2 2 2
2 1 1
, ,
6 7 3 2 7 6 3 5 2
x x x
x x x x x x
+ +
+


$J4)G6 4"
#
3 2 2 2
, ,
a x b x b a
axb a xb axb
+ +
(
2 2 2
2 1 2
,
4 4 2
x x a
x ax a x ax
+ +
+
(

2 2 2 2
,
6 2 3 4 4
a x a x
x ax a x ax a
+
+
(
2 2 2
,
a b a c
a bc ac ab a bc ac b

+
+ +
(
&
,
3 2 2
2 1
, ,
27 6 9 3 9
x x x
x x x x x
+ −
− − + + +
( -
2 2 2
2 2 1
, ,
3 2 2 5 3 2 7 6
x x x
x x x x x x
+ +
− + − + − − + −

+J4)G6 …4"V3G^\4G3P K=F4?
#
2
1 1 1
, ,
2 2 2 2 1
x x

x x x
− +
+ − −
( 
2
2 2 3 3
2 1 2 1
, ,
x a x x
x a x ax a x a
− − −
+ − + − +
(

3 2 2
24 4 18
, ,
4 2 2
x
x x x x x x− − +
( 
2 4 4 2 7
1 2 1
, ,
2 2 4 8
x x x
x x x x x x
+ −
− + + −
(

,
2 2 2 2 2 2
2 4
, ,
3 2 3 4 3 7 2
x y xy
x xy y x xy y x xy y− + − + − − +

&_9`56q4)G6 …4"A#4
#
2 2
2 2
5 6 2 7 5
,
4 4 3
x x x x
x x x
− + − +
− − + −
( 
3 2 3
3 2 3 2
2 2 5 4
,
4 4 2 3 4
x x x x x
x x x x x x
− − + − +
+ − − + − −
(


3 2 3 2
3 2 3 2
2 5 26 4 10 12
,
5 17 13 2 16
x x x x x x
x x x x x x
− + + + + +
− + − − + +
(

2 2 2 3 3 3
2 2 2 2 2 2
2 2 2 3
,
2 ( ) ( ) ( )
x y z xy yz zx x y z xyz
x y z yz x y y z z x
+ + + + + + + −
− − − − + − + −

0F34%
$
$%

'/%$.:#"
2 2
2
,

2 7 15 3 10
x x
x x x x
+
+ − + −
##G#MmMvF …48##"GaF
J4)G6 …48##"GaF
1F#"
2 2
1 2
,
4 5 2 3x x x x− − − −
h5BV3`G#
%
$
'1%

1%&M  …44G3q4)G6 …4#"GaFXa)q4)
G6 …4
V) PhÐp céng c¸c ph©n thøc ®ai sè.
E#"x …4Ec:;c:l4)O …4
E#"V …4C#4
'J4)G6 …4"
'E#"x …4A#4CGaq4)G6
$
E"x …4
#
3 3 3
1 2 3 2 2 4
6 6 6

x y x
x y x y x y
− + −
+ +
( 
2
2 2
2 2
( 1) ( 1)
x x
x x x x
− −
+
− −
(

2
2 2
3 1 6
3 1 3 1
x x x
x x x x
+ −
+
− + − +
( 
2 2
2 2
38 4 3 4 2
2 17 1 2 17 1

x x x x
x x x x
+ + − −
+
+ + + +

E"C …4
#
2 2
5 7 11
6 12 18x y xy xy
+ +
( 
3 2 3
4 2 5 3 1
15 9 5
x y x
x y x y xy
+ − +
+ +
(

2
3 3 3 3 2
2 2 1 2 4
x x
x x x x
− −
+ +
− −

( 
3
3 2
2 2 1
1 1 1
x x x
x x x x
+
+ +
+ − + +
(
0
,
2 2
4
2 2
y x
x xy y xy
+
− −
( -
2 2
1 3 14
2 4 ( 4 4)( 2)
x
x x x x x

+ +
+ − + + −
(


1 1
2 ( 2)(4 7)x x x
+
+ + +
( 
1 1 1
3 ( 3)( 2) ( 2)(4 7)x x x x x
+ +
+ + + + +
(
$Qxq4)•G^\4G3P  …4456>?@E
#
2
4 2 5 6
2 2 4
x
x x x

+ +
+ − −
( 
2
1 3 3 2 3 2
2 2 1 2 4
x x x
x x x x
− − −
+ +
− −

(

2 2 2
1 1
6 9 6 9 9
x
x x x x x
+ +
+ + − − −
( 
2
3 2
2 2 1
1 1 1
x
x x x x
+
+ +
− + + −
(
,
2 2
4
2 2 4
x x xy
x y x y y x
+ +
− + −

+E"

#
1 1 1
( )( ) ( )( ) ( )( )x y y z y z z x z x x y
+ +
− − − − − −
(

4 3 3
( )( ) ( )( ) ( )( )y x z x y x y z y z x z
+ +
− − − − − −
(

1 1 1
( )( ) ( )( ) ( )( )x x y x z y y x y z z z x z y
+ +
− − − − − −
(

4 3 3
( )( ) ( )( ) ( )( )a x c x a x a c a c x c
+ +
− − − − − −
(
,
1 1 1
( )( ) ( )( ) ( )( )a a b a c b b a b c c c a c b
+ +
− − − − − −


& !E"
#
11 13 15 17
3 3 4 4
x x
x x
+ +
+
− −
( 
2
2 2 2
2 1 32 1 2
2 1 4 2
x x x
x x x x x
+ −
+ +
− − +
(

2 2 3
1 1 2
1 1
x
x x x x x
+ +
+ + − −
( 
4

3 2
1
1
x
x x x
x
+ + + +

(
,
2 2 3
5 3
2 5
x
x y xy y
+ +
( -
1 2 3
2 6 ( 3)
x x
x x x
+ +
+
+ +
(

2
3 5 25
5 25 5
x x

x x x
+ −
+
− −
( 
4
2
2
1
1
1
x
x
x
+
+ +

(

2
3 2
4 3 17 2 1 6
1 1 1
x x x
x x x x
− + −
+ +
− + + −
(
0F#34


1 1 5
5 ( 5)
x
x x x x

+ +
+ +
* 
3
5x +
h5B
1=!578#34
#
3 2 2
2 1 1
1 1
x
x x x x x
+ +
− − + +
:;%.(
1

4
3 2
2
1
x
x x x

x
+ + + +

:;%'//
Các bài tập nâng cao
<=P AN#:A#FF"
2
3
5
3 2
x
x x
+

:Gv
2
2 ( 1)
a b
x x
+
+
XQQx E5F#?AN\G7FY%@575OG3P #:
A#4Cq4)G6
/ 34A#4CD4E:F%
#
x y y z z x
xy yz zx

+ +
(

( )( ) ( )( ) ( )( )
y z x
x y y z y z z x z x x y
+ +


.E"
2 2 2 2 2 2
1 1 1
( )( ) ( )( ) ( )( )b c a ac b bc c a b ab c ac a b c bc a ab
+ +
+ + +

(Đề thi học sinh giỏi lớp 8 toàn quốc 1980)
_9`34

2 4 8
1 1 2 4 8
1 1 1 1 1x x x x x
+ + + +
+ + + +

=P AN**G3V
2
3 3 2
2
( 1) ( ) ( 1) 1
x x A B C
x x a x x
+

= + +


$ BGT
2 2 2 2
2 2 2 2 2
3 2 5 3
9 6 9 3 3
a ab a ab b a an ab bn
a b ab a b bn a an ab
+ + + +
+ =
+

VI) Phép trừ các phân thức đại số.
I"GN
'X#"Gv`MGN#44^8#9B.
'D
A A
B B

=
:
A A
B B

=

I@5[
'J4)K4N5["

A
B
F"
C
D
*#E
A
B
:;"GN8#
C
D
'D
A C A C
B D B D

= +
$
!5["
#
3 2 7 4
2 2
x x
xy xy


(
3 3
3 5 5 15
4 4
x x

x y x y
+

(

4 7 3 6
2 2 2 2
x x
x x
+ +

+ +
(
2 2
9 5 5 7
2( 1)( 3) 2( 1)( 3)
x x
x x x x
+

+ +
(
,
2
2 2 2 2
xy x
x y y x


( -

2 2
2 2
5 5x y y x
x y xy
+

(

5 5 10 10
x x
x x

+
(
2 2
9 3
9 3
x
x x x
+

+
(
<

2
3 6
2 6 2 6
x
x x x



+ +
( p
4 2
2
2
3 2
1
1
x x
x
x
− +
+ −

(
C
2
1 1 2 (1 )
3 3 9
x x x x
x x x
+ − −
− −
− + −
( M
2 2
3 1 1 3
( 1) 1 1

x x
x x x
+ +
− +
− + −
(

2
2 2
5 4 3
3
2 6 9
x
x x x

− −
+ −
( 
2 2 2
3 2 6 3 2
2 1 1 2 1
x x
x x x x x
+ −
− −
− + − + +

=,FG7•#8#@5[*C:
A C E A C E
B D F B D F

− −
− − = + +

¸GZ4)G3M @!A#4
#
2
1 1 3 6
3 2 3 2 4 9
x
x x x

− −
− + −
( 
2 2 2
18 3
( 3)( 9) 6 9 9
x
x x x x x
− −
− − − + −

$59`34
#
2
3 2
3 5 1 1 3
1 1 1
x x x
x x x x

+ + −
− −
− + + −
( 
2
2 3
1 2
1
1 1
x
x x x
+
+ −
− + +
(

2
7 36
6 6
x
x x x x
− +
+ +

+=>?@!
#
1 2 3
( 1)( 2) ( 2)( 3) ( 3)( 1)x x x x x x
+ −
− − − − − −

(

1 1 1
( )( ) ( )( ) ( )( )
A
a a b a c b b a b c a c c b
= + −
− − − − − −

&=!578#34
#
2
2 3
1 2
1
1 1
x
x x x
+
+ −
− + +
:;%//(

2
2 1 1 2 2
4 2 4 2 1 4
x x
x x x
+ −
+ −

− + −
:;%
1
4

C¸c bµi to¸n n©ng cao
0_9`34
#
1
( ) ( )( 2 ) ( 2 )( 3 ) 3
a a a
x x a x a x a x a x a x a
+ + +
+ + + + + +
(

1 1 1 1

2.5 5.8 8.11 (3 2)(3 5)n n
+ + + +
+ +
(
XQ=>?"#::;$#Gv$
3 3 3 3

2.5 5.8 8.11 (3 2)(3 5)n n
+ + + +
+ +
=[GV#V
3 1 1

(3 2)(3 5) 3 2 3 5n n n n
= −
+ + + +
g@[ANS3
3 1 1
2.5 2 5
= −
3 1 1
5.8 5 8
= −
…
3 1 1
(3 2)(3 5) 3 2 3 5n n n n
= −
+ + + +
/

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×