Đại số 9
Chơng I: Căn bậc hai, căn bậc ba
Soạn :
Giảng:
Tit 1: Căn Bậc hai
A - Mục tiêu bài học :
HS hiểu đợc định nghĩa , ký hiệu về căn bậc hai học của số không âm.
Biết đợc các liên hệ của phép khai phơng với quan hệ thứ tự và dùng liên
hệ này để so sánh các số .
B - Chuẩn bị :
Đồ dùng : - GV : Bảng phụ (2) , Máy tính bỏ túi.
- HS : SGK, vở ghi , vở bài tập , dụng cụ học tập
C - Các hoạt động dạy học trên lớp :
I - ổn định tổ chức :
II - Kiểm tra bài cũ : ( Thay bằng giới thiệu chơng trình đại số 9 , giới
thiệu chơngI & giới thiệu T1)
III - Dạy học bài mới:
Hoạt động của thầy và trò Nội dung kiến thức
GV : Ta đã học căn bậc hai ở lớp 7 .
- Hãy nêu định nghĩa CBH số học của 1 số
a không âm ?
- Với số a dơng có mấy CBH ?
- Nếu a = 0 thì số 0 có mấy CBH?
HS : Trả lời :
GV : Ghi lại góc bảng :
+CBH của a
0 là x/ x
2
= a .
+ a >0 có 2 CBH là
a
và -
a
+ a = 0 có 1 CBH là
0
=0
GV? : Tại sao số không âm có CBH ?
HS : Vì bình phơng mọi số đều không âm.
GV : Giới thiệu
a
(a
0)
CBHSH
GV : Cho học sinh làm nhanh ?1/a,b.
HS : Làm bài cá nhân và thống nhất kết quả
? CBH dơng của 9 bằng mấy ?
HS : CBH dơng của 9 bằng 3 .
GV : Giới thiệu 3 là CBHSH của 9 .
GV : hãy tìm CBHSH của
9
4
?
HS : CBHSH của
9
4
là
3
2
? Với a > 0 thì CBHSH của a là gì?
HS : a >0 thì CBHSH của a là
a
.
1. Căn bậc hai số học :
?1 : Tìm CBH :
a) CBH của 9 là 3 và (-3) vì 3
2
= 9 và(-3)
2
= 9
b) CBH của
9
4
là
3
2
và (-
3
2
) vì (
3
2
)
2
=
9
4
và (-
3
2
)
2
=
9
4
1
Đại số 9
GV: Cho học sinh đọc định nghĩa (SGK)
GV : Nêu chú ý SGK , khắc sâu cho học
sinh 2 chiều định nghĩa .
GV : Yêu cầu học sinh làm ?2 theo mẫu .
HS : Hoạt động cá nhân .
GV : Gọi học sinh đọc kết quả ghi nhanh.
GV : Giới thiệu thuật ngữ phép khai phơng
? Phép toán ngợc của phép khai phơng là
phép toán nào ?
HS : Là phép bình phơng .
? Để khai phơng một số ngời ta có thể dùng
dụng cụ gì ?
HS : Máy tính bỏ túi hoặc bảng số.
? Khi biết CBHSH của một số có thể xác
định đợc CBH của nó không ?
HS : Có .
GV : Yêu cầu học sinh làm ?3 ( Bảng phụ)
HS : Trả lời miệng nhanh.
GV(lu ý ): Học sinh phân biệt CBH và
CBHSH
CBHSH là căn dơng.
? Cho a, b
0
nếu a< b thì
a
so với
b
nh thế nào ?
HS : Nếu a<b thì
a
<
b
.
GV : Ngợc lại ta có thể chứng minh đợc :
Với a,b
0 nếu
a
<
b
thì a<b .
GV : Giới thiệu định lý SGK
GV : Cho học sinh nghiên cứu VD2:
HS : Tự nghiên cứu (nhóm nhỏ )
Giải
thích cách làm GV : Cho học sinh vận dụng
làm ?4 theo nhóm (bàn )
HS : Thảo luận và đa ra kêt quả .
GV: Cho đại diện hai nhóm lên trình bày lời
giải .
HS : Dới lớp nhận xét , sửa chữa sai sót .
GV( chốt lại ) : Để so sánh 2 số không
âm .Ta đi so sánh CBHSH của chúng và
ngựoc lại .
GV : Cho học sinh đọc VD3 và giải trong
SGK sau đó làm ?5 theo 2 nhóm
* Định nghĩa (SGK-T4)
VD1 : CBHSH của 16 là
16
= 4
+ Chú ý :
x =
a
x
0 và x
2
=a
?2 : Tìm CBHSH :
b)
864 =
với 8
0 và 8
2
= 64.
c)
981 =
với 9
0 và 9
2
= 81 .
d)
21.1
= 1,1 vì 1,1
0
và 1,1
2
= 1,21
?3: Tìm CBH :
Số CBHSH CBH
64
81
1,21
8
9
1,1
8;(-8)
9;(-9)
1,1;(-1,1)
2. So sánh các căn bậc hai số học
*
* Định lý :
a<b
a
<
b
( a
b
; b
o
)
?4 : So sánh :
a) 16 > 15nên
1516 >
vậy 4>
15
b) 11>9 nên
911
>
vậy
11
>
?5 : Tìm x không âm biết :
a)
x
>1 b)
x
<3
2
Đại số 9
HS : Hoạt động nhóm
thống nhất kết qủa.
GV : Cho đại diện 2 nhóm lên bảng trình
bày lời giải .
HS : Dới lớp nhận xét và sửa chữa những
chỗ sai sót .
Giải.
a) 1=
1
nên
x
>1
có nghĩa là
x
>
1
Vì x
0 nên
x
>
1
x>1 vậy x>1
b) 3=
9
nên
x
<3
nghĩa là
x
<
9
Vì x
0 nên
x
<
9
Vậy 0
x <9 .
IV - Củng cố :
?Bài học hôm nay cần nhớ những nội dung gì ?
-HS : + CBHSH số học của 1 số a không âm .
+ So sánh các CBHSH .
- GV nhấn mạnh : + Từ chú ý CBHSH để vận dụng giải phơng trình
x
= a và
x
2
=a .
+ So sánh các CBHSH để vận dụng giải bài tập so sánh và
giải bất phơng trình
- Luyện tập ở lớp :
.GV : Treo bảng phụ .
HS : Làm nhanh tại chỗ ( Có thể
dùng máy tính bỏ túi tính nhanh)
GV : Cho 1 học sinh lên bảng điền
kết quả.
GV : Cho hs làm tiếp bài 2/a
( Nếu còn thời gian)
.Bài 1 (SGK- 6):
Số CBHSH CBH
121
144
169
225
256
324
361
400
11
12
13
15
16
18
19
20
11;(-11)
12;(-12)
13;(-13)
15;(-15)
16;(-16)
18;(-18)
19;(-19)
20;(-20)
V - Hớng dẫn học ở nhà :
- Học thuộc định nghĩa CBHSH của 1 số a không âm , phân biệt với CBH của số a
không âm .
- Học cách so sánh các CBHSH.
- Hiểu các VD . Làm bài tập 2,3,4,5 (SGK- 6+7)
- Đọc mục" Có thể em cha biết ."
D - Rút kinh nghiệm:
3
Đại số 9
Soạn :
Giảng
:
Tit 2
Căn thức bậc hai và hằng đẳng thức
AA
=
2
A- Mục tiêu bài học :
- Học sinh biết cách tìm điều kiện xác định hay điều kiện có nghĩa của
A
và có kỹ năng
thực hiện điều đó khi biểu thức A không phức tạp ( bậc nhất ,phân thức mà tử hoặc mẫu là bậc
nhất , còn mẫu hay tử còn lại là hằng đẳng số hoặcbậc nhất bậc hai dạng a
2
+ m hay hay -( a
2
+m )
khi m dơng )
- Biết cách chứng minh định lý
2
A
=
A
và biết vận dụng hằng đẳng thức
2
A
=
A
để rút gọn
biểu thức.
B - Chuẩn bị :
- Đồ dùng : GV : Bảng phụ (3)
- HS : Ôn tập định lý Pitago , quy tắc tính trị tuyệt đối của 1 số , máy tính bỏ túi .
C - Các hoạt động dạy học trên lớp :
I -
ổ
n định tổ chức :
II - Kiểm tra bài cũ :
HS 1 : (GV treo bảng phụ ?1 )
HCN ABCD ,có đờng chéo 5 cm và BC = x(cm) .Tính AB =?
D
C
B
A
x
5cm
HS2 : - Phát biểu CBHSH của a .
(Viết dới dạng ký hiệu )
GV : Chữa bài hs1 làm : kq' AB =
2
25 x
Giới thiệu
2
25 x
là căn thức bậc hai . Để hiểu đợc CTBH
Vào bài mơí.
III - Dạy bài mới :
Hoạt động của thầy và trò Nội dung kiến thức
GV: Vừa rồi hs1 đã giải quyết song ?1 ta đã
tính đc cạnh AB =
2
25 x
nhờ định lý Pitago
GV : Giới thiệu
2
25 x
là căn thức
BH của 25-x
2
23? Tại sao
2
25 x
gọi là CTBH ?
HS : QS Trả lời vì 25-x
2
là biểu thức chứa chữ hay
hay là biểu thức đại số
1. Căn thức bậc hai :
?1 : AB =
2
25 x
4
Đại số 9
GV Chốt lại : Dới dấu căn là 1 biểu thức đại số số
thì cho ta căn thức BH .
GV : Nếu thay (25 -x
2
) bằng A thì
A
gọi là
gì?
HS :
A
là CTBH của A
(A là biẻu thức đại số )
GV : Giới thiệu A gọi là biểu thức lấy căn hay
biểu thức dới dấu căn
? Có CBH của 1 số a không âm ?
HS : Không
GV : Đối với CTBH cũng vậy . Để
A
có
nghĩa (điều kiện xác định) gì ?
HS : Biểu thức lấy căn không âm .
GV : Cho hs đọc VD 1 .SGK
? Với giá trị nào của x thì
x25
xác định ?
HS : Trả lời miệng .
GV : Hớng dẫn hs cách trình bày .
GV : Muốn tìm điều kiện để CTBH có nghĩa
phải qua mấy bớc .?
HS : 2 bớc : B1 : Viết biểu thức
dói dạng không âm .
B2 : Giải BPT
GV : Muốn đa biểu thức dới dấu căn ra
khỏi dấu căn ta làm thế nào?
vào phần 2
GV : Treo bảng phụ ?.3
HS : Dới lớp làm cá nhân dùng bút chì điền
điền vào bảng (SGK )
GV : Cho 2 học sinh lên bảng điền.
GV : Nêu nhận xét quan hệ giữa
2
A
và A.
HS ; Nếu a<0 thì
2
A
= -A
Nếu a
o thì
2
A
= A
GV : Nh vậy không phải bình phơng 1
số rồi khai phơng Kết quả đó cũng đợc số
ban đầu
GV : Giới thiệu định lý SGK
HS: Đọc nội dung định lý -SGK
GV : Để chứng minh định lý này ta cần c/m
đợc điều gì?
HS : CBHSH của a
2
bằng trị tuyệt đối của a
GV: Để CM CBHSH của a
2
bằng trịtuyệt đối của a
của a ta cần cm mấy đk ?
HS: 2 điều kiện.
* Tổng quát (SGK -T8 )
A
là căn thức bậc hai của A
(A là biểu thức đại số )
+
A
xđ hay có nghĩa khi A
0
* VD1 (SGK -T8 )
?.2 .
x25
xác định
5-2x
0
x
2,5
Vậy khi x
2,5 thì
x25
xác định.
2. Hằng đẳng thức
2
A
=
A
* Định lý :
Với mọi số a , ta có
aa
=
2
CM (SGK- T9) .
5
Đại số 9
2
a
=
a
0
a
và
2
a
=a
2
Gv : Hãy chứng minh từng điều kiện
HS :
2
a
=
a
0
a
( hiển nhiên )
và
2
a
= a
2
a
0
a
=a
2
a
=a
2
a<0
a
=-a
2
a
=-a
2
GV : Cho học sinh học phần CM- SGK
GV : Cho học sinh vận dụng làm
VD2+3 (SGK)
HS : Tự n/cứu SGK - giải thích cách làm
GV (Chốt lại) : -Không cần tính CBH mà vẫn
tính đợc gía trị của CBH nhờ biến đổi về
biểu thức không chứa CBH
- Muốn rút lại CTCBH ta qua mấy bớc ?
2 bớc : b1 : Viết biểu thức dới dấu căn
dới dạng
B2: Phá dấu
GV : Định lý vẫn đúng với biểu thức .
Tổng quát giới thiệu nội dung chú ý
GV : Cho học sinh vận dụng làm VD4 (SGK)
HS : Tự n/cứu và giải thích cách làm
HS1+2 : Giải thích
GV : Chốt lại để vận dụng hằng đẳng thức
2
A
=
A
thì biểu thức dới dấu căn phải đa về
về dạng bình phơng.
VD 2+3 (SGK -T9)
(*) Chú ý : (SGK-T10)
A nêú A
0
2
A
=
A
=
-A nếu A <0
VD 4 (SGK -T10).
IV - Củng cố :
? Qua bài học cần nhớ những kiến thức gì ?
HS : Cần nhớ :+ Căn thức bậc hai đk xác định ( có nghĩa) của căn thức bậc hai
+ Hằng đẳng thức
A
=
A
GV : Lu ý : +ĐKXĐ căn thức bậc hai vận dụng giải BPT
+ Sử dụng hằng đẳng thức để vận dụnh phá dấu .
- Luyện tập tại lớp.
GV : Treo bảng phụ cho hs hoạt động 2 nhóm
N1 : 1) Với gtrị nào của a thì
3
a
có nghĩa ?
N2 : 1) Với gtrị nào của a thì
a5
có nghĩa
6
Đại số 9
2) Tính : -
( )
2
3,1
2) Tính
( )
2
3.0
3) Rút gọn :
( )
2
32
3) Rút gọn
( )
2
113
HS : Đại diện hai nhóm lên trình bày bài giải
V - Hớng dẫn học ở nhà :
- Học bài theo vở ghi và SGK nắm vững điều kiện để
A
có nghĩa và hằng đẳng
thức
2
A
=
A
- Hiểu cách chứng minh định lý
2
a
=
a
a
- Làm bài tập : 6,7,8,9,10 (SGK - T10,11 ). Ôn tập hằng đẳng thức đáng nhớ
D - Rút kinh nghiệm:
7
Đại số 9
Soạn :
Giảng :
Tit 3: luyện tập
A - Mục tiêu bài học:
- Học sinh đợc rèn kỹ năng tìm điều kiện của x để căn thức có nghĩa , biết áp
dụng hằng đẳng thức
2
A
=
A
- Hs đợc luyên tập về phép khai phơng để tính gía trị biểu thức số , phân tích đa
thức thành nhân tử và giải pt
B - Chuẩn bị :
- GV : bảng phụ 2 , máy tính bỏ túi ,
- HS : ôn tập hằng đẳng thức đáng nhớ .
C - Các hoạt động dạy học trên lớp :
I. Ôn định tổ chức :
II. Kiểm tra bài cũ :
HS1 : điền vào chỗ chống ( ) để đ ợc khẳng định đúng
2
A
= . Nếu a
0
Nếu a
0
- Chữa bài tập 9/ b,c (SGK) -T11
b)
2
x
=
8
x
=8
x
1,2
=
8.
2
4x
= 6
/2x/ = 6
2x=
6
x
1.2
=
3
HS2 : Chữa bài tập 10 (SGK -T11): CM
a) (
3
-1)
2
= 4-2
3
Cm :VT = (
3
-1)
2
= 3-2
3
+1= 4-2
3
=VP (đpcm)
b)
324
-
3
=-1
Cm : VT =
324
-
3
=
( )
2
13
-
3
=/
3
-1/-
3
=
3
-1-
3
=-1=VP
Tiết hôm nay các em vận dụng kiến thức của căn thức bậc hai và hằng đẳng
thức
2
A
=
A
để giải 1 số BT
III- Bài mới:
Hoạt động của thầy và trò Nội dung kiến thức
GV: Treo bảng phụ phần a,c
HS: Hoạt động cá nhân
GV: Gọi h/s đứng tại chỗ trả lời
? Nêu thứ tự thực hiện tính của biểu
thức
HS : Thực hiện khai phơng trứơc, rồi thực
hiện nhân, chia trớc cộng trừ sau
GV : Nêu cách thực hiện phép tính phần c?
HS : Nêu miệng .
GV : Chốt lại : Khi gặp tính toán thức biêu
8
Đại số 9
phơng trớc ,rồi thực hiện tính theo thứ tự thực
hiện các phép tính . Gặp căn chồng ta thực
hiện khai phơng từ trong ra ngoài GV: Gọi 3
học sinh lên bảng làm 3 phần b,c,d
HS1+2+3 ; Lên bảng
Hoạt động của thầy và trò Nội dung kiến thức
Gv: Treo bảng phụ phần a,c
Hs; Hoạt động cá nhân
Gv : Gọi học sinh đứng tại chỗ trả lời
? Nêu thứ tự thực hiện phép tính của
biểu
HS : Thực hiện khai phơng trứơc, rồi thực
hiện nhân , chia trớc , cộng trừ sau .
GV : Nêu cách thực hiện phép tính phần
c?
HS : Nêu miệng .
GV : Chốt lại : Khi gặp tính
toán thức phơng trớc ,rồi thực hiện tính
theo thứ tự thực hiện các phép tính . Gặp
căn chồng ta thực hiện khai phơng từ
trong ra ngoài GV: Gọi 3 học sinh lên
bảng làm 3 phần b,c,d
HS1+2+3 ; Lên bảng
GV : Tìm đk để căn thức có nghĩa qua
mấy bớc?
HS : 2 bớc : B1 : Viết biểu thức dới dấu căn
không âm .
B2 : Giải BPT
GV : Cho học sinh dới lớp nhận xét , sửa chữa sai
sót (nếu có).
Bài 11 (SGK-11) .Tímh :
a)
49:19625.16 +
=4.5 + 14 : 7
= 20 + 2
= 22
c)
3981 ==
Bài 12 SGK -11 . Tìm x để mỗi căn
thức.
có nghĩa
a)
43 + x
có nghĩa
- 3x+4
0
-3x
4
x
3
4
9
Đại số 9
GV : Chốt lại :
- Tìm đk để căn thức có nghĩa ta tìm đk
để biểu thức căn luôn không âm
- Lu ý : Gặp biểu thức dới dấu căn là
1phân thức
Gv : Chia lớp thành 2 nhóm
- Nửa lớp làm a
- nửa lớp làm phần b
HS ; Hoạt động theo nhóm và thống
nhất kết quả.
GV : Cho đại diện 2 nhóm lên bảng
HS : Dới lớp nhận xét , sửa chữa sai sót
(nếu có )
Gv : Chốt lại :
Để vận dụng hằng đẳng thức
2
A
=
A
thì biểu thức dới dấu căn đa về dạng
bình phơng.
: Dùng p
2
nào để phân tích thành
nhân tử ?
HS : Dùng hằng đẳng thức
Gv : Làm thế nào để xuất hiện hằng đẳng
thức ?
HS : Sử dụng hớng dẫn a
0
a=
2
a
GV : Cho 1 học sinh đọc cách giải phần a
HS : Đọc
GV : Cho vận dụng làm phần d .
GV: Chốt lại : Sử dụng hằng đẳng thức
đã học Chú ý sử dụng kq' : a
0
a
2
a
GV: Cho hs làm bài tập 15 (nếu còn thời
gian )
Hớng dẫn phơng trình ở dạng bậc
mấy ?
Muốn giải đợc ta phải đa chúng về
phơng trình tích bằngcách dùng hằng
Vậy khi x
3
4
Thì
43 + x
có nghĩa
c)
x
+
1
1
có nghĩa
x
+
1
1
>0
có 1 >0
-1 + x > 0
x > 1
vậy khi x > 1 thì
x
+
1
1
có nghĩa .
d)
2
1 x
+
có nghĩa với mọi x
vì x
2
0 mọi x
1+x
2
1 mọi x
Vậy với mọi x thì
2
1 x
+
có nghiã
Bài 13 (SGK -1)
Rút gọn các biểu thức
a)
2
25a
+3a với a
0
Giải
a25
=
2
5a
+3a
=
a5
+3a
=5a +3a vì a
0
= 8a .
b) 5
6
4a
-3a
3
với a<0
Giải
5
6
4a
-3a
3
= 5
( )
2
3
2a
-3a
3
5
3
2 a
-3a
3
= -10a
3
- 3a ( vì a < 0 )
= -13a
3
Bài 14 (SGK -11):
Phân tích thành nhân tử
a) x
2
-3 = x
2
-(
3
)
2
= (x-
3
)(x+
3
)
d) x
2
+2
x5
+5= x
2
-2.x.
5
+(
5
)
2
= (x-
5
)
2
Bài 15: (SGK-11): Giải phơng trình:
a) x
2
-5 =0
b) x
2
-2
11
x+11=0
10
Đại số 9
đẳng thức (vận dụng bài 14)
IV - Củng cố :
? Qua bài học hôm nay ta cần nắm đợc những dạng bài tập nào ?
- HS : 5 dạng
-GV : lu ý : Với mỗi dạng bài cần vận dụng kiến thức hợp lý
V - Hớng dẫn học ở nhà :
- ôn lại kiến thức ở tiết 1+2.
- Luyện tập thành thạo 5 dạng BT
- Làm các bt còn lại: 11-16 (SGK-t11+12) và
12-17 ( SBT _ T5+6)
Hớng dẫn bài tập 16 (SBT)
a)
)3)(1( xx
có nghĩa
(x-1)(x-3)
0
03
01
x
x
hoặc
03
01
x
x
Tiếp tục giải bất pt mỗi trờng hợp , sau đó kết hợp nghiệm trên trục số.
D - Rút kinh nghiệm :
Soạn :
Giảng:
Tiết 4: liên hệ giữa phép nhân
và phép khai phơng
A- Mục tiêu bài học :
Học sinh hiểu đợc nội dung và cách c/m định lý về liên hệ phép nhân và
phép khai phơng.
Có kĩ năng dùng các quy tắc khai phơng 1 tích và nhân căn bậc hai trong
tính toán và biến đổi biểu thức .
B - Chuẩn bị :
- Đồ dùng : Bảng phụ 2
- Lu ý : (SGK_ T23)
C - Các hoạt động dạy học trên lớp :
I - ổn định tổ chức :
II - Kiểm tra bài cũ :
Gv: Treo bảng phụ , Điền dấu " X" vào chỗ trống thích hợp :
11
Đại số 9
HS1
STT Nội dung Đúng Sai Sửa
1.
x23
xđ khi x
2
3
X
x
2
3
2.
2
1
x
Xđ khi x
0
X
3.
4
2
)3.0(
=1.2
X
4.
-
4
)2(
=4
X -4
5.
2
)21(
=
2
-1
X
III - Bài mới :
Hoạt động của thầy và trò Nội dung kiến thức
GV : Cho học sinh làm ?1 :
HS : Làm bài tại chỗ ít phút .
GV : Gọi 1 học sinh lên bảng làm .
GV : Đây chỉ là 1 trờng hợp cụ thể . Tổng
quát ta phải chứng minh định lý .
- Đa nội dung định lý .
HS : Đọc nội dung định lý .
GV : hớng dẫn học sinh chứng minh .
Muốn chứng ninh đợc định lý ta cần chứng
minh đợc điều gì ?
HS : Chứng minh
a
.
b
là CBH của a.b .
GV : Hãy nhắc lại công thức tổng quát của
định nghĩa CBHSH của 1 số a không âm ?
HS : Với a
0 :
a
x
0 và x
2
= a
GV : Vậy
ba.
=
=+
925
.
b
a
.
b
0và (
ba.
)
2
= ab .
Em nào chứng minh đợc ?
HS : + Vì a
0 ; b
0 nên
a
;
b
xác định
và không âm
a
.
b
xác định và không
âm.
+ (
a
.
b
)
2
= (
a
)
2
.(
b
)
2
= a.b
GV : Vậy định lý đợc chứng minh .
GV : Định lý này có thể mở rộng cho tích
nhiều số không âm
Chú ý .
GV : Với 2 số a, b không âm định lý cho
phép ta suy luận theo 2 chiều ngợc nhau
có 2 quy tắc .
+ Quy tắc khai phơng 1 tích ( chiều từ trái
1 . Định lý :
?1 : Tính và so sánh :
205.425.16
2040025.16
==
==
Vậy
2025.1625.16 ==
* Định lý : (SGK - 12)
ba.
=
a
.
b
(a
0, b
0 )
Chứng minh (SGK - 13)
* Chú ý : ( SGK- 13)
VD : Với a,b,c
0 thì
cba
=
a
.
b
.
c
12
Đại số 9
sang phải )
+ Quy tắc nhân các căn thức bậc hai ( chiếu
từ phải sang trái )
GV : Nhắc lại định lý .
HS : Đọc quy tắc SGK theo chiều từ trái
sang phải .
GV : Hớng dẫn học sinh làm VD :
áp dụng quy tắc khai phơng 1 tích hãy tính .
Gợi ý : Khai phơng từng thừa số rồi nhân
các két quả với nhau .
HS : Hoạt động cá nhân làm bài vào vở
GV : Cho cả lớp làm ?2 theo nhóm .
Nửa lớp làm câu a , nửa lớp làm câu b.
HS : HĐ nhóm và thống nhất kết quả.
GV : Gọi đại diện 2 nhóm lên trình bày
cách tính .
HS : Nhận xét và sửa chữa sai sót .
Gv : Giới thiệu tiếp quy tắc nhân các
CTBH nh SGK
HS : Đọc và n/cứu quy tắc .
GV : Hớng dẫn học sinh làm VD2.
Trớc tiên hãy nhân các số dới dấu căn
với nhau rồi khai phơng kết quả đó .
- Gợi ý phần b : 52 = 13.4
GV (Chốt lại) : Khi nhân các số dới
dấu căn ta cần biến đổi biểu thức về
dạng tích các bình phơng rồi thực hiện
phép tính .
GV : Yêu cầu HS hoạt động cá nhân
HS : 2 HS lên bảng thực hiện
Gv : Giới thiệu chú ý SGK ( bảng phụ )
Đlý áp dụng đợc với các biểu thức
dới dấu căn không âm .
Phân biệt : A
0 :(
AAA ==
22
)
2 . áp dụng :
a ) Quy tắc khai phơng 1 tích (SGK- 13)
VD1 : Tính .
a)
2544,14925.44,1.49 =
= 7. 1,2. 5 =42
b)
40081400.8140.10.8140.810 ===
= 9.20 = 180
?2 : Tính
a)
225.64,0.16,0
=
22564.016.0
= 0,4 .0,8 . 15
=4,8
b)
360.250
=
100.36.25
=
1002536
= 5.6.10
=300
b)Quy tắc nhân các căn thức bậc
hai (SGK-T13)
VD2: Tính :
a)
205
=
20.5
=
100
=10
b)
10523,1
=
10.52.3,1
=
52.13
=
4.13.13
=13.2
= 26
?3 Tính a)
753
=
75.3
=
225
=15hoặc
25.3.3
=
259
= 3.5=15
b)
9,47220
=
9,4.72.20
=
49.36.2.2
=
49364
= 2.6.7=84
*) Chú ý : (SGK -T14)
13
Đại số 9
A bất kỳ :
2
A
=
A
GV : Cho hs tự n/cứu VD3 .
HS : N/cứu cá nhân .
GV : Yêu cầu hs trình bày cách làm.
GV : Cho hs vận dụng VD3 làm ?4 .
HS : HĐ cá nhân .
GV : Cho 2 hs lên bảng làm .
HS : Dới lớp nhận xét , sửa chữa sai
sót .
VD3 : (SGK -T14)
?4 Rút ra các biểu thức với
a, b
0
a)
aa 123
3
=
aa 12.3
3
=
4
.36 a
=
22
)6( a
=
2
6 a
= 6a
2
(a
0
)
b)
2
32.2 aba
=
22
64 ba
=
2
)8( ab
=
ba.8
= 8ab ( vì a
0
, b
0)
IV - Củng cố :
GV: - Phát biểu và viết định lý liên hệ
giữa phép nhân và phép khai phơng .
GV : Định lý này còn gọi là định lý khai
phơng 1 tích hay định lý nhân các căn
thức bậc hai.
- Định lý đợc tổng quát nh thế nào ?
GV : Phát biểu quy tắc khai phơng 1 tích
và quy tắc nhân các căn thức bậc hai.
HS : Phát biểu và lên bảng viết :
Với a,b
0 ;
ba.
=
a
.
b
HS : Với biểu thứcA,B không âm :
BABA =
HS : Phát biểu .
V - Hớng dẫn học ở nhà :
- Học thuộc định lý và các quy tắc , học chứng minh định lý .
- Làm bài tập : 17 đến 21 (SGK- 15) ; 23,24 (SBT - 6)
D - Rút kinh nghiệm :
Soạn :
Giảng : Tiết 5: luyện tập
A- Mục tiêu bài học :
Khắc sâu cho học sinh kỹ năng dùng các quy tắc khai phơng 1 tích và nhân
các căn thức bậc hai trong tính toán và biến đổi biểu thức .
Về mặt rèn luyện tính t duy , tập cho học sinh tính nhẩm , tính nhanh vận
dụng làm các bài tập chứng minh , rút gọn , tìm x và so sánh 2 biểu thức.
B - Chuẩn bị :
- Đồ dùng : Máy tính bỏ túi và bảng phụ.
- Lu ý : Không
14
Đại số 9
C - Các hoạt động dạy học trên lớp :
I -
ổ
n định tổ chức:
II - Kiểm tra bài cũ :
HS1 : Phát biểu định lý liên hệ giữa phép nhân và phép khai phơng
- Chữa bài 19 /d (SGK ) T15: Rút gọn
)(
1
ba
.
24
)( baa
(với a>b )=
)(
1
ba
22
])([ baa
=
)(
1
ba
).(
2
baa
=
)(
1
ba
a
2
(a-b) (vì a>b)
= a
2
HS2 : Phát biểu quy tắc khai phơng 1 tích và quy tắc nhân các căn thức bậc
hai
- Chữa bài 20a (SGK-T15) .kết quả :
2
a
III - Tổ chức luyện tập :
Hoạt động của thầy và trò Nội dung kiến thức
GV : Cho học sinh làm phần a ,b.
- Ghi đầu bài lên bảng .
? Nhìn vào đầu bài có nhân xét gì
về các biểu thức dói dấu căn ?
HS : các biểu thức dới dấu căn là hằng
đẳng thức hiệu hai bình phơng .
GV : Hãy biến đổi hằng đẳng thức rồi
tính . Sau đó cho 2 học sinh lên bảng .
HS : Cả lớp làm bài vào vở . sau đó nhận
xét .
GV : Cho học sinh làm phần a bài 24 .
( Treo bảng phụ )
GV : Hãy rút gọn biểu thức này .
? 1 +6x +9x
2
có phải là hằng đẳng
thức không ?Vận dụng hằng đẳng thức
2
A
=
A
GV : Tìm giá trị của biểu thức tại x =-
2
HS : Lên bảng dùng máy tính để tính .
GV( Lu ý ) : ấn máy làm tròn trớc khi
tính .
GV : Cho học sinh làm b .
? Thế nào là 2 số nghịch đảo của nhau?
Dạng 1 : Tính giá trị biểu thức
Bài 12: (SGK- T15)
a)
22
13.12
=
)1312).(1312( +
=
25
=5
b)
22
817
=
)817).(817( +
=
2
)3.5(
=1
Bài 24(SGK-T15) :
Rút gọn , tìm giá trị biểu thức:
a)
22
)961(4 xx ++
=
22
])31[(4 x+
= 2
2
)31( x+
=2(1+3x)
2
vì (1+3x)
2
0
x
thay x= -
2
vào biểu thức rút
gọn ta đợc :
2[1+3
2
]
2
= 2(1+3
2
.)
2
= 21,029
Dạng 2 : Chứng minh.
Bài 23 (SGK- 15)
b) Ta phải chứng minh :
(
1)2005.2006).(20052006 =
15
Đại số 9
HS : Khi tích của chúng bằng 1 .
? Em nào chứng minh đợc?
HS : Nêu miệng .
GV : Ghi bảng.
GV : Cho học sinh làm phần a .
HS : Nêu cách tính :
=+
925
.
=+ 925
.
GV : Vậy 2 số 25 và 9 , căn bậc hai của 2 số
nhỏ hơn tổng 2 CBH của 2 số đó .
Tổng quát : Chính là phần b .
GV( gợi ý ) :
ba +
<
ba +
(
a
+
b
)
2
< (
ba +
)
2
a + b < a +b + 2
ba.
.
Bất đẳng thức cuối luôn đúng nên bất đẳng
thức chứng minh luôn đúng .
GV : Hớng dẫn học sinh trình bày bài .
GV : Hãy vận dụng định nghĩa căn bậc hai
để tìm x :
HS1 : Lên bảng .
? Theo em có cách nào làm khác không ?
HS :
x16
= 8
x.16
= 8
4
x
=8
x
= 2
x = 4 .
GV : Cho học sinh làm tiếp phần d theo
nhóm (bàn )
HS : Thảo luận nhóm và thống nhất kết
quả .
GV : Cho đại diện 1 nhóm lên bảng trình
bày lời giải .
HS : Lên bảng .
GV : Kiểm tra bài làm của các nhóm , uốn
nắn , sửa chữa những chỗ sai sót .
GV(lu ý ) : Học sinh cách giải phơng trình
chứa dấu phải phân chia 2 trờng hợp :
0 và < 0.
VT = (
1)2005.2006).(20052006 =
= (
2005
)
2
-(
2006
)
2
=
= 2006 - 2005 = 1= VP (đpcm)
Vậy 2 số đã cho là 2 số nghịch đảo
của nhau .
Bài 26 (SGK - 16)
a) so sánh
925
+
và
925 +
ta có :
=+
925
34
=+ 925
5 +3 = 8 =
64
có
34
<
64
925
+
<
925
+
b ) Với a >0 , b >0 ,chứng minh :
ba +
và
ba +
Ta có : Với a >0 , b>0
2
ba.
> 0
a + b +2
ba.
> a +b
(
a
+
b
)
2
> (
ba +
)
2
ba +
>
ba +
Hay
ba +
<
ba +
Dạng 3 : Tìm x :
Bài 25 (SGK - 16)
a)
x16
= 8
16x = 8
2
16x = 64
x = 4.
d )
2
)1(4 x
- 6 = 0
22
)1(2 x
- 6 =0
22
)1(.2 x
= 6
2
x1
= 6
x1
= 3 (*)
* Nếu 1-x
0
x
0 thì
x
1
= 1 - x.
(*)
1 - x = 3
x
1
= -2
* Nếu 1 - x <0
x > 1 thì
x
1
= x - 1
(*)
x - 1 = 3
x
2
= 4 .
IV - Củng cố :
- Qua bài học này ta cần nắm những dạng bài tập nào ?
16
Đại số 9
HS ; 3 dạng .
GV : Lu ý với mỗi dạng bài tập cần vận dụng kiến thức linh hoạt và hợp lý .
V - Hớng dẫn học bài ở nhà :
- Xem lại các bài tập đã luyện tập ở lớp .
- Làm các bài tập : 22c,d ; 24b ; 25b,c ; 27 (SGK- 16)
Và 16,30,33 (SBT )
D - Rút kinh nghiệm :
Soạn :
Giảng :
Tiết 6: Liên hệ giữa phép chia
và phép khai phong
A- Mục tiêu bài học :
- Học sinh hiểu đợc nội dung và cách cm địmh lý về liên hệ giữa phép chia và phép
khai phơng.
- Có kỹ năng dùng các quy tắc khai phơng 1 thơng và chia căn thức bậc hai trong tính
toán và biến đổi biểu thức .
B - Chuẩn bị :
Đồ dùng : Bảng phụ 2
L ý : ( SGV -T27)
C- Các hoạt động dạy học trên lớp:
I- ổn định tổ chức :
II- Kiểm tra bài cũ :
HS1 : Phát biểu cách khai phơng của 1 tích và quy tắc nhân các căn thức bậc hai
III- Bài mới :
Hoạt động của thầy và trò Nội dung kiến thức
GV : Cho hs làm ?1 SGK-T16
HS : Hoạt động cá nhân
GV : Gọi 1 hs đứng tại chỗ nêu cách so sánh
* Định lí 1 :
?1 Tính và so sánh:
25
16
và
25
16
Ta có
17
Đại số 9
HS : Nêu miệng.
GV : Ghi bảng .
GV : Đây là 1 trờng hợp cụ thể . Tổng quát ta
có định lý sau =>
GV : Nêu nội dung định lý SGK.
2HS :Đọc đlý SGK
GV : Ta đi chứng minh đlý này .
? ở Tiết trớc ta đã chứng minh đlý khai
phơng của 1 tích dựa trên cơ sở nào?
HS ; ĐN CBHSH của 1 số không âm?
GV : Cũng dựa trên cơ sở đó , Hãy chứng minhh
đlý liên hệ giữa phép chia và phép khai phơng .
HS : + a
0., b
0 Thì
b
a
xác định là không
âm
+ (
b
a
)
2
=
b
a
b
a
=
2
2
)(
)(
Vậy
b
a
là CBHSH của
b
a
hay
b
a
=
b
a
? Hãy so sánh đk của a và b trong 2 đlý
Giải thích điều đó ?
HS : Khác ở b>0 để
b
a
và
b
a
có nghĩa
( Mẫu số khác 0)
? Còn có cách cm nào khác không?
HS : Suy nghĩ :
GV : Treo bảng phụ cách cm khác
+ Với a
0
; b>0
b
a
xđ và không âm,còn
b
xác định và dơng
+ áp dụng các quy tắc nhân CBH của các số
không âm .
b
a
.
b
=
b
b
a
.
=
a
b
a
=
b
a
GV: Từ định lý trên , ta có 2 quy tắc :
+ QT khai phơng 1 thơng .
+ QT Chia 2 CBH.
25
16
=
2
5
4
=
5
4
25
16
=
2
2
5
4
=
5
4
25
16
=
25
16
* Định lý : (SGK -16)
b
a
=
b
a
(Với a
0., b
0)
Chứng minh (SGK-16)
2. áp dụng :
a) Quy tắc khai phơng 1 thơng
(SGK-17)
18
Đại số 9
GV : Giới thiệu quy tắc khai phơng 1 thơng
( SGK )
HS : Đọc nội dung quy tắc .
GV : Cho hs tự nghiên cứu VD1 (SGK )
HS : Nghiên cứu và trình bày cách làm.
GV : Cho 2 hs hoạt động cá nhân làm ?2
Nửa lớp làm phần a, nửa lớp làm phần b : D
ới lớp thực hiện
GV : Gọi đại diện hai HS lên bảng .
HS : Dới lớp nhận xét và sửa chữa những chỗ
sai sót .
? QT này áp dụng của đlý trên theo chiều từ
từ trái sang phải . Ngựơc lại áp dụng theo chiều
từ phải sang trái ta có QT gì?
HS : QT chia các căn thức bậc hai.
GV : Giới thiệu QTắc chia 2 CBH.
HS : Đọc nội dung quy tắc SGK.
GV : Cho hs tự nghiên cứu VD2 SGK
HS : Giải thích cách làm .
GV : Cho học sinh vận dụng VD2 làm ?3 để
củng cố .
HS : Hoạt động cá nhân .
GV : Cho hai học sinh lên bảng đồng thời .
HS : Dới lớp nhận xét , sửa sai sót .
GV : Giới thiệu chú ý SGK
GV : Nhấn mạnh : Khi áp dụng quy tắc khai
phơng1 thơng hoặc chia 2 CBH , Luôn chú ý
đến đk số bị chia phải ko âm , số chia phải
dơng
GV : Cho hs N/cứu tiếp VD3 Giải thích cách
làm.
HS : Hoạt động cá nhân .
GV : Treo bảng phụ 1 học sinh giải thích .
GV : Vận dụng ? 3 làm ?4.
HS : Hoạt động cá nhân .
GV : Gọi 2 học sinh lên bảng làm
.
VD1 : (SGK-17)
?2 : Tính :
a)
226
225
=
226
225
=
16
15
b)
0196.0
=
10000
196
=
10000
196
=
100
14
=0,14
b) Quy tăc chia hai CBH: ( SGK-17)
VD2 (SGK-17)
?3 Tính :
a)
111
999
=
111
999
=
9
=3
b)
117
52
=
117
52
=
9
4
=
3
2
*) Chú ý: (SGk-18)
B
A
B
A
=
( Biểu thức A
0,B >0)
* VD3 : (SGK-18)
?4 : Rút gọn :
a)
50
2
42
ba
=
25
42
ba
=
25
42
ba
=
=
5
42
ba
=
5
2
ba
19
Đại số 9
b)
9
.
81162
2
162
2
222
ab
ababab
===
( Với a
0
)
IV - Củng cố :
- Phát biểu đ/lý liên hệ giữa phép chia và phép khai phơng .
- Nêu quy ớc đlý ở mục 1 là đlý " khai phơng 1 thơng".
- Luyện tập tại lớp .
Gv : Hoạt động cá nhân
Nửa lớp làm phần b . Nửa lóp làm phần d
GV : Cho đại diện 2 HS lên bảng thực hiện
.
GV : Cho học sinh làm tiếp bài 30.a.
HS : Hoạt động cá nhân.
Bài 28(SGK-18). Tính :
b)
5
8
25
64
25
64
25
14
2 ===
d)
4
9
16
81
16
81
6,1
1,8
===
Bài 30: (SGK-19) Rút gọn biểu thức:
a)
y
yx
yx
yx
xy
y
x
x
y
y
x
x
y
1
.
.
.
22
4
2
4
2
====
( Với x>0, y
0
).
V - Hớng dẫn làm bài ở nhà ;
- Học thuộc đlý , cách chứng minh định lý , 2 quy tắc .
- Làm bài tập : 28a,b ; 29;30b,c,d ; 31 (SGK-18+19) ; 36,37,40 (SBT- 8+9 )
D - Rút kinh nghiệm :
Soạn :
Giảng :
Tiết 7: Luyện tập
A- Mục tiêu bài học :
Học sinh đợc khắc sâu các kiến thức về khai phơng 1 thơng và chia 2 căn thức
bậc hai
Có kỹ năng thành thạo vận dụng 2 quy tắc vào các biểu thức tính toán và rút
gọn giải các phơng trình .
B - Chuẩn bị :
Đồ dùng : Bảng phụ 1
Lu ý : Không
C - Các hoạt động dạy học trên lớp :
I - ổn định tổ chức :
II - Kiểm tra bài cũ :
HS1 : - Phát biểu đlý khai phơng 1 thơng .
- Chữa bài tập 30/c (SGK )
20
Đại số 9
5x.y
)0,0(
25255.5
5.5
)(
25
5
25
2
2
3
2
3
3
23
2
6
2
>
=
=
=== yx
y
x
y
yx
y
xy
y
xxy
y
x
xy
y
x
HS2 : Phát biểu quy tắc khai phơng 1 thơng và quy tắc chia 2 căn bậc hai.
- Chữa bài tập 28a+29c (SGK- 18_19).
a)
15
17
225
289
225
289
==
và c)
525
500
12500
500
12500
===
III Tổ chức luyện tập :
Hoạt động của thầy và trò Nội dung kiến thức
GV : Ghi đầu bài lên bảng .
- Yêu cầu học sinh nêu cách làm .
HS : Đổi hỗn số về phân số
- Dùng quy tắc khai phơng 1 tích
? Có nhận xét gì về tử và mẫu của
biểu thức lấy căn ?
HS : Tử và mẫu là hằng đẳng thức hiệu 2
bình phơng .
GV : Hãy vận dụng hằng đẳng thức để
tính .
1HS : Lên bảng làm .
HS : Dới lớp nhận xét , sửa chữa những
chỗ sai sót.
GV : Treo bảng phụ.
HS : Trả lời miệng .
GV : Nêu nhận xét : ta thấy 12=3.4
27=3.9
Hãy áp dụng quy tắc khai phơng 1 tích , để
giải phơng trình
HS : Hoạt động cá nhân .
GV : Cho 1 hs lên bảng làm .
GV(Gợi ý) : áp dụng hằng đẳng thức
AA =
2
để biến đổi phong trình .
GV : Tổ chức học sinh hoạt động theo bàn
Nửa lớp làm câu a ,nửa lớp làm câu c
Dạng 1 : Tính :
Bài 32 (SGk-19)
a)
100
1
9
49
.
16
25
100
1
.
9
49
.
16
25
01.0
4
9
5.
16
9
1 ==
=
24
7
10
1
3
7
.
4
5
=
d)
73.841
73.225
)384457).(384457(
)76149).(76149(
384457
76149
22
22
=
+
+
=
=
29
15
841
225
841
225
==
Bài 36( SGK-20)
a) đúng b) Sai (Vì VP không có nghĩa )
c) Đúng d) Đúng
Dạng 2 : Giải phơng trình :
Bài 33 (SGK-19)
b)
27123.3 +=+x
9.34.33.3 +=+x
x.3
=2
3333 +
34.3 =x
x = 4
Bài 35(SGk-19): Tìm x biết :
a)
939)3(
2
== xx
x-3= 9 hoặc x-3 = -9
x = 12 hoặc x = -6
Vậy x1 = 12 và x2 =-6
Dạng 3 : Rút gọn biểu thức :
Bài 34: (SGk-19)
21
Đại số 9
HS : thực hiện và thống nhất kết
quả.
GV : Cho đại diện 2 học sinh lên bảng .
HS : Dới lớp nhận xét sửa chữa những
chỗ sai sót .
a) ab
2
)0,0(
3
42
< ba
ba
=
3
333
2
2
2
2
42
2
=
==
ab
ab
ab
ab
ba
ab
( vì a <0 , b
0)
c)
)0,5,1(
4129
2
2
ba
b
aa
++
=
[ [
b
a
b
a
b
a
b
a
+
=
+
=
+
=
+
23
23
)23(
)23(
2
2
2
2
( Vì a
0,0235,1 <+ ba
)
IV - Củng cố :
- Bài học hôm nay cần nắm đợc mấy dạng bài tập ?
HS : 3 dạng
V - Hớng dẫn học ở nhà :
- Xem lại các bài tập đã làm ở lớp ; mang bảng số , máy tính bỏ túi
- Làm bài tập : 32b,c ; 33b,c,d ; 34b,d ; 35b; 37 (SGK -19+20)
GV : Hớng dẫn học sinh làm bài 37 ( bảng phụ )
D - Rút kinh nghiệm
Soạn :
Giảng : Tit 8
Bảng căn bậc hai h ớng dẫn sử dụng mtbt
để tính căn bậc hai
A - Mục tiêu bài học:
Học sinh hiểu cấu tạo bảng căn bậc hai.
Có kỹ năng tra bảng để tìm CBH của 1 số không âm và biết sử dụng máy
tính bỏ túi để tính căn bậc hai
B - Chuẩn bị :
Đồ dùng : Bảng phụ 2 , bảng số êke.
- Lu ý : (SGV-31+32)
C - Các hoạt động dạy học trên lớp:
I - ổn định tổ chức :
II - Kiểm tra bài cũ :
HS1 : Chữa bài 33c( SGK- 19)
232.3032.304.33012.3
22222
=====
xxxxx
22;21 == xx
22
Đại số 9
HS2 : Chữa bài tập 35b (SGK-20)
6126)12(6144
22
=+=+=++ xxxx
2x+1=6 hoặc 2x+1=-6
2x=5 hoặc 2x=-7 .
x=
2
5
hoặc x=-
2
7
Vậy x
1
=
2
5
và x
1
= -
2
7
III - Học bài mới :
Hoạt động của thầy và trò Nội dung kiến thức
GV : Để tìm căn bậc hai của số dơng, ngời ta
có thể sử dụng bảng tính sẵn CBH . Trong cuốn
bảng số với 4 chữ số thập phân của Brađi xơ, bảng CBH
là bảng 4 dùng để khai căn bậc hai của bất
cứ số dơng nào có nhiều nhất 4 chữ số .
GV : Yêu cầu học sinh mở bảng 4 và quan sát
cấu tạo của bảng ( từ trang 35_39)
? Em hãy nêu cấu tạo của bảng ?
HS : Bảng CBH đợc chia thành các hàng và các
cột ngoài ra còn có 9 cột hiệu chính.
N
8
1.6 1,296
GV : Giao của hàng 1,6 và cột 8 là số nào?
HS : Là số 1,296
Gv : Vậy
68.1
1,296
GV : Yêu câu tìm
9,4
và
49,8
HS : Nêu cách tra và đọc kq'.
914,249,8;214,29,4
GV: Hớng dẫn HS sử dụng MTBT Casio fx-500
MS .
GV : Cho học sinh làm tiếp VD2
( theo bảng phụ )
N
1 8
1. Giới thiệu bảng ( SGK- 21):
2. Cách dùng bảng:
a) Tìm CBH của số lớn hơn 1 và nhỏ
hơn 100
VD : Tìm :
68.1
68.1
1,296
ấn :
1,68
=
KQ: 1,296
VD2 : Tìm :
259,6006,0253,618,39 =+
23
Đại số 9
39, 6,253
6
GV : Yêu cầu tìm giao của 39 và cột 1
HS : Là số 6,253
GV : Vậy
253,61,39
? Tại giao của 39 và cột 8 hiệu chính em thấy
số mấy ?
HS : Là số 6 .
GV : Ta dùng số 6 này để hiệu chính chữ số cuối
ở số 6,253 nh sau : 6,253 +0,006 = 6,259
GV : Yêu cầu học sinh làm ?1 .
Hãy tìm
82,39;11,948,36;763,9
HS : Tra bảng và trả lời kết quả:
040,648,36;120,3736,9
311,682,39;018,311,9
GV : Cho học sinh đọc VD3- SGK
HS : Đọc .
? Cơ sở nào để làm VD trên.
HS : Nhờ quy tắc khai phơng 1 tích.
GV : Cho học sinh hoạt động cá nhân làm ?2
Nửa lớp ;làm phần a , nửa lớp làm phần b theo 2
cách
GV : Cho đại diện hai HS lên bảng .
GV : Cho hs làm VD4
Hớng dẫn hs phân tích 0,00168= 16,8 : 10.000
sao cho số bị chia khai căn đựơc nhờ dùng bảng
( 16,8) và số chia là luỹ thừa bậc chẵn của
10(10.000= 10
4
)
GV : Cho học sinh đọc chú ý (SGK-22)
HS : Đọc.
GV : Cho học sinh làm bài ?3
? Làm thế nào để tìm gá trị gần đúng của x ?
HS : Tìm
6311,03892,0
ấn:
39,18
=
KQ: 6,259
b) Tìm CBH của số lớn hơn 100
VD3 : (SGK- 22)
?2 :
a)
018,3.1011,910100.11,9911 ==
18,30
ấn:
911
=
KQ: 30,18
b)
143,3.1088,910100.88,9988 ==
43,31
ấn:
988
=
KQ: 31,43
c) tìm căn bậc hai của số ko âm và
nhỏ hơn 1
VD4 :
Tìm :
00168,0
Ta có :
00168,0
=
16,8
4,099
10000
: 100
0,04099
ấn:
0,00168
=
KQ: 0,04099
*) Chú ý : (SGK-22)
?3 : Tìm giá trị gần đúng của nghiệm
phơng trình:
x
2
= 0,3982
24
Đại số 9
GV : Vậy nghiệm của phơng trình x
2
=0,3982 là
bao nhiêu?
Ta có :
6311,03982,0
Nghiệm của PT : x
2
= 0,3982là :
x1
6311,0
và x2
6311,0
VI - Củng cố :
Nêu cách dùng bảng số tìm CBH của số lớn hơn 1 và nhỏ hơn 100 và cách tìm căn bậc hai
của số lớn hơn 100; Tìm CBH của số không âm và nhỏ hơn 1 ?
Cho học sinh làm bài tập 38
40 (SGK- 23):
HS : Làm bài cá nhân ( Dùng MTBT)
GV: Cho 4 hs lên bảng .
V - Hớng dẫn học sinh học ở nhà :
- Học bài để biết khai CBH bằng bảng số và biết dùng MTBT để tính căn bậc hai của các
số
- Làm bài tập : 40,41,42, (SGK-23)
- Đọc mục " Có thể em cha biết "
- Đọc trớc bài 6 (SGK-24 ).
D - Rút kinh nghiệm :
Soạn :
Giảng :
Tit 9: Biến đổi đơn giản biẻu thức
chứa căn thức bậc hai
A - Mục tiêu bài học :
Học sinh hiểu đợc cơ sở của việc đa thừa số ra ngoài dấu căn và đa thừa số
vào trong dấu căn.
Học sinh biết đợc các kỹ năng đa thừa số vào trong căn hay ra ngoài dấu căn .
Biết vận dụng các phép biến đổi trên cơ sở đó để so sánh 2 số và rút ra biểu thức .
B - Chuẩn bị :
Đồ dùng : Bảng phụ 3
- Lu ý : (SGK -33) .
C - Các hoạt động dạy học trên lớp
I - ổn định tổ chức :
II - Kiểm tra bài cũ : không.
III - Dạy học bài mới :
Hoạt động của thầy và trò Nội dung kiến thức
25