Tải bản đầy đủ (.doc) (19 trang)

PHÁT HUY TÍNH CHỦ ĐỘNG SÁNG TẠO TRONG HỌC TOÁN Ở THCS

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (322.32 KB, 19 trang )

PHÁT HUY TÍNH CHỦ ĐỘNG SÁNG TẠO TRONG HỌC TOÁN Ở THCS

CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM
Độc lập - Tự do - Hạnh phúc

BẢN CAM KẾT
I. TÁC GIẢ:
Họ và tên: Phạm Văn Miền
Sinh ngày 15 tháng 3 năm 1951
Đơn vị: Trường THCS Nguyễn Bỉnh Khiêm
Địa chỉ: Thị trấn Vĩnh Bảo - Hải Phòng
Điện thoại: 0313 885 989
E- mail:
II. SẢN PHẨM
Tên sản phẩm: "Phát huy tính chủ động sáng tạo trong học toán"
III. CAM KẾT.
Tôi xin cam đoan SKKN này là sản phẩm của cá nhân tôi. Nếu có xảy ra
tranh chấp về quyền sở hữu với một phần hay toàn bộ sản phẩm sáng kiến kinh
nghiệm. Tôi xin chịu trách nhiệm trước lãnh đạo đơn vị, lãnh đạo Sở GD và ĐT
về tính trung thực của bản cam kết này.
Vĩnh Bảo, ngày 27 tháng 01 năm 2009
NGƯỜI CAM KẾT
Phạm Văn Miền
Người thực hiện: Phạm Văn Miền * TRƯỜNG THCS NGUYỄN BỈNH KHIÊM - 1 -
PHT HUY TNH CH NG SNG TO TRONG HC TON THCS

MC LC TRANG
Đặt vấn đề 3
Cơ sở khoa học 4
Giải quyết vấn đề 6
Phần nội dung 7


Kết quả thực nghiệm 15
Kết luận 17
Tài liệu tham khảo 18

T VN
Ngi thc hin: Phm Vn Min * TRNG THCS NGUYN BNH KHIấM - 2 -
PHÁT HUY TÍNH CHỦ ĐỘNG SÁNG TẠO TRONG HỌC TOÁN Ở THCS

- Tích cực, tự giác, chủ động sáng tạo trong học tập là một yêu cầu không
thể thiếu được của mỗi học sinh đối với tất cả các môn. Song đối với môn toán
thì chủ động sáng tạo là một yêu cầu vô cùng quan trọng. Chủ động sáng tạo
trong học toán rất cần thiết và đòi hỏi giáo viên và học sinh phải có nhiều cố gắng
trong giảng dạy và học tập.
- Như ta đã biết toán học là một môn đòi hỏi sự suy luận cao. Học sinh
không thể chỉ học thuộc lòng những định lý, công thức mà cần phải chủ động,
sáng tạo trong việc tiếp thu các định lí công thức đó. Có như vậy học sinh mới
nhớ lâu các định lí, công thức trong toán học.
- Có chủ động, sáng tạo trong học tập, học sinh không tiếp thu kiến thức
mới một cách thụ động mà cảm nhận như chính mình là người phát minh ra
những công thức đó.
- Chủ động, sáng tạo trong làm bài tập lại càng cần thiết. Học sinh không
được thuộc lòng các bài giải mẫu trong sách giáo khoa hoặc trong sách tham
khảo mà cần chủ động sáng tạo trong phương pháp tư duy, suy luận phương pháp
trình bày lời giải.
- Chủ động, sáng tạo làm cho học sinh có nhiều lời giải độc đáo, ngắn gọn
hơn cả những lời giải trong sách giáo khoa, hoặc trong sách tham khảo( nhất là
những học sinh giỏi)
- Chủ động, sáng tạo làm cho học sinh say mê, yêu thích môn toán bởi vì
môn toán không phải chỉ là những con số khô khan những công thức đơn điệu
mà khi biết làm nó nhảy những " vũ điệu balê " nó sẽ trở nên quyến rũ vô cùng

không chỉ đối với những chàng trai mà ngay cả những cô gái nữa.
- Chủ động, sáng tạo trong học toán không những là tiền đề cho việc học
toán của học sinh mà nó là cơ sở của việc học tập của các môn học khác nhất là
các môn khoa học tự nhiên bởi vì toán học có quan hệ khăng khít với các môn
khoa học khác.
- Có chủ động sáng tạo thì học sinh mới trở thành học sinh giỏi được. Bởi
vậy phát huy chủ động sáng tạo trong giảng dạy toán của giáo viên và học toán
của học sinh là một yêu cầu rất quan trọng và cần thiết.
- Phát huy tính chủ động sáng ,sáng tạo trong học toán là một yêu cầu
không thể thiếu được của mỗi học sinh ,bởi vậy tôi viết kinh nghiệm này.
Người thực hiện: Phạm Văn Miền * TRƯỜNG THCS NGUYỄN BỈNH KHIÊM - 3 -
PHÁT HUY TÍNH CHỦ ĐỘNG SÁNG TẠO TRONG HỌC TOÁN Ở THCS

CƠ SỞ KHOA HỌC
Như trên đã nói toán học là một môn thể thao của trí não. Trong các môn
học thì môn nào cũng đẹp và cũng đáng yêu cả. Song theo tôi thì môn toán có
nhiều người yêu hơn cả (ngay cả những em học toán chưa giỏi).
Cũng có thể thầy dạy toán thì ít người yêu bởi thầy nói năng không hoa mĩ,
thân hình thầy không uốn lượn thướt tha như những cô giáo dạy văn.
Song tính chủ động, sáng tạo trong học toán thì các thầy dạy toán là nhà vô
địch trong các nhà vô địch "hạng rùa".
Tại sao phải chủ động, sáng tạo trong học toán cơ sở khoa học và thực tiễn
của vấn đề này là gì?
Vì trình độ "hạng rùa" không được tiếp cận nhiều "sao" và cũng chỉ là "ếch
ngồi đáy giếng" nên tôi chỉ đưa ra một số cơ sở theo ý hiểu của tôi như sau (mong
được đèn trời soi xét)
1. Trong não con người có hàng tỉ tế bào thần kinh, mỗi suy nghĩ thì một
số tế bào thần kinh được huy động.
Nhưng một con người dù có lao động suốt đời, lao động hăng say thì theo
tôi lượng tế bào thần kinh chưa dùng đến vẫn còn khá nhiều.

Nếu ta tiếp thu một cách thụ động thì số lượng tế bào thần kinh huy động
ít, thấp và hơn nữa đó chỉ là những tế bào bậc tiểu và cùng lắm là bậc trung.
Nếu ta chủ động sáng tạo trong học toán thì ta đã huy động số lượng tế bào
thần kinh nhiều hơn, những tế bào tinh nhuệ hơn và hơn nữa những tế bào thần
kinh được tập huấn nên rất thích nghi với năng động sáng tạo( Những điều chưa
biết về tế bào thần kinh_ Menđen trang 106 )
2. Chủ động, sáng tạo trong học toán làm cho học sinh khá giỏi yêu thích
môn toán thích học toán và sau này muốn đi sâu vào nghiên cứu môn toán và làm
cho những em tiếp thu còn hạn chế tự tin khi học toán.
3. Chủ động sáng tạo trong học toán làm cho học sinh có thể khôi phục lại
những công thức, định lí mà các em không cần phải nhớ máy móc (như đã nói ở
trên).
4. Chủ động, sáng tạo làm cho học sinh có những lời giải hay, ngắn gọn,
độc đáo và đôi khi còn có những khái quát hoá, đặc biệt hoá bước đầu của vô số
nghiên cứu khoa học.
Người thực hiện: Phạm Văn Miền * TRƯỜNG THCS NGUYỄN BỈNH KHIÊM - 4 -
PHÁT HUY TÍNH CHỦ ĐỘNG SÁNG TẠO TRONG HỌC TOÁN Ở THCS

5. Chủ động, sáng tạo trong giảng dạy toán làm cho giáo viên chủ động về
kiến thức phương pháp thói quen sáng tạo trong phương pháp, giúp học sinh chủ
động, sáng tạo trong từng bài, từng đơn vị kiến thức.
6. Giáo viên có chủ động sáng tạo trong giảng dạy toán thì mới dạy được
học sinh giỏi được (thầy nào trò ấy)
Trên đây là một số cơ sở lí luận, nhưng thực tế về tình hình học sinh hiện
nay như thế nào?
. Học sinh hiện nay vì do phải học nhiều môn, đôi khi môn nào cũng đòi
hỏi cao (môn nào cũng quan trọng) nên nhiều khi không có đủ thời gian để nhiên
cứu sáng tạo chủ động và nhất là đối với một số học sinh trung bình và yếu chỉ
làm đầy đủ bài tập.
. Do học sinh từ những lớp dưới có thể thầy cô chưa dạy nhiều cho các

em về tính chủ động sáng tạo trong học toán mà các em ngại chưa chủ động sáng
tạo trong học toán nên việc chủ động sáng tạo trong học toán của đại đa số các
em còn hạn chế!
. Nhiều em do trình độ còn hạn chế nên muốn chủ động (đặc biệt là sáng
tạo) còn rất nhiều lúng túng (lực bất tòng tâm)
. Một số học sinh còn tự ti chưa dám chủ động sáng tạo trong giải toán
mà vẫn còn tư tưởng đi vào lối mòn dễ đi hơn.
. Những em học sinh giỏi bước đầu đã hứng thú với chủ động sáng tạo
trong học toán nên nhiều em đã say sưa học tập, có nhiều lối giải hay và nhiều
khi đã suy luận theo hướng đặc biệt hoá hay tổng quát bài toán để từ một bài toán
có thể có nhiều bài toán mới.
. Có nhiều học sinh muốn chủ động sáng tạo nhưng còn lúng túng về
phương pháp.
Bởi những lí do trên nên tôi thấy cần phát huy tính chủ động sáng tạo trong
giảng dạy để học sinh chủ động sáng tạo trong học toán.
Vì trình độ còn hạn chế nhưng với lòng say mê toán học nên tôi đã mạnh
dạn áp dụng phương pháp " phát huy tính chủ động sáng tạo của học sinh trong
môn toán" đối với học sinh mình phụ trách và đối với học sinh khối 6, 7 và thấy
có kết quả.
Kinh nghiệm này còn nhiều hạn chế mong được cán bộ đồng nghiệp đóng
góp ý kiến.
Xin chân thành cảm ơn !
Người thực hiện: Phạm Văn Miền * TRƯỜNG THCS NGUYỄN BỈNH KHIÊM - 5 -
PHÁT HUY TÍNH CHỦ ĐỘNG SÁNG TẠO TRONG HỌC TOÁN Ở THCS

GIẢI QUYẾT VẤN ĐỀ
Toán học là môn thể thao của trí não, học toán là học tư duy, sáng tạo chứ
không phải chỉ giải những bài toán một cách máy móc. Nên việc phát huy tính
chủ động sáng tạo của học sinh trong môn toán là một việc đòi hỏi sự nỗ lực của
thầy và trò.

Muốn phát huy tính chủ động sáng tạo của học sinh trong học toán cần
phải đảm bảo các yêu cầu sau :
1. Phải làm cho học sinh nắm được bản chất của vấn đề, hiểu tường tận
những điều đã học. Muốn thế phải coi trọng việc phát huy tích cực, tự giác, chủ
động sáng tạo của mỗi học sinh để nâng cao hiệu quả việc giảng dạy và học tập
để khắc phục tình trạng học sinh học toán chưa tốt. Phải tránh xu hướng làm thay
học sinh nhất là đối với những học sinh học toán còn yếu và cũng cần tranh xu
hướng mở rộng hết bài này đến bài khác mà không chú ý đến yêu cầu của vấn đề
không, làm cho học sinh hiểu một cách chủ động, sáng tạo bản chất của vấn đề.
2. Phải gây được cho học sinh hứng thú trong học toán, thấy được cái đẹp
của toán học. Trong tình trạng hiện nay có một số học sinh còn ngại học toán,
xem học toán là một cưỡng bức.
3. Phải rèn luyện cho học sinh có óc tò mò khoa học, có thói quen lật đi lật
lại vấn đề, đào sâu suy nghĩ, tập dượt cho các em đề xuất vấn đề và tự giải quyết
vấn đề, tập sáng tạo từ thấp đến cao.
Trên cơ sở đó bồi dưỡng cho các em lòng tự tin vững chắc, luôn luôn
không bằng lòng với hiểu biết nông cạn của mình hăm hở đi sâu vào toán học.
4. Phải chú ý phát hiện, những năng khiếu toán học trong học sinh và chú ý
bồi dưỡng cho những em có năng khiếu xem đó là một nhiệm vụ quan trọng nhất
trong quá trình dạy toán. Dưới đây là một số kinh nghiệm và biện pháp trong việc
phát huy tính chủ động, sáng tạo của học sinh trong dạy toán và chủ yếu là đối
với học sinh lớp 6 và lớp 7.

Người thực hiện: Phạm Văn Miền * TRƯỜNG THCS NGUYỄN BỈNH KHIÊM - 6 -
PHÁT HUY TÍNH CHỦ ĐỘNG SÁNG TẠO TRONG HỌC TOÁN Ở THCS

PHẦN NỘI DUNG
PHẦN 1: Gây hứng thú toán học cho học sinh. Trong giảng dạy toán
muốn phát huy được tính chủ động, sáng tạo của học sinh thì trước hết phải gây
hứng thú học toán cho các em, vì chúng ta đều biết rằng trong những việc làm có

hứng thú nhất định sẽ đem lại kết quả cao hơn. Sau đây là một số biện pháp nhằm
đạt được:
1. Nêu rõ vai trò của toán học đối với khoa học và đời sống. Ngay từ
những bài toán đầu tiên phải làm cho học sinh hiểu được toán học là môn khoa
học có nguồn gốc từ thực tế lâu đời có ý nghĩa vô cùng quan trọng trong phục vụ
đời sống con người.
Do đó khi giảng dạy một số khái niệm mới, một vấn đề mới cần hết sức cố
gắng giới thiệu cho học sinh thấy được nguồn gốc cũng như ứng dụng trong thực
tiễn của vấn đề đó. Chẳng hạn khi giảng dạy những bài đầu tiên của hình học 6 có
thể cho học sinh thấy rằng do yêu cầu chia lại ruộng đất sau mỗi trận lụt của sông
Nin mà người dân cổ Ai Cập đã phát minh ra những kiến thức hình học đầu tiên.
Khi giảng dạy về toạ độ của một điểm trong mặt phẳng toạ độ(Đại số 7) có
thể nêu câu chuyện về những người dân làm nghề đi biển, đánh cá, muốn xác
định hướng đi hay muốn báo cho những phương tiện cần cứu trợ trên biển. Hoặc
xác định vị trí của địa điểm nào đó trên trái đất và đặc biệt là trên biển
Ngoài việc lựa chọn các câu hỏi và vấn đề toán có nội dung thực tế về sản
xuất cũng thu hút được nhiều hứng thú cho học sinh. Sau đây là một vài ví dụ:
- Vì sao để lát gạch nền nhà ta lại chỉ dùng các loại gạch hình vuông và
hình lục giác đều?
- Vì sao bánh xe đạp, ô tô lại phải có hình tròn?
- Vì sao lưỡi răng cưa lại có hình tam giác?
- Con ong xây tổ, con nhện giăng tơ có liên quan đến công thức toán học
như thế nào?
- Toán học ứng dụng trong công nghệ thông tin như thế nào
- Những vấn đề này trong sách giáo khoa đã chú ý đến gắn liền với thực
tiễn nhưng theo tôi vẫn còn chút gượng ép.
2. Chọn cách vào bài, chuyển tiếp ý làm cho giờ học thêm sinh động, thu
hút sức chú ý của học sinh ngay trong phút đầu. Chẳng hạn khi dạy tính tổng các
Người thực hiện: Phạm Văn Miền * TRƯỜNG THCS NGUYỄN BỈNH KHIÊM - 7 -
PHÁT HUY TÍNH CHỦ ĐỘNG SÁNG TẠO TRONG HỌC TOÁN Ở THCS


số hạng trong dãy số cộng, giáo viên kể chuyện nhà toán học người Đức tên là
Gau-sơ lúc 9 tuổi đã tính tổng 1+2+3+ +100 trong thời gian chưa đầy một phút
trước sự kinh ngạc của thầy và các bạn.
Tuy nhiên việc vào bài, chuyển ý phải ngắn gọn, xúc tích,tránh gượng ép
làm cho học sinh tiếp thu một cách gò bó, hoài nghi vấn đề đã nêu.
3. Sử dụng đồ dùng giảng dạy có chất lượng tốt đúng lúc và có mức độ.
Chẳng hạn khi dạy bài " Các loại góc " ở lớp 6 ta có thể sử dụng mô hình các loại
góc để minh hoạ hay phương tiện khác. Hay khi dạy bài điểm, đường thẳng mặt
phẳng. Cho học sinh tìm những hình ảnh về điểm, đường thẳng, mặt phẳng ngay
trong phòng học.
4. Làm cho học sinh thấy được vẻ đẹp khác nhau của toán học
Vẻ đẹp đó thể hiện ở đâu?
- Ở những số tự nhiên đáng chú ý như: số hoàn chỉnh, số nguyên tố, số
chính phương
- Ở những dãy số tự nhiên, dãy số chẵn, dãy số lẻ, dãy cộng và dãy nhân,
đặc biệt là dãy Fi bô na xi 1;1;2;3;5;8
- Ở các công thức trong hằng đẳng thức (a + b)
n
số luỹ thừa của a thì giảm
dần từ n đến 0, còn số luỹ thừa của b lại tăng dần từ 0 đến n.
- Ở các tỉ số vàng cho ta một hình chữ nhật đẹp mắt
- Ở những phép toán như phép nâng lên luỹ thừa, phép khai căn
Cần nêu cho học sinh thấy những bài tập tưởng như rất phức tạp rất khó
nhưng phải thật khéo léo tìm ra những quy luật thì ta có thể đáp số một cách ngắn
gọn.
Chẳng hạn: tính tổng ta được
S=1+2+3+ +n=
2
)1( +nn

S=1.2+2.3+ +n(n+1)=
3
)2)(1( ++ nnn
S=1.2.3+2.3.4+ n(n+1)(n+2)=
4
)3)(2)(1( +++ nnnn
Đến đây học sinh có thể thấy ngay được quy luật:
S=1.2.3 k+2.3 (k+1)+ +(n(n+1) (n+k-1)
Người thực hiện: Phạm Văn Miền * TRƯỜNG THCS NGUYỄN BỈNH KHIÊM - 8 -
PHÁT HUY TÍNH CHỦ ĐỘNG SÁNG TẠO TRONG HỌC TOÁN Ở THCS

=
1
)) (2)(1(
+
+++
k
knnnn
Có thể gây hứng thú cho học sinh qua các bài tổng hợp, ôn tập được nhiều
kiến thức và bài toán có nhiều cách giải
5. Kể chuyện các nhà toán học cho học sinh nghe một cách đúng lúc, có
mức độ và có kế hoạch như Ơ clit và hình học Ơ clit
Rồi những nhà toán học như Pha Khát đã tìm cách chứng minh tiên đề Ơ
clit với 20 năm nhưng không thành. Sau đó đến con ông ta và nhiều nhà toán học
khác như Lô ba xép ski, Ri ơ man cũng đã tìm cách chứng minh tiên đề Ơ clit
mà vẫn không giải được nhưng lại xuất hiện một ngành toán học " Phi ơ cơ lít "
mà ngày nay ứng dụng rất nhiều đặc biệt trong vệ tinh viễn thông và du hành vũ
trụ.
6. Phát huy vai trò nguỵ biện toán học như ta có thể chứng minh 1=100,
bất kì tam giác nào cũng là tam giác cân, lực sĩ A Sin không thể đuổi kịp con

rùa Giáo viên có thể đặt ra những câu hỏi như: Tìm sai lầm trong lập luận
Cho a, b khác 0 ta có a
0
= 1; b
0
= 1 suy ra a
0
= b
0
suy ra a=b
7. Ghi nhớ toán học một cách thông minh. Học sinh thường chóng quên
những công thức, định lí do đó khi cần đến thì không nhớ hoặc nhớ thì không
chính xác hay lẫn lộn với các công thức khác. Một trong những nguyên nhân là
học sinh ghi nhớ một cách máy móc không tìm ra những cách ghi nhớ thông
minh có thể hướng dẫn học sinh ghi nhớ theo một cách như sau:
a) Nhớ nguồn gốc của công thức để khi quên có thể nhớ lại những công
thức đó
Ví dụ: (a+b)
2
=(a+b)(a+b)=a
2
+2ab+b
2
(a+b)
3
=(a+b)(a+b)
2
=(a+b)( a
2
+2ab+b

2
)
(a+b)
4
=(a+b)(a+b)
3
=(a+b)(a
3
+3a
2
b+3ab
3
+b
3
)
b) Nắm được mối liên quan giữa các kiến thức
c) Nhớ bằng những hình ảnh trực quan
d) Ra bài tập khai thác những mối liên quan đặc biệt
e) Dùng thơ ca để cho học sinh dễ nhớ và cho vui như:
" Diện tích tam giác dễ thôi
Chiều cao nhân đáy chia đôi là thành "
Người thực hiện: Phạm Văn Miền * TRƯỜNG THCS NGUYỄN BỈNH KHIÊM - 9 -
PHÁT HUY TÍNH CHỦ ĐỘNG SÁNG TẠO TRONG HỌC TOÁN Ở THCS

Hay: " Động tử ngược chiều muốn gặp nhau
Vận tốc đôi bên tìm tổng số
Đường dài chia với khó chi đâu "
Hay: " Đầu tiên học tứ giác lồi
Có một tính chất ta thời nhớ luôn
Góc trong tổng số bốn vuông

Dựa vào điều đó tìm đường chứng minh
Còn như các cạnh biến dấn
Song song hai cạnh tạo thành hình thang
Hình thanh biến dạng đôi đàng
Góc đáy bằng bặn gọi là thang cân
Nếu có một góc biến dần
Đúng chín mươi độ gọi là thang vuông

PHẦN II: Rèn luyện óc tò mò toán học
Rèn luyện óc tò mò, quen lật đi lật lại vấn đề, biết đề xuất vấn đề, tập tính
sáng tạo chủ động trong việc nắm kiến thức cơ bản, tránh công nhận xuôi chiều.
Sau đây là một số biện pháp:
1. Nhìn các vấn đề dưới nhiều khía cạnh khác nhau. Chẳng hạn:
Khi học bộ số Pitago a
2
=b
2
+c
2
ta có thể viết (
a
b
)
2
+ (
a
c
)
2
= 1

Công thức phải nhìn 2 chiều
Chẳng hạn (a+b)
2
= a
2
+2ab+b
2
thì a
2
+2ab+b
2
= (a+b)
2
Hay aman = am
+n
thì am
+n
= aman
Hay 1 ví dụ nữa :
Các em đã biết 1
1
+2
2
+3
2
+ +n
2
=
6
)12)(1( ++ nnn

Nhưng yêu cầu tính 1
2
+2
2
+3
2
+ +(n-1)
2
Người thực hiện: Phạm Văn Miền * TRƯỜNG THCS NGUYỄN BỈNH KHIÊM - 10 -
PHÁT HUY TÍNH CHỦ ĐỘNG SÁNG TẠO TRONG HỌC TOÁN Ở THCS

Nếu các em cứ nhớ máy móc thì sẽ rất lúng túng và thậm chí còn áp dụng
sai.
2. Hướng dẫn học sinh lật đi lật lại vấn đề tìm ra các khía cạnh sâu sắc của
toán học.
Việc làm này giúp phát huy tính tò mò,rèn luyện óc suy nghĩ của học sinh
giúp các em tiếp thu bài giảng một cách chỉ động sáng tạo, đồng thời gây cho các
em thói quen đề xuất thắc mắc trong khi học tập, tiếp thu kiến thức mới. Sau đây
là một số biện pháp:
a) Bỏ bớt 1 số dữ liệu của mệnh đề toán học liên hệ giữa cá biệt và tổng
quát chẳng hạn:
Ba góc của tam giác này bằng bao góc của tam giác kia thì 2 tam giác có
bằng nhau không ?
Ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác có
bằng nhau không ?
Hay "hai cạnh và góc của tam giác này bằng hai cạnh và góc của tam giác
kia thì hai tam giác đó có bằng nhau không ? "
b) Chú ý đến mệnh đề đảo : cho học sinh thấy những mệnh đề đảo đúng
nhưng cũng có những mệnh đề đảo sai, để học sinh chủ động, sáng tạo khi sử
dụng mệnh đề đảo. Ví dụ : Hai góc đối đỉnh thì bằng nhau. Đảo lại: "Hai góc

bằng nhau hì đối đỉnh" là mệnh đề sai.
Do đó nếu giúp học sinh dần dần có thói quen tìm những vấn đề đảo trong
vấn đề thuận chắc chắn sẽ giúp ích không nhỏ cho các em tập trung suy nghĩ chắc
chắn cẩn thận, dần dần tập sáng tạo từ nhỏ đến lớn.
3. Đặt câu hỏi kiểm tra lí thuyết, gợi ý xây dựng bài, củng cố bài giảng
hoặc để gợi ý làm bài tập.
Khi truyền thụ kiến thức cho các học sinh, những câu hỏi nhỏ được đặt ra
có tác dụng lớn để kiểm tra kiến thức óc suy luận của học sinh, đồng thời cũng
giúp học sinh hướng giải quyết vấn đề một cách chủ động sáng tạo và đôi khi còn
tạo được óc tò mò của học sinh.
Những câu hỏi đặt ra như thế nào? phải cân nhắc xem có đặt ra :
- Có phù hợp với trình độ của học sinh không ?
- Có làm cho học sinh động não không?
Người thực hiện: Phạm Văn Miền * TRƯỜNG THCS NGUYỄN BỈNH KHIÊM - 11 -
PHÁT HUY TÍNH CHỦ ĐỘNG SÁNG TẠO TRONG HỌC TOÁN Ở THCS

- Thông qua câu hỏi và rèn luyện được tư duy suy luận của học sinh
không?
4. Dùng nhiều phương pháp để giải một bài toán hay chứng minh một
mệnh đề toán học.
Có 2 vấn đề cần chú ý:
- Chứng minh các công thức định lí bằng nhiều phương pháp.
- Tìm được nhiều phương pháp để giải một bài toán
Ví dụ: Cho A =
2006
2005
101
101
+
+

và B =
2007
2006
101
101
+
+
so sánh A và B
Ta có thể hướng dẫn học sinh giải theo các cách sau:
Cách 1: So sanh 10A và 10B dựa vào phần bù
Cách 2: So sánh (10
2005
+ 1)(10
2007
+ 1) và (10
2006
+ 1)(10
2006
+ 1)
Cách 3: Quy đồng mẫu
Cách 4: Quy đồng tử
Cách 5: So sánh
A
1

B
1
5. Hướng dẫn học sinh sáng tạo một đề xuất những nhận thức mới về các
mệnh đề toán học.
Phần này có tác dụng rèn luyện sự suy nghĩ và tập cho học sinh sự đề xuất

vấn đề, tập sáng tạo từ thấp đến cao. Các em sẽ nắm được kiến thức một cách sâu
sắc, biến kiến thức học được thành vốn của mình, do đó tăng thêm lòng tự tin.
Biện pháp:
a) Đi sâu vào định lí, định nghĩa nhằm phát hiện những vấn đề mới tương
tự hoặc tổng kết vấn đề.
Ví dụ khi học hằng đẳng thức : ( a+b)
2
= a
2
+2ab+b
2
Ta có thể mở rộng thành (a+b+c)
2
= a
2
+b
2
+c
2
+2ab+2ac+2bc
b) Sáng tạo những bài tập và giải các bài tập đó. Đối với biện pháp này
phải chọn lọc cân nhắc sao cho yêu cầu không quá cao đối với trình độ học sinh.
6. Hướng dẫn học sinh sáng tạo(đặc biệt là đặc biệt hoá và tổng quát hoá)
Chẳng hạn :
Người thực hiện: Phạm Văn Miền * TRƯỜNG THCS NGUYỄN BỈNH KHIÊM - 12 -
PHÁT HUY TÍNH CHỦ ĐỘNG SÁNG TẠO TRONG HỌC TOÁN Ở THCS

Bài 1: So sánh 2 số A và B biết
A =
2006

2005
101
101
+
+
và B =
2007
2006
101
101
+
+
Ta có các bài toán sau: So sánh A và B
Bài 2:
A =
2007
2006
101
101
+
+
và B=
2006
2007
101
101
+
+
Nếu thay cơ số 10 bằng cơ số cụ thể khác ta có bài toán sau:
Bài 3: A=

2006
2005
71
71
+
+
và B=
2007
2006
71
71
+
+
Tổng quát bài toán với cơ số a >1 ta có :
Bài 4: A =
2006
2005
1
1
a
a
+
+
và B =
2007
2006
1
1
a
a

+
+
Bài 5 : A=
2005
2006
1
1
a
a
+
+
và B=
2006
2007
1
1
a
a
+
+
* Tổng quát cả cơ số và số mũ:
Cho a > 1 ; n € N
*
So sánh
Bài 6 : A=
1
1
1
+
+

+
n
n
a
a
và B=
2
1
1
1
+
+
+
+
n
n
a
a
Bài 7: A=
n
n
a
a
+
+
+
1
1
1
và B=

1
2
1
1
+
+
+
+
n
n
a
a
Đặc biệt hoá bài toán 8 cho a = 1 ta có
Bài 8 : A=
n
n
11
11
1
+
+
+
và B =
1
2
11
11
+
+
+

+
n
n
Ta thấy A=B không phụ thuộc vào số mũ đến đây ta tự hỏi
Nếu cho 0<a<1 ; n € N
*
Bài 9: Hãy so sánh A=
n
n
a
a
+
+
+
1
1
1
và B=
kn
kn
ab
ab
2+
+
+
+
Như vậy từ một bài toán ban đầu bằng cách đặc biệt hoá hay tổng quát ta
sẽ được các bài toán khác nhau với cách giải tương tự hoặc cũng có thể giải theo
nhiều cách khác nhau từ một bài toán. Trên đây chỉ là một ví dụ trong số rất
Người thực hiện: Phạm Văn Miền * TRƯỜNG THCS NGUYỄN BỈNH KHIÊM - 13 -

PHÁT HUY TÍNH CHỦ ĐỘNG SÁNG TẠO TRONG HỌC TOÁN Ở THCS

nhiều bài toán Mà ta có thể thực hiện được chỉ cần giáo viên có ý thức hướng dẫn
học sinh giải và tìm tòi.
Người thực hiện: Phạm Văn Miền * TRƯỜNG THCS NGUYỄN BỈNH KHIÊM - 14 -
PHÁT HUY TÍNH CHỦ ĐỘNG SÁNG TẠO TRONG HỌC TOÁN Ở THCS

PHẦN III: Giao việc cho học sinh làm
Việc hướng dẫn học sinh ở nhà là một công việc rất quan trọng và rất cần
thiết
Hướng dẫn học sinh học ở nhà không phải chỉ yêu cầu học sinh học các gì,
làm bài tập nào, nhiều khi còn hướng dẫn học sinh chủ động sáng tạo tiếp những
phần trên lớp chưa thực hiện được vì phần lí do thời gian hoặc vì trình độ của học
sinh không đồng đều.
Những công việc giao cho học sinh ở nhà có tác dụng tích cực với khả
năng độc lập suy nghĩ và tập được nghiên cứu sáng tạo, phát huy tính linh hoạt tự
giác của học sinh.
Nếu những công việc ở nhà được nghiên cứu sử dụng hợp lí thì sẽ có tác
dụng tốt ngay cả với những học sinh yếu.
Một số hình thức giao công việc ở nhà :
1. Học thuộc định nghĩa, định lí.
2. Trả lời các câu hỏi
3. Chứng minh những định lí và SGK đã chứng minh hoặc SGK yêu cầu
học sinh chứng minh.
- Chứng minh những định lí có thể chứng minh được nhưng vì trình độ học
sinh nói chung mà SGK bỏ phần chứng minh
4. Làm các bài tập theo yêu cầu giáo viên.
5. Làm bài tập ở nhà nộp cho giáo viên phù hợp với từng trình độ của học
sinh
6. Tự làm những bảng tổng kết (nếu có) hoặc tổng kết lại những kiến thức

đã học trong bài.
7. Nghiên cứu bài mới, hoặc bài đọc thêm.
8. Mở rộng kiến thức tìm cách giải khác(đối với học sinh khá giỏi )
9. Đề xuất thắc mắc ( nếu có)
10. Hướng dẫn học sinh đọc sách tham khảo.

Người thực hiện: Phạm Văn Miền * TRƯỜNG THCS NGUYỄN BỈNH KHIÊM - 15 -
PHT HUY TNH CH NG SNG TO TRONG HC TON THCS

KT QU THC NGHIM
Sau mt thi gian ỏp dng kinh nghim trờn vo bi ging dy tụi thy ó
cú mt s kt qu sau:
Lỳc u nhiu em hc sinh cũn tip thu bi 1 cỏch th ng. Nhiu em cũn
hc lớ thuyt theo kiu thuc lũng, nờn n khi cú quờn mt vi t l c phn lớ
thuyt khụng ti no nh c. Nht l nhng hc sinh trung bỡnh thỡ vic ỏp
dng vo bi tp thụng thng nh hỡnh hc l c mt vn khú khn phc tp.
Cỏc em thng lm bi tp theo kiu hc thuc bi mu, thiu s sỏng to ch
ng nờn khi gp nhng bi tng t thỡ cỏc em cú th gii c, cũn khi gp
nhng bi cn phi cú s bin i ( ngay c nhng bin i nh ) cỏc em cng vụ
cựng lỳng tỳng.
Nm c iu ú, tụi ó giỳp cỏc em tip thu bi theo hng ch ng,
sỏng to t khõu tip thu thu ng sang t lm, t xõy dng bi, hc sinh tr
thnh ch th, tr thnh nhng ngi tp nghiờn cu khoa hc di s dn dt
ca thy giỏo.
n nay tt c hc sinh trong lp ó t mỡnh thit lp c nhng cụng
thc n gin nh: nhõn chia hai lu tha cựng c s, lu tha ca mt lu tha,
lu tha ca mt tớch, mt thng, cỏc bi toỏn bin i v t l thc, dóy t s
bng nhau hay cỏc trng hp bng nhau ca tam giỏc, cỏc nh lớ v ng
thng song song
Cũn i vi nhng hc sinh khỏ, gii cỏc em ó bit phõn tớch bin i

nhng cụng thc khú hn nh (a+b)
2
, (a+b)
3
t nhng phộp nhõn thụng thng
m khi cn cỏc em hon ton cú th khụi phc li.
Song iu quan trng nht i vi hc sinh ú l s thay i v t duy
trong hc tp, trong suy ngh gõy c s hng thỳ v nim tin trong hc toỏn
Qua kho sỏt kt qu nh sau:
CC CH TIấU T S HC SINH T
U NM(%) CUI NM(%)
Biến đổi công thức đơn giản 30 90
Biến đổi công thức phức tạp 15 50
Biết suy luận trong hình 20 90
Biết về đờng phụ 10 60
Ngi thc hin: Phm Vn Min * TRNG THCS NGUYN BNH KHIấM - 16 -
PHT HUY TNH CH NG SNG TO TRONG HC TON THCS

Biết giải bài toán theo nhiều cách 12 50
Biết tổng quát, đặc biệt hoá bài toán 8 38
Say mê toán 10 30
Có niềm tin về toán 40 90
Học thuộc máy móc 70 10


Ngi thc hin: Phm Vn Min * TRNG THCS NGUYN BNH KHIấM - 17 -
PHÁT HUY TÍNH CHỦ ĐỘNG SÁNG TẠO TRONG HỌC TOÁN Ở THCS

PHẦN KẾT LUẬN
Trên đây là một kinh nghiệm nhỏ về " Phát huy tính chủ động, sáng tạo

cho học sinh trong giảng dạy toán học " mà tôi đã ứng dụng cho học sinh trong
năm học vừa qua.
Vì trinh độ có hạn lại chỉ được phân công dạy toán 6 và 7 trong nhiều năm
nay nên tôi chủ yếu trình bày phần nội dung kiến thức trong chương trình toán 6
và 7.
Khi nhận lớp tôi thấy rằng nhiều em còn thiếu tính chủ động, sáng tạo
trong học tập nên các em chưa hứng thú và một số em còn thiếu tự tin trong việc
tiếp thu toán học.
Cũng như một con người đã trưởng thành nếu không có tính chủ động,
sáng tạo thì không thể năng động được và người đó sẽ trở thành người máy,
không hơn không kém.
Vì trình độ hạn chế, lại chưa có nhiều điều kiện để thực nghiệm nơi này
nơi khác nên chắc rằng kinh nghiệm còn nhiều hạn chế.
Rất mong sự góp ý của đồng nghiệp.
Vĩnh Bảo, ngày 27 tháng 01 năm 2009
NGƯỜI VIẾT
Phạm Văn Miền

Người thực hiện: Phạm Văn Miền * TRƯỜNG THCS NGUYỄN BỈNH KHIÊM - 18 -
PHÁT HUY TÍNH CHỦ ĐỘNG SÁNG TẠO TRONG HỌC TOÁN Ở THCS

TÀI LIỆU THAM KHẢO
1. Tế bào thần kinh ở người - Menđen
2. Alghebra- Bactien nhep
3. Toán học và những suy luận có lí- Polia
4. Định lí và các phương pháp chứng minh- Hứa Thuần Phong
5. Toán nâng cao và các chuyên đề hình 7
6. Một số vấn đề phát triển toán 6
7. Một số vấn đề phát triển đại 7 - Vũ Hữu Bình
8. Một số vấn đề phát triển hình học 7 - Vũ Hữu Bình

9. Toán nân cao và các chuyên đề đại số 7
Vũ Dương Thụy-Nguyễn Ngọc Đạm
10. Số học - Nguyễn Vũ Thanh
11. Hình học phi ơclit - Lôbasepski
12. 400 bài tập đại số
13. 400 bài tập số học
14. Số học Hải Phòng
15. Tuyển chọn các bài toán hay và khó
16. Hình học và đại số
17 Hình học - đại số 7 Lê Ngọc Mễ - Lê Ngọc Vân
18. Chuyên đề bồi dưỡng đại số 7 - Nguyễn Đức Tấn
Cùng nhiều tài liệu khác.
Người thực hiện: Phạm Văn Miền * TRƯỜNG THCS NGUYỄN BỈNH KHIÊM - 19 -

×