Tải bản đầy đủ (.doc) (8 trang)

cc tnh huống m hnh ra quyết định.doc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (125.78 KB, 8 trang )

Tình huống 1:
Nhà kho mùa đông (đang) (vận hành) hoạt động một kho hàng quần áo đặc biệt là trang phục trượt tuyết. Mùa tự nhiên
mang lại (ban tặng) cho việc buôn bán của họ/ những thương vụ của họ, thương vụ/ việc buôn bán của họ theo mùa thường
có sự mất cân đối khi thì giữa khoản phí phải trả cho hàng tồn kho được lưu trữ và khi thì giữa những hàng hoá được bán
với lượng tiền mặt nhận được. Trong 6 tháng tới công ty mong đợi những khoản tiền (mặt) nhận được và những yêu cầu/
đòi hỏi trả nợ như sau:
Tháng 1 2 3 4 5 6
Các khoản phải trả 100.000 225.000 275.000 350.000 475.000 625.000
400.000 500.000 600.000 300.000 200.000 100.000
Công ty muốn giữ một khoản tiền cân đối ít nhất là 20.000 và gần đây công ty có 100.000 trong tay . Công ty có thể
mượn tiền từ một Ngân hàng địa phương với các kỳ hạn sau: 1 tháng: 1%; 2 tháng :1,75%; 3 tháng: 2,49%; 4 tháng: 3,22%
và 5 tháng :3,94%. Khi cần tiền có thể mượn hay trả tại thời điểm cuối tháng. Lưu ý là tại thời điểm cuối mỗi tháng thì bắt
buộc phải trả, thanh toán.Ví dụ: nếu công ty vay 10.000 USD trong 2 tháng (bắt đầu từ tháng thứ 3) thì họ sẽ phải trả lại
10.175 USD vào cuối tháng 5.
a) Lập công thức một mô hình LP cho vấn đề này.
b) Phương án nào là tối ưu
c) Giả sử Ngân hàng giới hạn nhà kho mùa đông được vay không quá 100.000 USD ở mỗi kỳ hạn. Định mức
này sẽ làm phương án tối ưu thay đổi như thế nào?
Tình huống 2:
Nhà sản xuất thảm trải Howie vừa nhận 1 đơn đặt hàng 4000 yard thảm trải có chiều rộng 4 feet ( 1 yard = 9,14 m và 1 feet
= 30,5 cm); 20.000 yard thảm có chiều rộng 9 feet và 9000 yard thảm có chiều rộng 12 feet. Howie hiện có 2 loại thảm cuộn
có thể cắt để đáp ứng đơn đặt hàng. Loại thứ nhất dài 100 yard, rộng 14 feet có giá là 1000 đô/ 1cuộn và loại thứ hai dài 100
yard rộng 18 feet và có giá 1400 đô/ 1 cuộn. Howie đang tính toán các cách để cắt các cuộn này theo yêu cầu và số cuộn
mỗi loại nên được cắt để tối thiểu hóa chi phí.
a. Thiết lập mô hình LP cho bài toán này.
b. Xây dựng mẫu bảng biểu cho bài toán này và giải nó bằng công cụ Solver
c. Đâu là giải pháp tối ưu nhất?
d. Giả sử nhà sản xuất muốn tối thiểu hóa số lãng phí. Liệu cách giải có thay đổi không?
Tình huống 3:
Công ty sản xuất sàn gỗ hiện dự trữ trong kho các tấm sàn gỗ có chiều dài tiêu chuẩn là 25 feet và đang tính toán để cắt các
tấm này theo yêu cầu của các đơn đặt hàng. Có một đơn đặt hàng cần 5000 tấm sàn loại 7 feet, 1200 tấm loại 9 feet và 300


tấm loại 11 feet. Nhà sản xuất đã xác định được 6 cách để cắt các tấm 25 feet này theo đơn đặt hàng, 6 cách này được ghi ở
bảng sau:
Các cách cắt Số lượng tấm sàn được tạo ra
Loại 7 feet Loại 9 feet Loại 11 feet
1
2
3
4
5
6
3
2
2
1
0
0
0
1
0
2
1
0
0
0
1
0
1
2
Ví dụ như cách cắt thứ 1 chỉ có thể cắt được 3 tấm loại 7 feet có nghĩa là nó dùng được 21 feet và dư 4 feet. Trong khi đó ở
cách cắt thứ 4 nó tạo ra được 1 tấm loại 7 feet và 2 tấm loại 9 feet như vậy là tấm 25 feet được sử dụng hết. Nhà sản xuất

đang tính toán để đáp ứng đơn hàng mà chỉ sử dụng số lượng tấm sàn 25 feet ít nhất có thể. Tính số tấm sàn 25 feet được
cắt ở mỗi cách khác nhau.
a. Thiết lập mô hình LP cho bài toán này.
b. Xây dựng mẫu bảng biểu cho bài toán này và giải nó bằng công cụ Solver
c. Đâu là giải pháp tối ưu nhất?
Tình huống 4:
Nhà máy tái chế giấy chuyên chế biến lại giấy báo cũ, giấy tạp, các loại giấy tờ văn phòng, bìa các tông để cho ra loại giấy
in báo, giấy gói đồ, giấy viết và loại giấy photo chất lượng. Bảng thống kê sau sẽ cho biết lượng giấy mới được tạo ra sau
khi chế biến lại mỗi tấn giấy cũ:
Giấy in báo Giấy gói đồ Giấy photo
Báo cũ
Giấy tạp
Giấy văn phòng
Bìa các tông
85%
90%
90%
80%
80%
80%
85%
70%
-
70%
70%
-
Ví dụ như, 1 tấn giấy báo cũ sau khi được chế biến lại bằng 1 phương pháp kĩ thuật sẽ tạo ra 0,85 tấn giấy in báo mới. Hoặc
1 tấn giấy báo cũ này có thể tạo ra lại 0,8 tấn giấy gói đồ. Tương tự 1 tấn bìa các tông có thể tạo ra lại 0,8 tấn giấy in báo
hoặc 0,7 tấn giấy gói đồ. Chú ý rằng giấy báo và bìa các tông không thể chế biến thành giấy photo bằng những kĩ thuật hiện
có của nhà máy.

Chi phí để chế biến mỗi tấn giấy thô thành các loại giấy mới, chi phí mua giấy thô cùng với số lượng giấy thô mỗi loại được
kê ở bảng sau:
Chi phí chế biến/tấn (đô la) Chi phí mua giấy thô (1 tấn) Số lượng
(tấn)
Giấy in báo Giấy gói đồ Giấy in
Giấy báo
Giấy tạp
Giấy văn phòng
Bìa các tông
6,50
9,75
4,75
7,50
11,00
12,25
7,75
8.50
-
9,50
8,50
-
15
16
19
17
600
500
300
400
Nhà máy đang tính toán để sản xuất ra 500 tấn giấy in báo, 600 tấn giấy gói đồ và 300 tấn giấy photo với chi phí thấp

nhất.
a. Xây dựng mẫu bảng biểu và giải bài toán này.
b. Đâu là giải pháp tối ưu nhất?
Tình huống 5:
Fred và Sally Merrit vừa mới thừa hưởng một khoản tiền lớn từ một người bà con đã hết. Họ muốn dùng một phần của món
tiền này để lập một tài khoản dùng để chi trả cho việc con gái của họ đi học Đại học, Con gái của họ. Lisa, sẽ bắt đầu nhập
học khoá Đại học 5 năm kể từ bây giờ. Gia đình nhà Merrit ước tính rằng năm học đầu tiên của cô con gái sẽ tốn một khoản
tiền là 12.000 đô và sẽ tăng 2000 đô mỗi năm trong 3 năm còn lại.
Những danh mục đầu tư sau đây gia đình Merrit có thể đầu tư:
Danh mục đầu tư Khả thi Kỳ hạn Lãi suất
A Hàng năm 1 năm 6%
B 1;3;5;7 2 năm 14%
C 1;4 3 năm 18%
D 1 7 năm 65%
Gia đình nhà Merrit muốn xác định 1 kế hoạch đầu tư mà nó sẽ cung cấp/ mang lại một nguồn ngân quỹ cần thiết để đáp
ứng được các khoản chi phí dự kiến cho Lisa học Đại học với một khoản đầu tư ban đầu nhỏ nhất.
a) Lập công thức một mô hình LP cho vấn đề này.
b) Tạo một mô hình Spreadsheet cho vấn đề này và giải quyết nó bằng Slover.
c) Phương án nào là tối ưu?
Tình huống 6:
Vẫn câu hỏi như trên. Giả sử những danh mục đầu tư mà khả thi đối với gia đình Merrit lại gắn với những cấp độ rủi ro sau:
Danh mục đầu tư Yếu tố rủi ro
A 1
B 3
C 6
D 8
Nếu gia đình Merrit muốn cân nhắc cho mức độ rủi ro trung bình chắc chắn dưới cấp độ 4 thì họ cần giữ lại bao nhiêu
tiền để Lisa đi học và họ nên đầu tư như thế nào?
a) Lập công thức một mô hình LP cho vấn đề này.
b) Tạo một mô hình Spreadsheet cho vấn đề này và giải quyết nó bằng Slover.

c) Phương án nào là tối ưu?
Tình huống 7:Công ty Pitts đang sản xuất 3 loại nước sốt : cực cay (1), cay (2), cay vừa (3). Phó phòng marketing ước tính
công ty có thể bán được 8000 lọ nước sốt 1 và sau đó cứ bỏ ra 1 đô la quảng cáo cho loại này thì sẽ bán thêm được 10 lọ ,
10000 lọ nước sốt 2 và cứ bỏ ra thêm 1 đô la quảng cáo thì sẽ bán thêm được 8 lọ loại này, 12000 lọ nước sốt 3 và cứ bỏ ra
thêm 1 đô la quảng cáo thì sẽ bán thêm được 5 lọ loại này. Mặc dù giá bán của các loại này đều là 10 đô/1 lọ nhưng chi phí
sản xuất của chúng thì khác nhau trong đó chi phí sản xuất loại 1 là 6 đô, loại 2 là 5,5 đô; loại 3 là 5,25 đô. Giám đốc công
ty đang tính xem công ty sẽ sản xuất số lượng tối thiểu mỗi loại là bao nhiêu mà vẫn bán hết. Công ty chấp nhận chi tổng
cộng 25000 đô cho việc khuyếch trương sản phẩm, trong đó chi ít nhất 5000 đô cho việc quảng cáo mỗi loại. Hỏi công ty
nên sản xuất bao nhiêu lọ nước sốt mỗi loại và đề xuất của bạn về việc phân bổ chi phí quảng cáo sao cho tối đa hóa lợi
nhuận.
a. Thiết lập mô hình LP cho bài toán này.
b. Xây dựng mẫu bảng biểu cho bài toán này và giải nó bằng công cụ Solver
c. Đâu là giải pháp tối ưu nhất?
Tình huống 8:
Khả năng sản xuất loại rượu dùng riêng cho bữa ăn tối của một nhà máy sản xuất rượu ở cả 2 vườn nho của nó và chi phí
sản xuất được ghi ở bảng sau:
Vườn nho Khả năng Chi phí sản xuất 1 chai rượu
1
2
3500 chai
3100 chai
23 đô
25 đô
Có 4 nhà hàng Ý ở thành phố muốn mua loại rượu này với số lượng lớn. Bảng sau sẽ thống kê nhu cầu rượu ở các nhà hàng
và giá họ sẵn sàng trả cho 1 chai:
Nhà hàng Nhu cầu tối đa Giá sẵn sàng trả (đô la)
1
2
3
4

1800 chai
2300 chai
1250 chai
1750 chai
69
67
70
66
Chi phí vận chuyển 1 chai rượu từ các vườn nho đến các nhà hàng được ghi ở bảng sau: (đô la)
Vườn nho Nhà hàng
1 2 3 4
1
2
7
12
8
6
13
8
9
7
Nhà máy rượu đang lên kế hoạch sản xuất và vận chuyển rượu với mục đích tối đa hóa lợi nhuận.
a. Thiết lập mô hình LP cho bài toán này.
b. Xây dựng mẫu bảng biểu cho bài toán này và giải nó bằng công cụ Solver
c. Đâu là giải pháp tối ưu nhất?
Tình huống 9: Cater Enterprise đang gặp rắc rối trong việc kinh doanh đậu nành ở nam Carolina , Alabama và Gerorgia.
Chủ tịch của công ty, ông Ear Cater đi giao dịch bán hàng 1 tháng 1 lần tới nơi mà ông mua và bán đậu nành với số lượng
lớn.
Cater dùng (một) kho hàng địa phương để chứa đậu nành tồn kho. Kho hàng này tính với giá 10 USD cho mỗi tấn đậu
nành (được chứa) một tháng (dựa trên mức trung bình của lượng tồn kho đầu và cuối mỗi tháng). Kho hàng đảm bảo cho

Cater chứa đầy được 400 tấn đậu nành vào cuối mỗi tháng. Cater đã tính toán/ ước lượng đến điều mà ông ấy tin rằng giá
của mỗi tấn đậu nành là bao nhiêu trong mỗi tháng của 6 tháng tới. Những mức giá này được tổng kết trong bảng sau:
Tháng 1 2 3 4 5 6
Giá/tấn $ 135 110 150 175 130 145
Giả sử hiện nay Cater có 70 tấn đậu nành được chứa ở kho hàng. Cater nên mua và bán bao nhiêu tấn đậu nành mỗi
tháng trong 6 tháng tới để tối đa lợi nhuận.
a) Lập công thức một mô hình LP cho vấn đề này.
b) Tạo một mô hình Spreadsheet cho vấn đề này và giải quyết nó bằng Slover.
c) Phương án nào là tối ưu?
Tình huống 10:Jack Potts mới thắng 1.000.000 USD tại Lasvegas và đang cố gắng xác định xem nên đầu tư số tiền thắng
được như thế nào. Anh ta thu hẹp quyết định của mình xuống còn 5 kế hoạch đầu tư được tổng hợp trong bảng sau:
Tóm lược lượng tiền mặt chảy vào và chảy ra (tại thời điểm đầu các năm)
1 2 3 4
A -1 0,50 0,80
B -1  1,25
C -1   1,35
D -1 1,13
E -1  1,27
Nếu Jack đầu tư 1USD vào kế hoạch đầu tư A vào đầu năm 1. Anh ấy sẽ nhận được 0,50 USD vào đầu năm 2 và 0,80
USD vào đầu năm thứ 3.
Một cách lựa chọn khác anh ta có thể đầu tư 1 USD vào kế hoạch đầu tư B vào đầu năm thứ 2 và nhận được 1,25 USD
vào đầu năm thứ 4. Dấu “” trong bảng cho biết thời gian mà lượng tiền (mặt) không vào cũng không ra. Vào đầu bất cứ
năm nào Jack có thể đưa tiền vào gửi tiết kiệm để hưởng mức lãi suất 8%/ năm.
Anh ta muốn luôn luôn giữ ít nhất 50.000 USD trong tài khoản tiền gửi và không muốn đầu tư nhiều hơn 500.000 USD
vào bất kỳ một kế hoạch đầu tư lẻ nào. Bạn sẽ khuyên Jack như thế nào để anh ta đầu tư số tiền thắng được nếu anh ta muốn
tối đa hoá lượng tiền mà anh ta sẽ có vào đầu năm thứ 4?
a) Lập công thức một mô hình LP cho vấn đề này.
b) Tạo một mô hình Spreadsheet cho vấn đề này và giải quyết nó bằng Slover.
c) Phương án nào là tối ưu?

×