f!lJal drb(? flute fk./' jtluiu
h,i
Trang 5
(j)~t~()rtOki
CIIUdNG I
CAC DANG THUC TicH PHAN
Mt,lcdkh cua chlidng ngy la tr'inh bay mQt s6 cac d~ng thuc tkh
phan bi~u di~n theo gia trj ham va cac dC;lOam cua no tren cac khming
h
tlidng ung. C6ng ct,lchu ye'"ula vi~c sa dt,lng chung minh qui nl,lpva mQt .
s6 c6ng thuc trong phep tinh vi tkh phan.
Tnioc he'"t, ke'"tqua sau day.
})jnh IX 1.1.
Cho
Ik
:a
= Xo < XI < ",Xk-I
< Xk
= b la mQt phep pluln ho{Zeh eua do{Zn
~
[a,b], aj (i=O,...,k+l)
va
ak+1
La "k + 2" .diem saG eho ao =a,a; E[X;_"X;] (i=l,...,k)
= b. Ntu /: [a,b] ~ IR c() d{Zo ham dtn dip 11 va /(11-1)lien t1;le
-I
tuy~ t di;'i trerl [a,b]. Khi de) ta 'eel dang tlu/e:
b
(1.1)
Jf(
a
t dt+~(-l)f~f
)
~
.;=1
(X
-a
.,~~/"'I
}.
fU-]) x1+] - (x-a
11+1.
.I
)
1+1
;=0
b
= (-1)"
JK,;,k(t)/(II)(t)dt,
a
trong do nluln Peano dU:(/e
eho b(Ji:
(t-alr,
11!
t E [a, x,),
(t-a2r, tEfxl,X2)'
11!
( 1.2)
KII,k(t) =
(/-ak_,)"
11!
-,
(f-akr
11!
, t E [Xk-2,Xk-I)'
.
IE[Xk-),b],
(
)
J U-I)
) f
(X )}
I
vcJi n,k E IN va f(°>Cx) lex).
=
Chung minh.
Ta chung minh b~ng qui n(;lptoaD hQC.
Vc3i 11p-1, chung to can cht1ngminhdang tl1l1c
h
f f(l)dt
(1.3)
.~.
k-I
L [(X;+I - a;+1 )f(X;+I)
-
a
- (x; - a;+1 )f(xj)]
;=0
h
=trong
J
a
KI,k (t)/I
(t)dl,
do
(I - al),
IE [O,XI)'
(t-a2),
IE[X"X2)'
(I-ak-I)'
IE[Xk-2,Xk-')'
(I -ak).
{E Ixk-I,bl.
K1,k(I) =
D~ chung minh (1.3), ta dung tich phan tUng phfin nhtl'sau
h
k-P" ,
f K1,k (/)( (/)dt
a
== L
f
K1,k
(t).t (I)dl
;=0 x;
k-Ix'+1
=
L J (t -a;+I)f
(t)dl
;=0 x;
= *i (t 1=0
[
~ ~[(x",
al+1
)/(t)
Ix;'1
x,
- xJ :l
.
x,
]
- a",)[ (x"' ) - (x, - a", )[(x, ) - '[f(t)dt ]
k-l
=
k-I x,+,
I [(X;+I
-a,+I)/(x;+I)-(x;
~
-a;+I)/(x;)]-
I Jf(t)dl
~~
k-I
h
= L [(X'+I a,+1)/(X;+I
~
I>
Do do
I>
) - (XI - a,+1)f(x;)]
a
Jf(t)dl
a
k .-1
ff(l)dl + fK1,kI)f (t)dl = 2](X;+1
(
-
a
-
;=0
a;+1)f(x;+I)
- (X; - a;+J )f(xJ]
V~y d~ng thuc (1.3) dtl
(j).
,JU,!n
'f,- olZ
- ,if "fIJ
{/an ,H/(!(' ');'/ .,(Jan .7If)('
' f'::- 'fIJ"., (1),.J ?U,,/'!JI, .7(,(H( ::.l/((1'fI
I
Trang 7
(11(11dd!1,? 11t(f'c Iklt .la'trill, UJq;;CMt()l~ti
Giel sli' r~ng (1.1) du ng vdi "n" va ta c~n chung minh r~ng (1.1) dung vdi
"n+ 1", tuc la, ta chung minh d£ng thuc sau day dung:
"
'
k-I
//+.1
J/( t )d t + ~
a
(1.4)
,
'}
",,(-I)
f(
~ ~~
}=I
J,
;=0
X;+I -ai+I,
)
1
rU-I) ( X;+I ) - ( X; -a;+1
)
1
f U-')
( X; )}
"
= (-1)"+1 JKI1+I,k(t)f(n+I)(t)dt,
a
trong do nhan Peano Kn+l,k du'<;1c ho bdi:
(t)
c
(t -
al )"+1
(n+l)!
'
tE[a,xl)'
(t - a2 )"+1
(11+1)1 '
tE[XpX2)'
K n+l,k (t) =
(t -a k-l )
"+1
(n+l)!
(t -a
k)
' tE[Xk-2,Xk-I)'
/1+1
(n+1)!'
tElXk-j,bj.
Xet tich phan
It
k-I
JKI1+I,k
(t)f"+1\t)dt
=
a
X,+,
I
J KI1+I,k(t)f(I1+1) (t)dt
;=0
=
Xi
I
xJ (t ~a;+t)"+1 f(n+')(t)dt
;=0
x,
(n+l)!
sau do dung tich phan tUng ph~n ta du'<;1c:
It
J K//+I,k(t)P/HI)
a
(t)dt
k-I
I
= ;=()
I
[(
)
//+1
-a;+I.
f(//)(t)
(11+1)!
k-l
)
=I ;=0 X;+t-ai+\
(11+1).
[(
-
Xi>l
J
IX'" -
x,
//+1
Xi
(t
)
-a;+1
11!
)
(
f(I1)(Xi+I)-
IxJ (t -a;+I)"
;=0 Xi
n,
x;-a;+I,
(n+l),
f(I1)(t)dt
//
f(I1) (t)dt
"+1
f(I1)(x;)
]
]
k-t
'1+1
=L[( Xi+l-ai+"
'=0
(n+1).
)
(
j(I1)(XJ+I)-
)
Xi-ai+l,
j(I1)(X,)
(n+1).
,
,
I
i
i
"+1
"
]
- K (I) (I1) ( t )dt.
J I1.k '.
i
(1
Ta vie't l~i d~ng thuc ri§y
I
"
(1.5)
"
,,+1
'k..1
fK
(t )j
(I1)
l1ok
)
(t )dt =',L.. Xi+l-tXi+1
'
'1=0
[( ( n+. 1)
,
0
'
j
(I1)
(x
,,->1
(
)
) - X, -ai+1 1
1+1
(n+ 1).
j
(") X
( ')
I"
]
- JKI1+lok(t)/,,+1)(t)dt.
,0
Theo gia thie't qui n~p, ta co:
"
( 1)1 k-I
2::~2::{
./=I.J.
i=O
11
Jj(t)dt+
(1
jU-I) (xJ}
"
= (-1)" JKl1ok(t)f(I1)(t)dt.
0
hay
"
( 1.6)
"
fK".k(t)j(I1)(t)dt = (-1)" Jj(t)dt
0
a
"
"
./ k-I
(- 1)
./
f(
1
+ (- ) .L.. ~ I L.. ~ X'+I -a'+1 ) j
I ./,"
.1
'IOn
/1"
U-I)
1
(Xi+1 - (Xi -ai+1 ) j
)
U-1)
(X, )}
Tir (1.5) va (1.6), ta co:
(-1)" a
fj(t)dt
+ (-lrI
1=1
-(Xi'-ai+I)'/
I
(-?/
.J.
i=O
(
jU-I\Xi+')
fU-')(X;)}
k-I
=2:: Xi+l-a'+I,
,=0[(
(n+l).
)
/+1
)
(
f(I1)(Xi+I)-
/+1
x,-ai+l,
f(/1)(xJ
(n+l).
"
- K (t )f
J 11+I.k
]
(I/+') t
( ) dt ,
a
hay
k-I
(
"" ~~1) f(
"
11
r
S J ( t )d {+ L..L..
a
,=0 ./=1 J.
(fl.
.,'-
If"qll
NTlI ./Tlqr
'j7/
- Ijl'
1
X'+I -ai+1
)
f
./
0
'U-')
1
( X'+I ) - ( Xi -ai+1 ) f
U-')
( Xi )}
'{/}
'),r .1'(JfT.1I.-nfll'.
,A:9'-"J/%n ,m«,
9/!r'hlfl
J.2
,7,Ja.1 a-aJ'fl
(j7J _
//,
",ute
/, /
/
"~JI. Iil/tan-
Trang 9
/
41 /
/
waf . W,jr,lm!ijh't .
k-I
'1+1
'
)
=(-1)"2: [( xi+l-ai+\
i=O
(n+l).
,
)
(
f(II)(Xi+I)-
'1+1
x;-a;+I,
l")(X,)
(n+l).
]
h
- (-1)/1 JK,1f1,k(l)f(II+I)(l)dt
a
hay
h
fr(t
.
a
;
""
k-I
)d
II
). f
( 1
(
t+ ~~~1Xi+l-ai+1
i=O1=1 J.
J
1
)
) f (;-')( Xi+1 - ( xi-ai+1 ) f
k-I
+ (_1)"+!
)
L
xi+,-a/+1
i=O
[( (n+l)!
'1+1
(
j(II)(Xi+1)-
(;-I)
)
(
Xi)}
'1+1
Xi -ai+1
(n+l)!-
j(II)(Xi)
]
h
= (-1)"+1
J
a
(I )j(I1+I)
KII+l.k
(t)dl
hay.
"" 1) f
Jr( )d + ~~ ~t (
h
(1. 7)
k-I
II
(-
a
.
1
1
;
J
.
Xi+1
,=01=1'/'
'
+(-l)"!'~
[(
(n+ 1). £..i
i=O
-
x -a
Ii"
ai+l.
1...1
)
)
"+'
f
f (;-I)
(/I)
( Xi+1 ) - ( Xi -
-
( x 1+1) ( x-a
1
ai+1
1+1
)
)
1
"+I
f
f
(;-I)
(II)
( Xi )}
( X 1)]
h
= ( _1 )
11+1
J
K II! l,k. (I ) f
(II+I)
(I ) dl..
a
sO' hc:lllgthu hai va thu ba cua v~ tnii vi~t gom l~i thanh mOt sO'he.mg,do
do ta thu duQc:
h
(1.8)
Jj()d
t
a
""
k-lll+1
1
(- 1) f
t+ ~~~tXi+l-ai+l.
i=O}=1 ./.
(
1
) f
(;-I)
1
(Xi+1 - (xi-ai+1 ) f
)
(;-I)
(Xi )}
h
= (-1)"+1 f~:11+1,k
(1)/(11+1)(t)dl,
a
nghla la, d~ng thuc (1.1) la dung va Dinh ly 1.1 duQc chung minh.H~ qua sau day cho mOt d~ng thuc tich phan khac vdi (1.1) se heru
ich trong cac ph§n sau.
ryMT
dr/,,//- 1/,,((' Iff-/' A/'rln f(J(d (il.}t;(J(t)k;
Htimi
Tran~lQ
1.1.
Vdi ClJnggid thief cua djnh (v 1.1, ta co :
~ (-;n~ tx, - a,)J
b
= (_1)11 J (l)f(l1) (I)di.
Kn,k
a
+
ff({)d{
(1.9)
- (x, -a",)J
}f(j-I) (X,)]
Chung minh.
Tli (1.1) ta xet s6 hC;lngthil hai va vie't no thanh tc5ng cua hai s6 hC;lng
8
.
1
+
8
n
2
J k-I
(- I) "I
(
- ~ -:--, ~ ~ Xi+1 J. i=O
/=1
-"
/
ai+1
) f
u-IJ
<
(Xi+1 ) - (Xi -
J
ai+1
) f
U-')
(Xi )}
k-l
(1.10)
= L{-(Xi+' -a'+I)f(Xi+I)+(Xi -ai+l)f(Xi)}
1=0
J k-I
( I) ,,
II
,,-
+ ~ -:--, ~ {(Xi+) /=2
}.
i=O
/
) f
ai+1
U-J)
<
( Xi+l ) - ( Xi<-
ai+1 )
J
f
U-IJ
(Xi )}
k-I
=:
L {1=0 <
(X'+I
""
k-I
/I
(-
- £Xl"!)f(Xi-l')
I) '
.
.
f
(
+L..L..~~X1+1-ai'l.
i=O
J=2 J.
Bay gio
+ (x, - £x/
¥
/
) f
U-')
( xi+l-x,-ai+1
) (
81 du'
..
81 = (a-a,)f(a)+
k-I
L(xi
i=1
-a'+I)f(xi)
k-2
+ 2)~(Xi+l
i=O
-ai+,)f(x,+,)}-(b-ak)f(b)
k-I
=(a-a)f(a)+
L(x;
;=1
-ai+,)f(xi)
k-I
+ L{-(xi
;=1
.
=(a-a,)f(a).
-aJf(xi)}-(b-ak)f(b)
k-I
L(ai+1 -aJf(xi)-(b-ak)f(b).
1=1
Cling v~y voi 82 du'
J
) f
U-')
(X;.
)}
,,=
k-I
<;
L
2
/I
L..JL..J
1=0/=2
k-I
II
'
( 1 f
)
--=--,t ( Xi+1
J.
;
.
) ..' [
-a,+1
(/-I)
(X;+I ) - ( X,
;
). f
-a;+1
U~')
( X; )}
/I (-1)/
= i=0)=2
--=--,{(Xi+1 -a;+YfU-I)(Xi+I)}
J.
II
= I (-~r
.
(-~r {ex;-al+YfU-l)(xJ}
-
i=O
)=2 J.
)=2
J.
II (-~r
{(Xk-ak)/ fU-I)(Xk)}+
i=O)=2
J.
~~ (-Jr {(Xi-a'~I)' IU-I)(x,)}
- ~ (-;({(XU-aYIU-I)(xU)}-
= I(-~r {(Xk-ak») fU-I)(Xk)}+II(-~r
)=2 J.
,=1)=2
-
I (-~r
J.
)=2
I
= 1=2(-~r
j.
+
{(Xu -al»)
= t(-?/
)=2 J.
fU-I) (Xo)}-
{(Xk-ak») fU-')(Xk)}-
~[~ (-X
II
I
/=2
{(Xk -ak»)fU-I)(Xk)-(XO
I [I (-~r
)=2
J.
(-~r {(Xi-ai+I») fU-') (X;)}
(-~r (exo-a,») fU-l)(xo)}
J.
-al»)
.
{(X;-aY
fU-')(XO)}
-(x, -aH,Y V"-l) (X,)]
I
'=1
(eX,-a,») fU-I)(Xi)}
;=1)=2 J.
= )=2 (-~r {(b-akY fU-I)(b)-(a-a,y
J.
+
J.
{(x,~a,)i ~(x, ~a",)j IF"IX,)]
~[~ (~;t {
+
-a;+,») jU-I)(X'+I)}
(cXi+1
-(X;
-a,+I»)
fU-')(a)}
}JU-I) (X;)
.
]
Tli (1.10), ta co
k-I
8, +S2
= (a-a,).!(a).
+
I (-~r
J.
)=2
I(a,~,-a,).!(x;)-(h-ak).!(h)
;=1
..-------
r
'1:)~.kH.T(JN~IEN
{(b -ak») fU-')(b)
- (a -al») j<)-I)(a)}
THLT
\lIEN
-
OOO~86
J
[1M1 rlrt/Ift (/",,(' (fr/'Ji/uin
+
~
%[~
(ii'
kx,-a,J' - (x,-a",dfU-"(x,)
I
-{(a, -a)f(a)
+ ~(a",
I
+ 1=2 (-?l [-(a-a,)}
J.
+
Chli
Y
r~ng
I
,=1
Trang 12
!.Jai @.)b(J,~t,,:
(eXi~a,)}
-a,)f(x,)
]
+ (b -a,)f(b)}
fCj-I) (a)
-(Xi -ai+I)}}JU-I)(xJ+(b-akf
fU-')(b)]
a, ao = a, Xk = b Va ak+1 = b ta co th€ vie"t
Xo =
k-I
8, +82 =- { (al-a)/(a)+
t;(a,+,-a,)/(xJ+(b-ak)f(b)
}
+ I(-?i J. [-(a-al)}/C!-I)(a)
}=2
+
I
i=1
{(x, -aJi
-(x, -a1+,)}}fU-')(x,)+(b-ak)}fU-')(h)}
k
=-I(a'+1
-a,Jf(x,J
i=O
I
+ }=2(-~r [-(a-at)}
J.
fU-')(a)
k-I
+
I
;=1
{(x; -ai)}
-(Xi -ai+I)}}/U-I)(x;)+(b-ak)}
fU-1) (b)]
k
=-I(ai+1
;=0
-a;)f(xi)
+ I(-~r [-(xo-a,YfCH)(xo)
i=2 J.
k-I
+
I (ex,-aJ/-(x,
,=1
k
= - I(aj+1
,=0
'
-aj)f(x;)
k
11 ( 1)i
+
I~
.1=2 J.
-aj+,y}rU-')(x;)+(Xk -akYfi-I)(xd]
I
[ ,=0{(Xj-aJl
,
,
-(x; -a;+,f}fu-')(xJ
]
Trang 13
[1],;-1UfJ~rIluf-clicit ./tltalt kat (lM~()(':-)/{i
t
~t
[t kx, -a,)'
(-;:J
- (x, -a", Ji}J"O"(X,)}
Thay 8, + 82 vao so' h~lOgthU'hai cua (1.1) ta tho duQc d~ng thU'c(1.9).
Bay gio ta gia Slt rang cac di~m chia Xi cua phan ho~ch
la ceSdinh,
lk
ta
tho duQc h<$qua gall.
He !loa 1.2.
Cho lk :a=xo
Ne'u f: [a,b] --+IR gi(fng nhll tron!? dinh Ly 1.1. Khi d6 ta c6 &lng thac:
k
hill
(1.11)
ff(t)dt+
+(-l)Jh/-I}rU-I)(x;) ]
~2Jj! [ ~{-h/
h
= (-1)"
fKII,k (t)f(lI)
(t)dt,
a
trong d6 hi = X'+I- x" h_1= 0 Va hk = O.
Chung minh.
Ch<;>ncac di~m a; U=O,...,k+l)
,
ao=a,al=-,a;=
ak =
Xk-I
a+xl
nht!sau:
Xi-I +X,
2
+ Xk
2
2
.
, (z=l,...,k),
'
va ak+' = b.
D~ng thU'c(1.9) vi€t l~i
h
(1.12)
h
ff(t)dt+81
+82 =(-1)"
a
vdi
8, + 82 =
f
/=1
(-
?J
}!
i:
[ i=O
kXi - ai)/
fK",k(t)f(II)(t)dt,
a
- (Xi - ai+I)/
}fU-'J
(Xi )
.
]
Ta chia so' h~ng thil hai 81+ 82 cua (1.9) thanh 3 so' h~ng nhu gall:
~Jnlitj{(
'uoAl1I!iJJ&ui.f1JlI}(L
(~
_.Imugjj
- "",,-," "'-~
k
(])./
-
11
.
,
SI+82=~-j!~
[
(-I)
,
}
k
xi-a;)./-,(Xi-ai+t)./fJ X;)
( ]
k
'
= -2: {(Xi -a;)-(Xi
-ai+I)}[(Xi)
;=0
+
f
(-?}
./=2
+
kb-adJ
fU-')(b)-(a-aj)}
fU-I)(a)}
.1.
~[t I-~:j ¥X;- aY
sO' h~ng thil nha't 8, +82 cua (1.9)
- (X;- a;+I)'
Ir(JI)(X;)
0 ~ i~ k, .i
vdi
J
= 1:
k
(i)
:L{(x,-a,)-(x,-a,+,)}f(xJ
'=0
k-I
=-(a-a,)f(a)+(b-ak)f(h)+
I{(i,-a,)-(x,-a/+,)}f(x,)
1=1
-
1
f
k-I
- 2lhof(a)
S6h~ngthuhai
(ii)
i=O,i=k,j~2:
I(-~r.1. (cb-ak)} fU-')(b)-(a-a,)J
}=2
L. 2 J
J=2.1.
'I
S6h~ng
{
hlrU-I)
k I.
}.
+ h,-,)f(x,) + hk-J(b)
81+52 cua(1.9)vdi
= ~(_])I
(iii)
+ ~(hi
fU-I)(a)}
)}.
( b) - ( -I )JhllU-I)(a
O.
thil ba 8, +52 cua (1.9) vdi ]~i~k-l,
2~.i~n:
~ [~( -;r {(x, aY - (x,- a,.,)'}Iii "(x,)]
=
I i:(~
'
1)ij h~1
[ 1~2.1 !2
I~'
-(-I)J h/lrCH) (XI)
,
'
]
f)~t ba sO'h~ng (i ), (ii ) va (iii ) vaa 81+ 52 ta thu du'Qc:
(Ll3) S, + S,
= ~ (-;n~ «X;-a,J' -(X, -a",)' }/U"'(X,J]
k
= - ,=0{(x, -aJ - (x, -a;+,)}f(x;)
I
iYJril rI,j:'~11/ut(' lid" j'/uiu
Trang 15
(wi f~JIt()r(;jt;
i
+ J=2 (-?J {(b-adlf(l-I)(b)-(a-al)J
./.
k-I
n
J
)
(- 1
[
+~~fl(Xi-ai)
= -2
~
+
L.
J
-(xi-ai+i)
k-I
{ ho/(a) +
hJ{
(-l)J
J=2./.
+
J
{
1
'1
2l
1=1 l=2
=~
J.
~ (-l)l
fU-I)(b)-(-l)JhJ
{h~
/1
~ h~
= ~ (-1)J
(j-I)
(Xi)]
~ (hi + hi-I).I (x;) + hk-d(b)
{h;~~1
L. J=I J.2 l
L. 'I
1=0 [
}
/
,
k 1
I [ i (~;:
fU-') (a)}
{
L."2lL.11 1=0
J=I J.
0,
- (-l)Jh/
-(-l)J
-(-l)JhJ
fU-') (a)
}
lr(j-1) (x/) ]
hJ }jU-1)(X)
1
I.
}
/
]
}rU-1)(x).I
Cu6i cling ta thu dt(Qc (1.11) b~ng cach thay 81+82 vao (1.12)..
Tn(on g ho p ta lay cac di~m ehia x- eua Ik cach d~u , ta tlm duoe he q Ua
.
1
..
salt:
He qua 1.3. Cho
(1.14)
la mQt
Ik
: Xi
= a +:{b~ a). i = 0,...,k
phfin hOi;lChd~u cua doi;ln [a,b] Va f: [a,b] ~ IR sao
cho
In-I)
li@nt\,lctl1yi$td6i tr~n [a,b]. Khi d6 ta c6 dAng thd'c:
(1.15)
J/(t)dt +
t(
.I~I
0
.I
b -a
2k
)
x;,[ - Iu "(0) +
h
= (-1)"
~
I<-I)'
-I
}I"-"(x,) + (-1)1IU-'>(b)]
J KII,k (t).T(II) (t)dt.
11
Chu
y r~ng
.
sO'hi;lng thli hai cua (1.15) chI chlia cac di;lo ham cffp Ie ti;li
tfft ca cac diem trong
Chung minh.
Xi'
i = 1,...,k-1.
Sa d\,lng (1.14), ta chu y r~ng
:YM1
d(j,~1
b-a
ho =x! -x() =-,
va
TranR-16
(I"f'(' (ir-/' .;'/,(j,J/ !oa; (iM~()fr:Jt;
b-a
hi =xi+! -x/:::::-
k
k
b-a
hi!
=Xi -XI-I
""k,(i=t,...,k-l)
va the' vao (1.11), ta co:
"
( 1.16)
II
fI(t)dt +
b
I ( ~2k
.1=1
(1
.x
.1
.
)
;![ -f'HI(a)+
= (-1)"
"
~ k-l)'
-1)I'HI(x,)+(-I)J fU-"(b)]
fKII,k(t)f(II)(t)dt.
a
Tinh tacin don gian, tU day ta suy tu d~ng thuc (1.15).8
Cong thuc gi6ng Taylor sail day voi phfin du tich phan cling dung.
He gmi 1.4.
Cho X : [a,y] ~ 1R OJ d~w helm din clip n sao cho g(lI) lien t~lCtuy~t
at)'l tren ju,y]. Khl d6, wYi mql XiE [a,y) fa c6 dilng tlllJC:
(1.17)
g(y)
~
g(a) -
~
[t
(-;r
(lx", - a",)' g"'(x",) - (x, - a,.,)' g(j)(X,)}]
y
+(~1)" fKII,k(y,t)g(II+I)(t)dt
(1
hay
(1.18)
II (-1).1
g(y) = g(a) -
~ fl
k
[ t=o {(Xi- aJ1 - (Xi -ai+l)l }g(J)(xJ ]
y
+(-1)"
JKII,k(y,t)g(II+)(f)dt.
a
Chung minh cua (1.17) va (1.18) dlivc suy tn!c tie'p tu (1.1) va (1.9) Hin
luvt b~ng each clwn f = gl, b:::::
y..