';1],;1 rlrf)~(jI/"ff: lfell flldJ/
Trang 24
!mi (il,J!tortJki
c HUONGIll
Stj HOI T{) eUA CONG THue
~
,:?
~
CAU PHUONG TONG QUA T
Ml;!Cdich cua cJllJ'ongnay la nhhm trtnh bay mOt s6 cac ap dl;!ng
vao vi<$cnghien CUllst,t hOi tl;!cua cong th((c c~u phuong t5ng quat va
danh gia cac sai s6 nay thong qua cac b§t d5ng th((c duQc phat tri~n d
trong cac chuang trudc.
Cho
tJ.nr: a = X6nr)< x~nr) < ... < X~;'~)1 X~;') = b
<
la mOtday cac phan ho~ch
cua do~n [a,b], va xet day cac cong th((c tich phan s6:
(3.1) Inr(f,f',...,f(II),tJ.III'wm)
III
=
Iwjm)f(xjlll»)/~o
I
(-1)'
r~2
x[
~ {(X)'"
-0-
r!
~w~""J+~""
-0-
~W;"")k.,"(xj""
J]
m
vui
wjnr)
(j = 0,..., m)
Djnh
la cac tn;mg c~u phuong thoa
I wjnr)= b - a .
)=0
19 sau day ch((a mOt di~u ki~n dii cho cac tn;>ng
b
wjm)(j = O,.."m)sao
cho
1m(f,f',...,f(II)
,tJ.m, WIll)
x§p xi tich phan ff(x)dx vdi
, a
mOt sai s6 duQc bi~u thj theo Ilf(II)IL.
l>inh If 3.1:
Clzof: [a,b] ~ IR Lien tf:lC
tren [a,h], saD chof
tUYft
d(/i (ren [a,bl. Ne'u cac trQng c£1uplU{dng wjm)t/1(3adiiu ki~l1:
Trang 25
.[llrfl rMJ~fJIlute lid, jil/(ln loaf f);j{lo,ttJi,.
I
(3.2)
X(m)
I
- a < "\' w(m) <
- L... J -
X (m)
1+1
-a
,
Vi=O,...,m-l.
./=0
Khi eM fa co danh gid
h
(3.3)
[1I/(/,/',...,/(I1),611/'WII/)-
ff(t)dt
a
'
I1+1
[(11)
II
II
:::;'
if) 'II
(n + I)! i=O
[(
a + :t w;m)
- X~III)
+
J
/=0
(
x~::) - a -
t
/=0
:::;IIJ(I1)L 'I1Vlilll)t'
(11+1)! i=O
[(11)
11
11
:::;'
if)
(n + I)!
trong
do
[(II)
.
E
D(ic biet, ne'u
L'" [a b], v(h(m)= i=O, m-1 { I
max h(m)
-'
/(11)
.
[v(h(III))J1(b-a),
11
11
<
'"
dJ u theo cae tron g
.
thE
CXJ
}
,
h(m)
I
=x(m)-x(m)
1+1
Jim 1 ([,/',...,/(11),6
"(11('0))--+0 m .
m
I'
h
,w ) = fJ(t)dt
m
a
w(m).
J
Chun,g minh:
I
Ta dinh nghTa day cae s6 thlfc ai(:?= a +
Lw;m),
i = 0,..., m.
)=0
m
Chti
Y
m+1= a + "\' w(m) =
L... J
r~ng
a(m)
)=0
a + b - a = b.
Do giii thie't (3.2), ta co:
(m)
,(III)
at+1 E [X,
D)nh nghla
at)
(mT
,Xi+1
Vi = 0,..., m-1.
]
= a va Hnh,
a I(m) -
(m) (m)
ao
- Wo
i
i-I
ai(:;)-a;m) =0+ Lw;m)-oVO
Ill-I
+ L.., w(l11)- a-'\' L.., w(m) = w(m)
'\'
J
Jill'
/=0
m
va do d6
"\'
=w;m),(i=o,,:.,m-l)
)=0
III
=0
a(m) - a (111)
III
+I
III
Lwt)
/=0
m
(
(m)
L.. a,+1
1=0
-
a,
(1I1)
(m)
)r(X,
,(111)
)="\' }I, /(
L..
1=0
(m)
X, )
"+1
w;m)
J
]
Trang 26
Wlril rlrfJlrjjl"tr f;,.;'-AI,,;)/, 4x.!i fMiOftJi;
m
va
I
w;m)f(xj"'»)
)=0
-
(-I)
-
I
II
r=2
r.
r
m
r
I
(m)
x.
[I
-a-
)
)=0 {(
I
)-I
(m)
W
S
s=o
-
(m)
x
(
]
t
r
.
-a-
)
(m)
W
s=o
s.)
(r-I)
f
]
(x.("'»
)1]
=lm(f,f',...,f(II),6.m'~Vm)'
Ap d~Jngba'"td~ng thuc (2.1) ta thu du<)cdanh gia (3.3),8
'
"
"
.b - a ,
h
T nieJng h <)p kl11Ph an h O':lC ]a d ell: E = Xi(m) = a + 1---'--, (1 = 0,...,111)
;"/11
111
l<
'
va djnh nghla day cac cong th((c c~u phuong Hnh sf):
1",(1,;
,...,f(n) ,6.111' /11)
w
= fwt)
-
Ja+}(b-a)
} ~
j=O
I (-Ir [ f {(
r.
}(b-a)
j=O
r=2
)
111
IW~/11»
111
r
(
)
s=O
r
_ }(b-a)
- tw.~II1»
111
fr-I)
) }
s=O
(
a+}(b--a)
m
l
)
Ij
Khi do ta thu du<)ch~ qua sau:
He qua 3.1:
ClIo f: [a,b] ~ IR lien t{lC tren [a,b], sao clIo fen-I) la lien t~lC
tuy~t d/;'i tren [a,b]. Ne'u cac trQng c6.u phl1ang w;/II) hoa diJu ki~n:
t
i
1 ' (/II) i+1
.
-
I
b - a j=O
<-
I
-
11j
111
,
- 0
T-
,...,111
- 1
,
Khi de) ta C()danh gia:
h
1/11(f,f',...,f(II),6./II,w/ll)-
ff(t)dt
a
"+1
.
Il
~.
f(II)
"II
twjm)-i
(11+ I). ;=0 [( j=O
~ Ilf(lI)I\"
(11+I)!
trong
.
b-~
11
eM fell) E L,,[a,b].
~
(
111
)
II+l,
(
111
)J
b-a
+ (i+l)
(
.
(
111
"+I
.
) ~twY")
)=0
J
]
Trang 27
f/JriZ rl
h
Dgc bi~t,
trQng
ne'll
11/(11)11",
< co, thi J,~~ImC/,f',...,/(II), Wm)= It
Jf(t)dt d~u theo cae
\I,~III).
Chung minh h~ qua (3.1) suy tn!c tie'p tu dinh 19 (3.1).-
w
:1],;1 mfl'flI/If"'~.Jf('f, hf",n
Trang 28
kx,; (if.)/;(J(t)/d
CHUaNG 4
"
?
BA.T DANG THUC THUQC LO~I GRUSS
BJt d~ng thuc thuQc lo~i GrUss la bfft d~ng thuc tich phan chos\.f
lien h~ giC'(atkh phan cua mOt tich hai ham sf{va tich clIa cac tich phan
clla tung ham sf{.Trudc he"tta co bfft d~ng thuc sail:
Dinh If 4.1:
ClIo h, g .. [a,b]~ IR Ld /wi helm khd tfch saD cha r/Js hex)
va y sg(x) s Tve!i 111Qi
x
E
s
CP
[a,b], r/J,
ta c6
(4.1)
]
IT(h,g)1 ~ -«1) - ~Xr - r)
4
trong dr5
(4.2)
Ih
T(h,g) =-b-a
Ih]h
fh(x)g(x)dx--
a
b-a
fh(x)dx- b-a
a
fg(x)dx
a
va hling s6' ~ trang bat dcing thac (4.1) La td( n/1{1'trhea nghfa rang kh6ng
4
thi thay the' no bang mQt s6' khac n/1() /1(}n.
Vi~c chung minh bfft d~ng thuc nay duQc tlm thffy trong [7].
Trong nhi~u tai li~u [4, 5, 6, 11] va cac tai li~u tham khao trong do, thl
btlt d~ng thuc (4.1) g9i la btlt c1~ngthuc GrUss. T6ng quat hdn, btlt d~ng
thuc GrUss c1uQc
phat bi~u nhu sail:
Dinh If 4.2:
Chofvd g La/wi ham khd (ich tren [a,b]
xE[a,h]. Khi dr5ta cd:
(4.3)
IT(f,g~~ r; r (T(f,f))i,
va y s g(x) s r wJinu/i
Tran&.J9
.3M, d(f/~r; flute fff'/" I!./'rin !rxr( (!jdtt(J(~k(
(rong de) T(f,f),
T(f,g)
dur;c xac dinh nhu (4.2).
2
Ta cGng chu
9 r~ng
T(f,f)
=~
b-a
ff2(X)dx
[
a
-~ ( a
ff(X)dx
b-a
~ O.
J ]
Dinh 19 4.2 dfi dU<;1c
chung minh bdi Malic, Pecaric, va Ujevic [8] va bfft
d~ng th((c nay cho ta mQt danh gia t6t han b§t d~ng thuc cua Gruss (4.1).
Th~t v~y, gia sa h, g thoa cac gia thj.e"t,cua Dinh 19 4.1. Ap dl;1ng(4.3)
voif= g = h, ta co:
T(h,h)
5.
-~
2 {T(h,h»)'I2,
hay
(4.4 )
(T(h,h)t25.
2
Ap d1,lng (4.3) mQt l~n nua cho h, g ta co:
(4.5)
IT(h,g)l5. r - r (T(h,h)YI2,
2
va nhlfv~y ta co (4.1) nh(j vao (4.4) va (4.5).
Dinh ]9 sau day d1ja vao b§t d~ng thuc (4.3).
Dinh Ii 4.3:
Cho h : a= Xo < Xl < ... < Xk-l < Xk = b la mi)t phep chia cua dogn
[a,b], aj
(i
=0
, ... , k+l) la " k+2" diim saD cho ao
= a,
aj E[Xi-j,xd
(i= 1,...,k) va ak+l = b.
Gid .'Iiiding f :fa,b] -7 IR lien t~c tuy~t d6'i tren [a,b], saD cho
&;10 ham f(n) :(a,b) --f IR tl1(3a m 5. f(n)(x) 5. M vdi lriQi X 'E( a,b). Khi db, ta
co bitt ddng tIU1C:
'$41
clJJI// (Ilfre ((elt Af,';n
(4.6)
Jf(t)dt
a
+
I
/=I)'
Trang 30
l(Ja; (iJ.)(;(Jf~'i
(- ~;/
x[~{(/;-°.rf(j-')(X,.,)-(-I)J(~
~~
_
+o,) f(j~I)(X,)}]
'I+I
IC;+1
- jCn-I),(a)
( fCn-')~) a)(11+1). ) ;=0 ( 2 )
(b
<
-
M-n
1
2
b-
a
2IHI
h
k-l
[ r=O
2n+1
-!
(
h;
!
1+
2n+1h; )
(
[~
)
r {1
+ (-1)n+r }
. ]
r
28.
Cr
+
t=o
[ (211 1)(11!)2 ( 2 )
28;
{
-1 r
( )} ]
I
1
k-I
h
n+1
- ( (n+I)!t=.hc)
1
r
[~c;.,(~~;J
' s:
trang d a h i - Xi+/ - Xi va Vi = ai+J'
XI+I
2
(1+(-l)"H)]]
+ Xi
.
, 1= 0 ,...,
2
"2
1
k- 1.
Chung minh :
Sa dl;}ng (4.2) va (4.3) nhan vaG bdi (b-a) va chQn h(t) = Kn,dt}nhu dinh
nghTabdi (1.2) va gO) =j(II)(t} , t E[a,b], saG cho:
h
h
h
I
(4.7)
fKn,k(t)j(n)(t)dta
b~a a
fj(n) (t)dt a
fKn.k(t)dt
2
M
h
h
2
( fKn,k(t)dt J ] ,
~m [ (b-a)fK,~.k(t)dt-
~
.!.
Bay gio ta danh gia
h
fjcn)(t)dt = jcn-I)(b) - j(I1-I)(a)
a
va
h
G1
=
fKn,k (t)dt
a
k-I Xi,l 1
=2:: J,(t-ai+l)"dt
1=0 x/ n.
=
1
k-I
'" J( x
(n+1)!to'~
1
- a
i+1
)
i+1
n+l
n+l
(
-
}
xi-ai+l)
k-I
.
= (11+ l)IL",0{cX;+l-ai+I)"+1
1
+ (-1)" (a;+1 _X)"+I
}
,
.'1141 r1rf'~11//(h: Ifr/'-/l.!"l"
Trang 31
4m' (J.)6(J((':Jii
Dung djnh nghTa cua hj va OJ, ta co:
xi+l-ai+I=--u,
sao cho
hi
S;:'
1 k-I h
= (11+1)'i~o 2
,L !-{(
G1
hi
va
2
s;:
ai+l-xi=-+u,
2
"+1
,1+ 1
h'
<'5,
+ (-I)"
)
hi
= (11+1).,~() ~ C'~+I r ( 2 )
1 ,I: r=() (-(ji
[
( .-: + 8, )
2
}
~
"+I-r + (-1)" ~
C~+1 «(j, r
11+1-r
(2)
r=()
]
I1+'
,I(
hi
= (-1)"
(n + 1). i=()
2)
h
Cling v~y
2(ji
~c~+,
[
.
r {1+(-l)"H}
(
r=()
J
hi
]
I
= a K';.k (1)dt
G2
= IX} (t
-ai+I)2/1 dt
,~o Xi
=
(n!)2
1
1 2
~S~
~ (
(2 11+ 1)(11.) ,~O
2/1+1
Xi+1
-
)
ai+1
211+1
(
+ ai+1 - Xi
-
=
hi
I {( --(j
2'
(
~
Cr
(2n + 1)(n,)2 t=u( 2 )
)
2'
211+1 211+1
/
.
+ -+(j
)
(2n + 1)(11,)2 i~O
k-I
211+1
hi
k-I
1
}
-
211+1
1
-
)
2(j_
1+ -1
~
2,HI hi J
(
[~
}
r
{
r
( )}.]
Tv d~ng th(fc (1.1), ta co th€ vie't:
fK/I.k(1)/(11>(t)dt = (-1)" fl(t)dt
a
a
+ (-1)"
I
J~I
(- ~;j
J.
k-I
j
X
[ t;{(Xi+1 -a'+I)
(j-I)
/
j
(X'+I)-(Xi -ai+l)
(j-I)
I
(xJ} ]
va tv ve' tnii cua (4.7), ta tho duQc:
1
h
G]
=
I
a K/I.k (t)/(I1)
(t)dt
- b -
= (-1)" fl(t)dt + (-1)"
a
x[ ~{(';
-( -1)"
(
h
h
aa
I/(I1)(1)dtI KI1.kt)dt
(
a
I (-~r
J.
J~I
-O.)'fU."(x",>-(-l)J(;
(b) - 1(11-'),(a)
(b-a)(I1+I).
/(I1~I)
I ( !2)
) ,~()
2
+0,)' !U"(X,>}]
/H'
X
~ C';+I( 2(ji J
[ r~O
hi
r {I
+ (-I)"H
}
]
Trang 32
flJal d;h'fl. Illftr Ifrl!_/!/uiJ/ I(}(,; (!Job(}((ok,.
sail khi thay v~lOG1.
Tli vS phai ClIa (4.7) ta thay v~lO G1 va O2 nhu v~y:
h
G~
= (b -
f
2
h
f
a) K,~,k(t)dt - ( KlI,k (t)dt J
b- a
= (2n+l)(n!)2
211+1
h
k-]
t; ( ~)
25.
211+1
(
[ ~C;II+I
'
~)
{l+(-lY} ]
2
1
-
k-I
,I (
h
-.!...
2
M-
Do d6
[
IC~=1
) [ ,=0
(n+l)o;=o
2/S;
11+1 11+1
(
J
{I + (-I)"H}
0
~
111
hi
'
]J
IG11s 2 (G4)2,
va dinh 1y 4.3 du<;jcchung minh.8
He !1m'!4.1:
,
Cho of,h Wl ak du:qexae djnh nhu:trong djnh ly 4.3 va hdn nila ta
djnh nghia
(4.8)
)"
(, ==ai+1 - Xi+l + Xi
2
wJi mQi i = 0, o..,k-l saG eho
(4.9)
1(5ils~min{hi:i=l,...,k}..
2
Khi do heft dcing tluxe sau
(4.10)
IJf(t)dt+I(-~r J.
J=I
II
x[~{(~W(: ~8,J fu>',(x,.,)-C~ +8,J fU"(xJ}]
-
(f
<
-
(b ) - f
(b-a)(n+l)!
M -m
2
k -III+I
(a
b -a
[ (2n+l)(n!)2
,,"C'
)J
~~
.
/S'
'HI
i
h
"+I-'
!
( 2)
I + (-1 )"+'
.
j
{
211+1-,
k-12,HI
t;~ [ C'
. .
/S'.:...!.-
211+1
i
1+-1'
2
(h )
{()
I
2
!2
.
-
2.
1 ,IIC~+1(5;, ( 2 ) "+I-'{1+(-1)"H}
J ]
( (n+l)oi=or=O
}
]
{!1M, eMJ/!!I/,,!',.
I(~/I(;J/
Trang 33
(oa; (!j.)/ifJrtJl;
Chung minh dl(Qc suy tr~(c tie'"ptu (4.6) (j tren b~ng cach thay (4.8)
va lam mQt sf) it phep tinh don gian..
H~ml
4.2:
Cho /)(1'tky phiin hog.ch h : a
[a,bl,
(4.11)
chQ/1 c5;
= 0 trong
Iff(t)dt
+
= Xo < Xl
< ... <
Xk-l
<
Xk
= b cua
dog.n
(4.8), ta co ba't dcing tluie:
~ ;!~(/~r
-{I + (-1)"
{(-I)'
{ j(II-I) (b) Jl
fC;-I)(X;+I)-
jC;-I)(x;)}
"+1
I
j(II-I)(a»
h;
) ;=0 ( 2 )
(17 a)(n + I)!
-
-1
2
-
2(b-a)
2
~
k-I
211+1-
[ (2"+1)("!)'t=,(2)
{l+(-lr}k-I
!i
11+1
2
(n +l)l t=J 2) ) ] .
Chung minh duQc trifc tie'"psuy tu (4.10)..
Chu thich 4.1: Tnt/J/1glu!p n ie, ta sur ta (4.11) rang
(4.12)
Ifj(/)d' +
t ;!~(
~
r
{r
-1)1 ju-n
I
~ (M -m)~
!i
{x,.,):" jU-" (x')1
1
211+1
2.
(
-fin! .J2n + 1 [ ;=0 2 )
Tnt(lng
(4.13)
]
lu!p n chcfn, ta suy tll (4.11)
J/(t)dt +
t;!~( J
~
k -1)1 /(1"
-2 j(II-1) (b) - j(II-I) (a»
(
(b - a)(n + I)!
(x..,)-
I ( !i )
)
rang
/(j~" (x,)j
/HI
2
;=0
2
M
- m
2(b - a)
k-I
,;
h;
2,,+1
4
k-(
h;
,,+1
1
-
2
2 [(2n+I)(n!)'t=oh-) - «n +I)!)' [t=oh- ) J ] .
He gml 4.3: Cho .In) dur;c xae djnh nlnt trong Djnh iy 4.3 va xet phan
hogch d~u eua GOgHla,b], trong d6
b- a
Ek
:x; =a+i ( k'
) i=O,...,k
'Mal rlrfJ~11/"f(" Ilr/' f/'/in
Trang 34
Ime (iJdbf}rtJk"
Khi do, ta co b5t d~ng thuc sau:
(4.14)
J
b
hilI
Jf(t)dl
+
a
X
-
L 1 ( ~2k
J.
)
J=I
~ {(-IJJ
{I
fCH'( + (i + IJib -aJ)
a
+ (-1)" (r(II-I) (b) - /(11-1)(a) k
(b - a)(n + I)! J (
Jl
k
~(M-m)
Chung mink
- f(j~"(a + i(b~ aJ)}
b-a
n!-J2n+l
(
-.
b- a
/H1
2k )
II+1
2k )
D~ta vao cong th(tc (4.11) CJtren vdi chli
hi = Xi+1
-
x=
i
(
b- a
-,
k
)
m
i = O,...,k. .
y ding