TranK..:1Q
-{if],;, r!rf,'fI flutf'. fir/' p/'rl}/, !off; fi.fflo,~l;
PH{) L{)C I
HAM LIEN TUC TUYET DOl
.
.
Tinh cha't lien t\,ICtuy~t d6i c':ia mQt ham xac dinh tren mQt do<;ln
dil du'<,iC dl,Jng trong su6t lu~n van nay.
Sl(
Dinh nghia 1.1: MQt ham
f: [a,b] --+IR c1tfgQi la lien tl;lc tuy~t c1{;'i
tren ra,b] ne-u:
'\1[;> 0,38>
"
0: I:1.l(p;);=1
.l(a;)1 < £
voi mQi n va mQi hQ cac khoang roi nhau (app,),...,(a",p,,) trong [a,b] c6
"
t6ng cac c1Qdai
I:(p; 1=1
a; ) < 8
.
-Hi~n nhien mQt ham lien tl;}C
tuy~t d6i tren [a,b] thllien
tl;}c(don gian ta
la'y n =1).
Dinh Iv 1.1: Giel su /: [a,b] --+lR lien tl,lc va khong giam. Khi d6 hai
di~u ki~n sau la tu'ong dtfong:
i) f: [a,b] --+IR lien tl,lCtuy~t d6i.
ii) f kha vi hfiu he-t tren [a,b], f'E L1
([a,bD, va
x
/(x)-
lea) = J/(t)dl,(a
a
S x s b)
Chung minh Dinh 19 1.1 c6 th~ fim tha'ytrong [12,W. Rudin, p.146-147].
Dinh IS'1.2: Gia su
/: [a,b]--+IR lien tl;}C
tuy~t d6i. Dinh nghla
N
F(x) = Slip I:IIU;);=1
.lU;-l)I,(a s x S b)
trong d6 SUpla'y tren ta't ca N Va Hit ca cach chQn {l;}sao cho:
a = 10 < II < -.. < IN = X.
Khi d6 cac ha m F, F+f, F-fla khong giam va lien tl;}C
tuy~t d6i tren
[a,b].
Ch" thich 1.1: Ne-u F(b) < 00, tIll ta n6if co bien phan bi chqn tren [a,bj.
Gia trj F(h) dlf
[a,b].
Chang minh Dinh 19 1.2 c6 th~ fim tha'y trong [12, W. Rudin, p.148].
Trang 37
-mal dJII(j flute fir/' ;'/'((11 foa; (l/tJ6(Jf,:)ki
Dinh IV 1.3: Gicl stY f: [a,b] ~ IR lien t\le tuy~t do"j, khi d6 fkhcl vi hftu
he"t tren fa,h], f'E LI([a,bD,
va
x
(1.1)
f(x)-f(a)
= aJl(t)dt, (as:xS:b}
Chung minh: GQi F la bie"n phan loan phftn euaf, theo dinh ly 1.2, ta d~t
1
1
1; = 2(F +f), f2 = 2(F - I).
Ap d\lI1g soy dlin i) => ii) eua dinh ly 1.1 eho fj, h va VI f=frh ta suy ra
(1.1).
Dinh lv 1.4: Gicl stY f: [a,b~~ IR khcl vi t(,limQi x E[a,b]va f'E L1aa,bD,
khid6
x
(1.2)
/(x)-/(a)
= Jl(t)dt,
a
(as:xS:b).
Chang minh Dtnh ly I.4 co th~ Om tha"ytrong [12, W. Rudin, p.149-150].
w
mril d~I-(/"t(;
Trang 38
(fro/l,/!/uJn foat" f~jt(o,t)ti
~
PHI) L I) C II
"
K.2
VE BA T DANG THUC OSTROWSKI
Trong mQt bai baa [9] (Comment. Math. Helv. 10 (1938), p. 226227) A. Ostrowski aa chung minh mOt bat a~ng thuc sail day:
(ILl)
h
~
b-a
lex) -
(X-~)2
fI(I)dl
~+
4
~ (b - a) supII'(I)1
a
a
(b-a)
2
J
l
vai mQi X E [a,h],
trong do
l: [a,b ]
'
2
IR co d?o ham tren (a,b) va
~
f': (a, b) ~ JR bj ch~n trong (a,b), tuc la
Ilf'IL = a
suplf'(t)\ < +00 va h~ng s6
~ la t6t nhflt thea nghIa ding kh6ng th~ thay the' no b~ng mQt s6 nho
hdn.
Phac ho(,lcluIng minh cua Ostrmvski [9 J.
h
Chu
y rhng
1
ff(x)d\: = (b - a)flea + (b - a)l)dl.
0
(I
f)~t
h(t) =f(a+(b-a)t)
1
I
Ta co
=f(x),
fh(l)dl
0
tE[O,I].
h
= -b-a
va h'(t)
fI(x)d\:
= (b-a)f'(a+(b-a)t).
a
V~y (ILl) tucfng du'(jng vdi
I
(II.2)
1
her) - fh(s)ds
1
~ - + (t - _)2
[4
0
suplh' (1)1,\it E [0,1}
2 ] 0<1<1
i) Bat d~ng thuc (IL2) hi~n nhien dung ne'u Ilh'IL 0<1<1
= suplh'(t)1= O.
ii) Giii sa
Ilh'll", suplh'(I)1 ;/:o.
=
Bang cach thay h bdi
0<1<1
sa ding
~
Ilh't
ta co th~ giii
Ilht = 1.Ta chI din chung minh bat d~ng thlj'c'
I
(11.3)
her)-
fh(s)ds ~ ~+ (t - ~)2, vai
4
2
0
iii) D~t
1
get) = her)- fh(s)ds,
0
\if E [O,I}
suplh'(t)1= 1,\it E [0,1}
0<1<1
-:1],;1 r/,fl1//jhf{f'
(fr!t./lhrlu
Trang)
(oa; (!:!.(;O(rtJ!:;
9
I
ta co
ff;(S)ds = 0, suplg'(t)1 = 1.
0
(kl<1
V~y ta se chung minh bfft d~ng thuc
(II A)
1
Ig(t)1 ::; (t
-
1
2)2 + 4' \It
E [0,11
voi mqi ham g: [O,I]~ IR thaa cac di~u ki~n
I
(II.S)
fg(s)ds = 0, Ig'(t)! ::; I, \It E (0,1),
()
va hhng s6
~~
xufft hi~n trang (IIA) la t6t nhfft thea nghla r~ng khong the§;
thay the' no bhng m0t s6 nho hall.
* Chung minh (11.4).
Cho t,sE[0,11taco
Ig(t)-g(s)I=lg'(c)(t-s)I::;lt-sl.
V~y
(11.6)
g(t) -It -sl::; g(s)::; get) +Ir -051, \It,s E [0,1}
Tich phan bfft c1~ng thuc cua (11.6) thea s E [0,11 ta duQc
J
g(t)
-
J
]t
-
J
slds ::; fg(s)ds = o ::;get) + ]t
()
()
1
0
1
flt-slcts'=
f(t-s)ds+
f(s-t)ds
()
hay
1
0
Ig(t)l::;
=(1--)
V~y (11.4) dung.
1
1
2
+-
2
4
* H~ng sf) ~ xuflt hi~n trang (II A) 13 tf)t nhfft.
Gia slt C E IR thoa bfft c1~ng thuc:
(11.7)
Ig(t)j::; C +(t
-~J,
\It
E
[0,1]
-
slds
IfJrl( rlrfJ~'1-_ffl-,!~("II, Alld~
Tran~~9
!r)(/[f{J(/O(,:}ki
I
t£1co
= 0,
fr;(s)ds
0
suplg'(t)1 = 1.
(kl<1
V~y t£1se chilng minh bi{t d~ng thilc
(11.4)
1
Ig(t)I~(t-2Y+4'
1
VtE[a,11
voi mqi ham g: [a,l] ~ IR thaa cac di~u ki~n
1
(II.S)
fr;(s)ds = a, Ig'(t)1 ~ 1, Vt E (a,I),
()
vil h~ng s6
.~
xui{t hi~n trang (11.4)lil t6t nhi{t thea nghTa r~ng khong thc§
thay the' no b~ng mQt s6 nh6 hall.
* Chung minh (11.4).
Cho t,sE[0,11t£1co
Ig(t)-g(s)I=lg'(c)(t-s)I~lt-sl.
V~y
(11.6)
g(t)-I/-sl~g(s)~g(/)+It-sl,
VI,S E [a,l}
Tich phan bi{t d~ng th(fc cua (11.6) the a
I
g(t) -
]1 -
0
0
V~y (II.4) d\Jng.
2
= a ~ g(t)
I
Ig(t)1 ~ Jlt
1
]
slds ~ fg(s)ds'
1
=(t--)
[a,11 ta du<;Jc
I
()
hay
S E
2
+
]t -
0
I
- slds = J(t - s)ds + I(s -/)d~
0
+-
1
4
* I-I~ng s6 ~ xui{t hi~n trang (rIA) lil t6t nhi{t.
Gia su C E lR th6a bi{t d~ng thilc:
(11.7)
Ig(t)I~C+(t-~J,
VtE[a,l]
slds
Trang 40
3],;1 rfrf1l/l-111ft,.Iff-/' /t/'rill (Off; fJ.ibo((:}J.i
voi mQi ham g: [0,1]---).R thoi! cac di~u ki~n (11.5). Ta se chung minh
I
~
rangC~-.
1
4
Th~t v~y, chQn ham g(t) = t -~, ta co g tho a cac di~u ki~n (11.5)va co
It - ~I ,;
c + (t- ~ J,
'if
t
E
[0,1]
hay
2
max t -
(11.8)
Oslsl
(l
~
2
I
-
(
~
t-
2) J
= Os,sl/2
max
(.'I -
.'12) ~ s C.
=
4
Th~t fa, dtfa vao c15ngthuc (11.3), bftt c15ngthuc Ostrowski (ILl) co th~
chung minh kha don gian bon so vdi [9] nht( sau
1
f(x)--
h
h-a
a
1
ff(t)dt
x
h
=- b--a f(t-a)f'(t)dt+
f(t-b)f'(t)dt
0
X
I
s- b -a
=
x
[
h
f(t-a)f'(t)dt+
f(t-b)f'(t)dt
0
x
]
suplf'(t)1
o
~
(x - a)2 + (x - b)2
sup!f'(t)1
b- a[
2
] o
.
(x
= ~+
4
a+b2
(b-a)
)
22
(b-a)suplf'(t)l,
o
[
VxE[a,b],
1
* Nghi~m 1<;1
i hhng sef ~ xu5t hi~n trang (ILl) 13 testnhftt.
.
Gii! SU- C
JR thoa bftt dAng thuc
E
(II.9)
I
lex) - -
h
b-aa
voi illQi X E [a,b],
ff(t)dt
trongdo
I
S - +
4
(
x--
2
a+b
2 )
(b-a)
f: [a,b] ~ IR
2
(b - a) o
sup If'
co dC;lOam tren (a,b) va
h
1': (a,6) ---). bi ch~n trong (a,b). Ta se chung minh r~ng C ~ ~.
IR
'{1M? (/rim/llutf'
Trang 41
1ft-/' j,/,rfJl lorn' (MirlftJl;
Th~t v~y, chQn ham f(x) = x- a;h,
(11.10)
x-I
a+b
2
,(x-ll;~r
c+
~
I
va thay vao (11.9), ta thu du<;1C
2
(h- a)
l(b-a),'vfxE[a,b].
V~y
I
C~ sup x-2
a+bl
a5,x5,h b-a
-
(
x-~
a+b)
(h-a)
= sup (t-t2)=!,.
095,1/2
(II
4
Trang 42
Mal d;h~? (lute (fellfllriJ/ (oai fM;o(tiki
PUT) LT)C III
'J'\.".2
"
..
BAT DANG THUC GRUSS
Nam 1935 (xem[7], Math. Z., 39,(1935), p.215- 226), GRUSS da
chung minh b§t d~ng thuc sail day:
/
?
Dinh Iy 111.1: (Bat dang thuc Gruss).
ClIo f,R: [a,h]~ IR khd ({ch sao clIo:
l11r
::; f(x)::;
Mr,l11J.!::; g(x)::; Mg,Vx
.
Khi eM'
(IlL
I~Jf(x)g(X)dX-~Jf(X)dx~Jg(X)dx
b-a"
b-a
I)
H
-
,..,2
I
'
?
kl
,(//1fILla, uang t 111e
xay ra
va M .r =M g =1.
Chung minh:
E>~t
](1)
= lex) = f(a
.
E [a,b].
b-aa
l
::;~(M
4
.
-n1 )(M,-m).
f
=
R(X) = sign ( x-2
~
) ' VOl
1
n1f = n1g=-
+ (b - a)/), 0::; t ::;1,a::; x::; b
-
1 h
ff(t)dt = fJ(x)dx
b-a a
0
ta co,
1
.
Do do ta co th~ gia sli'r~ng a = 0, b =1. Khi d6 (111.1) vie't lC;li
I
(III.2)
"
Jf(x)g(x)dx
0
-
1
Jf(x)dxJ g(x)dx ::;_ (Mf - n1f XMg - n1J.!
1
4
0
0
I
: [0,1] ~ 1R kha tfch thoa:
trong d6, f,g
l11/::;/(x)::;M/,
mg::;g(x)::;Mg,VXE[0,1]
Hon nG'a, (IIL2) xay ra d~ng thuc khi
1
l(x)=g(x)
= sign ( x-2' )
/'
VOl
".
n1f =mg =-1
va
Mf =Mg ::'::1.
Trude he't ta din b6 d~ sau.
RG d~ 111.1:Gia sli' l,g
ta c6:
(III.3)
,
I
~
E L2 =
L2(0,1),
"
I
'
2 ~
f(x)g(x)dx -! f(x)c[r! g(x)dx::;[ !f2 (x)dx - ( ! f(x)dx ) ] Ilglll}'
I
g
,.
a+b
u lex)
f
$,;1 mill//- 111ft£" pltfill
Iklt
I
(IlIA)
I
I
Jf(x)g(x)dx
0
Chung minh B6 d~ 111.1:
Ta co I
I
(IlLS)
I
ff(x)g(x)dx
0
Trang 43
lord (Jd(;(J(t)k;
- ff(x)dx
0
~
[ Af(X)
I
- 0 f(x)d:
J
I
I
I
fg(x)d:< =
0
- !f(X)dX
I
R
0
J
0
Jr
I
= [ ff2(X)d'C
lex) - ff(x)d:< g(x)d:<
(fg'(X)dx
)~
I
I
2
2
I
- 2 ff(X)d:< ff(X)dX + ( ff(X)d:< )
]
IlgIIL'
I
= [If'(X)dx-(jf(X)dx HI,g""
Ba"tdftng thuc (Ill.3) dt(Qc chung minh.Ba't dftng thuc (IlIA) Ut«;1c
chung minh nhC1
vao bfit dftng thuc:
~
[jf'(X)dx-(!f(X)dx n
I
s[1f'(X)dX]' ~llfll"
B6 d~ sau day cho ta b§t dftng th((c III.2, tuc la dinh 19 III.! duQc chung
minh.B6 d~ 111.2:
Gia suf, gEL 00= L00(0,1),
thoa:
nIJ::;; f(x)::;; MJ,nI~ ::;;g(x)::;; M~,\;jx E [0,1].
Khi do :
(IIL6)
I
I
I
0
0
0
1
fj(x)g(x)d:< - fj(x)d:< fg(x)d:< ::;; (M J - nIJ)(Mg - nIg).
I
4
Chung minh B6 d~ 111.2:Voi c, d E JR, trong ba"tdftng thlic (IlIA) thay
f, g baif -c, g -d, ta co:
(III. 7)
Ihf(x) 0
c ][g(x) - d]dx - hf(x)
0
v~ tnii cua (III.7) la:
(111.8)
VI'
- c ]d:
0
I
I
= Hj(x)-c][g(x)-d]d:<0
Hj(x)-c]d:
I
I
1
0
1
= IIf(x)g(x)d:< - I f(x)d:(I g(x)dx
0
0
I
0
0
Trang 44
. mal d(/J~r fluff' ffrl!Ji.ll(iJi frl(/('fJ:}6()(~k;
Chli
Y
rhng, III-ell", ~llf -eIIL~' o do suy tll (III.7), (IIL8) rhng:
d
I
(III. 9)
1
ff(x)~(x)dx-
0
I
fI(x)dx
Ve,d E IR
fg(x)dxl ~lIf -4.~llg-dll/.~'
0
0
Chon,
c = ~(M f + 111} d = ~(M I: + 111 ta thu dudc:
}
2
J
2
I!
'
= ~ M f - 111r = ~(M f - 111r)
III - ell ~ M I - ~(M f + m1)
I,
.
2
2
2
.'
TltOng ttf, ta (1uQc:
I
jig- d c ~ -2 ( M I: - 111I! )
,
'0
I
1
.
1
.
1
ll
.
Cu6i clIng,
(III.I0)
I
I
I
1
f I(x)g(x)dx - f f(x)dxf 0 g(x)d~ ~ -(M
0
0
4
XMg -l11g 1
f -l11f
I
V~y b6 de (JIL2) dl(QCcl1lIng minh,lI
B6 de sail day cho ta ba"tdfing thuc (4,3). (Dinh Iy 4.2, chuang IV).
B6 d~ 111.3:
Giil St( fEl},~Er' thoa
Khi d6
(111.11)
I
I
I
fI(x)g(x)dx
0
I11I! g(x)~MI:,VxE[O,l].
~
I
I
- fI(x)dx
fg(x)dx
0
~ ~(Mg - I11g) ff2(X)dx 2
[0
0
Chung minh Be) d~ 111.3:
Trang ba"td~ng thuc (lII.3) thay g bdi g-d, voi dEIR ta co:
(III. 12)
II
ff(x)[g(x)-d]dx-
I
ff(x)dr
0
0
s
I
f[g(x)-d]dx
0
[1 ['(x)<1<
-(1
f(x)dx
I
)}Ig - d1!"
ma ve"tnii cua (IIL12) la:
I
(III. 13)
VT = Iff(x)[g(x)
I'
-
d]dx - ff(x)dx
0
I
= I fJ(x)g(x)dx
0
I
0
I
~g(x) - d]dx
0
I
- fJ(x)dx fg(x)dxl.
0
0
ChQn d=~(MI! +1111!)3 thu dl(QC VPcua
t
2
(III. 12) la
I
( 0ff(x)dx
2
J ]
~
,
Trang 45
$fil dtfl'{f /lute licit jtlui4t kat @oAouMi
1
(III. 14 )
rr jig-dilL'
Vp= [!f2(X)dx-(Jf(X)dX
1
J Ilg-4..
~ [fJ2(X)dx-(fJ(X)dx)'
1
~[Jf2(X)dx-(Jf(X)dx)']'
~(Mg
-mg)
1
JT.
= ~ (Mg -mg{ fi2(X)dx-(fi(x)dx
V~y bftt d~ng thuc (III.It) duQc SUr tit (III. 12) - (III. 14).Chu thich 111.1: f)~ng thuc tfong (III.2) Kay fa khi:
(III.I5)
.
". M
l
.
)
I
Th~tv~y
!(x)=g(x)=slgnx-2",vOl
(
I
f=
g=
va
I
0
I
0
I
I
f/(x)dx
0
=
fg(x)dx
0
,-
f/(X)dx
(0
)
=
v€ tnii cua (III.2) Hi:
I
VT = If/(x)g(x)dx
0
vfi phai cua (III.2) vdiMf
(III.I8)
-
I
= f/(x)dx + f/(x)dx.
Ii
[0
2
f(-I)dx+
(0
I
2
Ii
2
Ii
(III. 17)
mf=mg=-l.
f/(x)g(x)dx = f/2(X)dx = fIdx = 1,
0
(III.I6)
1 ,
M
JIdx
Ii J
=0.
I
f/(x)dx fg(x)dxl = 1.
0
=M~ =1 va
0
m/ =mg=-1
1
1
VP= 4(Mf -mf )(Mg -mg) =4(1 + 1)(1 1)= 1.
+
v~y VT=VP va do d6 (III.2) Kay fa d~ng thuc.-
la
J
£lJdl dil~'!I tluJ:(; wit jtluin /au:
t
Trang 46
(!J)tiOf4Id
Chu thich III.~:
Theo Chu thich (III. 1) thl hang sf) ~trong bfft dAng thuc (IIL2) la
4
tf)t nhfft. Th~t v~y, ne"ubfft dAng thuc (UL2) dung vdi hang sf) C thay cho
~
""
1
4
h ang so -:
1
(IlL 19)
1
fl(x)g(x)dx
0
vdi ffiQi ham f, g : [0,1]
1
- fJ(x)dx fg(x)dxl
0
0
5.
C(M j - mj )(M
g
- mg)
IR khii tich thoa:
~
mj
Ta chQn lex) = g(x) = Sign(x - ~). vdi
Mj
= Mg = 1 va mj = mg
=-1.
Khi d6 (IlL 19) tra thanh
1
(IIl.20)
I
1
fJ(x)g(x)dx - fJ(x)dx fg(x)dxl = 15.C(M j -
0
0
0
mj
)(M g - mg)
= 4C
hay 15. 4C hay C ~ 1/4.
V~y hang sf) C = 1/4 trong (IIl.2) la tf)t nhfft.8
Chu thich III.3:
BAng thuc trong (III. 11) xiiy ra khi:
(IIl.2l)
l(x)=g(X)=sign(x-~).
vdi Mj =Mg=1 va mf =mg=-1.
Hon nlla, hang sf) 1/ 2 trong bfft dAngthuc (IlLll) la tf)t nhfft.8
w