Tải bản đầy đủ (.pdf) (8 trang)

Tuyển tập chuyên đề và kỹ thuật tích phân, nguyên hàm

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (171.69 KB, 8 trang )

A
1
=

dx
(x + 1) (x + 2)
1
(x + 1) (x + 2)
=
α
x + 1
+
β
x + 2
α , β
α = lim
x→−1
x + 1
(x + 1) (x + 2)
= lim
x→−1
1
x + 2
=
1
−1 + 2
= 1
β = lim
x→−2
x + 2
(x + 1) (x + 2)


= lim
x→−2
1
x + 1
=
1
−2 + 1
= −1
x = 0
1
(0 + 1) (0 + 2)
=
α
0 + 1
+
β
0 + 2

1
2
= α +
1
2
β
x = 1
1
(1 + 1) (1 + 2)
=
α
1 + 1

+
β
1 + 2

1
6
=
1
2
α +
1
3
β
α , β



α +
1
2
β =
1
2
1
2
α +
1
3
β =
1

6


α = 1
β = −1
1
(x + 1) (x + 2)
=
α
x + 1
+
β
x + 2

1
(x + 1) (x + 2)
=
α (x + 2) + β (x + 1)
(x + 1) (x + 2)
=
x (α + β) + 2α + β
(x + 1) (x + 2)

α + β = 0
2α + β = 1


α = 1
β = −1
1

(x + 1) (x + 2)
=
1
x + 1

1
x + 2

dx
(x + 1) (x + 2)
=

dx
x + 1


dx
x + 2
= ln |x + 1| − ln |x + 2| + c = ln



x + 1
x + 2



+ c
A
2

=

x + 2
x (x − 2) (x + 5)
dx
x + 2
x (x − 2) (x + 5)
=
α
x
+
β
x − 2
+
χ
x + 5
α = lim
x→0
x (x + 2)
x (x − 2) (x + 5)
= lim
x→0
x + 2
(x − 2) (x + 5)
=
0 + 2
(0 − 2) (0 + 5)
= −
1
5

β = lim
x→2
(x − 2) (x + 2)
x (x − 2) (x + 5)
= lim
x→2
x + 2
x (x + 5)
=
2 + 2
2 (2 + 5)
=
2
7
χ = lim
x→−5
(x + 5) (x + 2)
x (x − 2) (x + 5)
= lim
x→−5
x + 2
x (x − 2)
=
−5 + 2
−5 (−5 − 2)
= −
3
35
x = −1
−1 + 2

−1 (−1 − 2) (−1 + 5)
=
α
−1
+
β
−1 − 2
+
χ
−1 + 5
⇔ −α −
1
3
β +
1
4
χ =
1
12
x = 1
1 + 2
1 (1 − 2) (1 + 5)
=
α
1
+
β
1 − 2
+
χ

1 + 5
⇔ α − β +
1
6
χ = −
1
2
x = 3
3 + 2
3 (3 − 2) (3 + 5)
=
α
3
+
β
3 − 2
+
χ
3 + 5

1
3
α + β +
1
8
χ =
5
24
α , β , χ










−α −
1
3
β +
1
4
χ =
1
12
α − β +
1
6
χ = −
1
2
1
3
α + β +
1
8
χ =
5

24










α = −
1
5
β =
2
7
χ = −
3
35
x + 2
x (x − 2) (x + 5)
=
α
x
+
β
x − 2
+
χ

x + 5

x + 2
x (x − 2) (x + 5)
=
α (x − 2) (x + 5) + βx (x + 5) + χx (x − 2)
x (x − 2) (x + 5)

x + 2
x (x − 2) (x + 5)
=
x
2
(α + β + χ) + x (3α + 5β − 2χ) − 10α
x (x − 2) (x + 5)





α + β + χ = 0
3α + 5β − 2χ = 1
−10α = 2











α = −
1
5
β =
2
7
χ = −
3
35
x + 2
x (x − 2) (x + 5)
= −
1
5x
+
2
7 (x − 2)

3
35 (x + 5)

x + 2
x (x − 2) (x + 5)
dx = −
1
5


dx
x
+
2
7

dx
x − 2

3
35

dx
x + 5
= −
1
5
ln |x| +
2
7
ln |x − 2| −
3
35
ln |x + 5| + c
A
3
=

x
2

(−3x
2
− 2x + 5) (x + 1)
dx
ax
2
+ bx + c x
1
, , x
2
ax
2
+ bx + c = a (x − x
1
) (x − x
2
)
−3x
2
− 2x + 5 = −3 (x − 1)

x +
5
3

x
2
(−3x
2
− 2x + 5) (x + 1)

= −
x
2
3 (x − 1)

x +
5
3

(x + 1)
=
α
x − 1
+
β
x +
5
3
+
χ
x + 1
α = lim
x→1




x
2
(x − 1)

3 (x − 1)

x +
5
3

(x + 1)



= lim
x→1




x
2
3

x +
5
3

(x + 1)



= −
1

16
β = lim
x→−
5
3




x
2

x +
5
3

3 (x − 1)

x +
5
3

(x + 1)



= lim
x→−
5
3



x
2
3 (x − 1) (x + 1)

= −
25
48
χ = lim
x→−1




x
2
(x + 1)
3 (x − 1)

x +
5
3

(x + 1)



= lim
x→−1





x
2
3 (x − 1)

x +
5
3




=
1
4
x = 0
x
2
(−3x
2
− 2x + 5) (x + 1)
=
α
x − 1
+
β
x +

5
3
+
χ
x + 1
⇔ −α +
3
5
β + χ = 0
x = 2
x
2
(−3x
2
− 2x + 5) (x + 1)
=
α
x − 1
+
β
x +
5
3
+
χ
x + 1
⇔ −
4
33
= α +

3
11
β +
1
3
χ
x = 3
x
2
(−3x
2
− 2x + 5) (x + 1)
=
α
x − 1
+
β
x +
5
3
+
χ
x + 1
⇔ −
9
112
=
1
2
α +

3
14
β +
1
4
χ









−α +
3
5
β + χ = 0
α +
3
11
β +
1
3
χ = −
4
33
1
2

α +
3
14
β +
1
4
χ = −
9
112










α = −
1
16
β = −
25
48
χ =
1
4
x
2

(−3x
2
− 2x + 5) (x + 1)
= −
x
2
3 (x − 1)

x +
5
3

(x + 1)
=
α
x − 1
+
β
x +
5
3
+
χ
x + 1
⇔ −
x
2
3 (x − 1)

x +

5
3

(x + 1)
=
α

x +
5
3

(x + 1) + β (x − 1) (x + 1) + χ (x − 1)

x +
5
3

(x − 1)

x +
5
3

(x + 1)
⇔ x
2
= x
2
(α + β + χ) + x


8
3
α +
2
3
χ

+
5
3
α − β −
5
3
χ







α + β + χ = 1
8
3
α +
2
3
χ = 0
5
3

α − β −
5
3
χ = 0










α = −
1
16
β = −
25
48
χ =
1
4
x
2
(−3x
2
− 2x + 5) (x + 1)
= −
x

2
3 (x − 1)

x +
5
3

(x + 1)
= −
1
16 (x − 1)

25
48

x +
5
3

+
1
4 (x + 1)

x
2
(−3x
2
− 2x + 5) (x + 1)
dx = −
1

16

dx
x − 1

25
48

dx
x +
5
3
+
1
4

dx
x + 4
= −
1
16
ln |x − 1| −
25
48
ln



x +
5

3



+
1
4
ln |x + 4| + c
A
4
=

x − 1
(x
2
+ 4x + 5) (x
2
− 4)
dx
ax
2
+ bx + c = 0 ∆ = b
2
− 4ac < 0
ax
2
+ bx + c = a (x − x
1
) (x − x
2

) x
1
= α + βi, x
2
= α − βi, i
2
= −1
x
2
+ 4x + 5 = (x + 2 + i) (x + 2 − i)
x − 1
(x
2
+ 4x + 5) (x
2
− 4)
=
x − 1
(x + 2 + i) (x + 2 − i) (x
2
− 4)
=
α
x + 2 + i
+
β
x + 2 − i
+
χ
x − 2

+
δ
x + 2
α = lim
x→−2−i
(x − 1) (x + 2 + i)
(x + 2 + i) (x + 2 − i) (x
2
− 4)
= lim
x→−2−i
x − 1
(x + 2 − i) (x
2
− 4)
= −
13
34

1
34
i
β = lim
x→−2+i
(x − 1) (x + 2 − i)
(x + 2 + i) (x + 2 − i) (x
2
− 4)
= lim
x→−2+i

x − 1
(x + 2 + i) (x
2
− 4)
= −
13
34
+
1
34
i
χ = lim
x→2
(x − 1) (x − 2)
(x
2
+ 4x + 5) (x − 2) (x + 2)
= lim
x→2
x − 1
(x
2
+ 4x + 5) (x + 2)
=
1
68
δ = lim
x→−2
(x − 1) (x + 2)
(x

2
+ 4x + 5) (x − 2) (x + 2)
= lim
x→−2
x − 1
(x
2
+ 4x + 5) (x − 2)
=
3
4
x − 1
(x
2
+ 4x + 5) (x
2
− 4)
=

13
34

1
34
i
x + 2 + i
+

13
34

+
1
34
i
x + 2 − i
+
1
68
x − 2
+
3
4
x + 2
=
−13x − 27
17 (x
2
+ 4x + 5)
+
1
68 (x − 2)
+
3
4 (x + 2)
x − 1
(x
2
+ 4x + 5) (x
2
− 4)

=
αx + β
x
2
+ 4x + 5
+
χ
x − 2
+
δ
x + 2
x = 0
1
5
β −
1
2
χ +
1
2
δ =
1
20
x = 1
1
10
α +
1
10
β − χ +

1
3
δ = 0
x = 3
3
26
α +
1
26
β + χ +
1
5
δ =
1
65
x = 4
4
37
α +
1
37
β +
1
2
χ +
1
6
δ =
1
148
















1
5
β −
1
2
χ +
1
2
δ =
1
20
1
10
α +
1

10
β − χ +
1
3
δ = 0
3
26
α +
1
26
β + χ +
1
5
δ =
1
65
4
37
α +
1
37
β +
1
2
χ +
1
6
δ =
1
148

















δ = −
2
5
β + χ +
1
10
1
10
α −
1
30
β −
2
3

χ = −
1
30
3
26
α −
27
650
β +
6
5
χ = −
3
650
4
37
α −
22
555
β +
2
3
χ = −
11
1110

















α = −
13
17
β = −
27
17
χ =
1
68
δ =
3
4
x − 1
(x
2
+ 4x + 5) (x
2
− 4)
=

−13x − 27β
17 (x
2
+ 4x + 5)
+
χ
68 (x − 2)
+

4 (x + 2)
x − 1
(x
2
+ 4x + 5) (x
2
− 4)
=
αx + β
x
2
+ 4x + 5
+
χ
x − 2
+
δ
x + 2
⇔ x − 1 = (αx + β)

x

2
− 4

+ χ

x
2
+ 4x + 5

(x + 2) + δ

x
2
+ 4x + 5

(x − 2)
⇔ x − 1 = x
3
(α + χ + δ) + x
2
(β + 6χ + 2δ) + x (−4α + 13χ − 3δ) + (−4β + 10χ − 10δ)










α + χ + δ = 0
β + 6χ + 2δ = 0
−4α + 13χ − 3δ = 1
4β − 10χ + 10δ = 1










δ = −α −χ
β + 6χ + 2 (−α − χ) = 0
−4α + 13χ − 3 (−α − χ) = 1
4β − 10χ + 10 (−α − χ) = 1










δ = −α −χ
−2α + β + 4χ = 0

−α + 16χ = 1
−10α + 4β − 20χ = 1
















α = −
13
17
β = −
27
17
χ =
1
68
δ =
3
4

x − 1
(x
2
+ 4x + 5) (x
2
− 4)
=
−13x − 27
17 (x
2
+ 4x + 5)
+
1
68 (x − 2)
+
3
4 (x + 2)

x − 1
(x
2
+ 4x + 5) (x
2
− 4)
dx = −
13
34

2x +
54

13
x
2
+ 4x + 5
dx +
1
68

dx
x − 2
+
3
4

dx
x + 2
= −
13
34

(2x + 4)
x
2
+ 4x + 5
dx −
1
17

dx
x

2
+ 4x + 5
+
1
68

dx
x − 2
+
3
4

dx
x + 2
= −
13
34

d

x
2
+ 4x + 5

x
2
+ 4x + 5

1
17


dx
(x + 2)
2
+ 1
+
1
68

dx
x − 2
+
3
4

dx
x + 2
= −
13
34
ln


x
2
+ 4x + 5



1

17
arctan (x + 2) +
1
68
ln |x − 2| +
3
4
ln |x + 2| + c
A
5
=

x
x
3
+ 1
dx
x
x
3
+ 1
=
x
(x + 1) (x
2
− x + 1)
=
α
x + 1
+

β
x −
1
2


3
2
i
+
χ
x −
1
2
+

3
2
i
α = lim
x→−1
x
x
2
− x + 1
= −
1
3
β = lim
x→

1
2
+

3
2
i
x
(x + 1)

x −
1
2
+

3
2
i

=
1
6


3
6
i
χ = lim
x→
1

2


3
2
i
x
(x + 1)

x −
1
2


3
2
i

=
1
6
+

3
6
i
x
x
3
+ 1

= −
1
3 (x + 1)
+
1
6


3
6
i
x −
1
2


3
2
i
+
1
6
+

3
6
i
x −
1
2

+

3
2
i
= −
1
3 (x + 1)
+
x + 1
3 (x
2
− x + 1)
x
x
3
+ 1
=
α
x + 1
+
βx + χ
x
2
− x + 1
x = 0 0 = α + χ
x = 1
1
2
=

1
2
α + β + χ
x = 2
2
9
=
1
3
α +
2
3
β +
1
3
χ







α + χ = 0
1
2
α + β + χ =
1
2
1

3
α +
2
3
β +
1
3
χ =
2
9










α = −
1
3
β =
1
3
χ =
1
3
x

x
3
+ 1
= −
1
3 (x + 1)
+
x + 1
3 (x
2
− x + 1)
x
x
3
+ 1
=
α
x + 1
+
βx + χ
x
2
− x + 1
⇔ x = α

x
2
− x + 1

+ (βx + χ) (x + 1)






α + β = 0
−α + β + χ = 1
α + χ = 0










α = −
1
3
β =
1
3
χ =
1
3

x
x

3
+ 1
dx = −
1
3

dx
x + 1
+
1
6

2x + 2
x
2
− x + 1
dx
= −
1
3

dx
x + 1
+
1
6

2x + 1
x
2

− x + 1
dx +
1
6

dx
x
2
− x + 1
= −
1
3

dx
x + 1
+
1
6

d

x
2
− x + 1

x
2
− x + 1
+
1

6

dx

x −
1
2

2
+
3
4
= −
1
3
ln |x + 1| +
1
6
ln


x
2
− x + 1


+
1
3


3
arctan
2x − 1

3
+ c
A
6
=

dx
x
8
+ 1
x
8
+ 1 =

x
4
+ px
2
+ 1

x
4
− px
2
+ 1


= x
8
+

2 − p
2

x
4
+ 1
2 − p
2
= 0 ⇔ p = ±

2
⇒ x
8
+ 1 =

x
4
+

2x
2
+ 1

x
4



2x
2
+ 1

x
4
+

2x
2
+ 1 =

x
2
+ qx + 1

x
2
− qx + 1

= x
4
+

2 − q
2

x
2

+ 1
2 − q
2
=

2 ⇔ q = ±

2 −

2
⇒ x
4
+

2x
2
+ 1 =

x
2
+

2 −

2x + 1

x
2



2 −

2x + 1

x
4


2x
2
+ 1 =

x
2
+ rx + 1

x
2
− rx + 1

= x
4
+

2 − r
2

x
2
+ 1

2 − r
2
= −

2 ⇔ r = ±

2 +

2
⇒ x
4


2x
2
+ 1 =

x
2
+

2 +

2x + 1

x
2


2 +


2x + 1

x
8
+ 1 =

x
2
+

2 −

2x + 1

x
2


2 −

2x + 1

x
2
+

2 +

2x + 1


x
2


2 +

2x + 1


1
x
8
+ 1
=
1
8

2 −

2x + 2
x
2
+

2 −

2x + 1
+
1

8


2 −

2x + 2
x
2


2 −

2x + 1
+
1
8

2 +

2x + 2
x
2
+

2 +

2x + 1
+
+
1

8


2 +

2x + 2
x
2


2 +

2x + 1

dx
ax
2
+ bx + c
=
1
a

dx
x
2
+
b
a
x +
c

a
, 4ac − b
2
> 0
=
1
a

dx

x −
−b
2a

2
+


4ac − b
2
2a

2
=
1
a

dx
(x − p)
2

+ q
2
(1)
p =
−b
2a
, q =

4ac − b
2
2a
, x = p + qt
=
1
aq

1
t
2
+ 1
dt =
2

4ac − b
2

1
t
2
+ 1

dt =
2

4ac − b
2
arctan t
=
2

4ac − b
2
arctan
2ax + b

4ac − b
2
+ C
t =
x − p
q
=
2ax + b

4ac − b
2

xdx
ax
2
+ bx + c

=
1
2a

2ax + b − b
ax
2
+ bx + c
dx =
1
2a

2ax + b
ax
2
+ bx + c
dx −
b
2a

1
ax
2
+ bx + c
dx
=
1
2a
ln



ax
2
+ bx + c



b
2a

dx
ax
2
+ bx + c
+ C
a = c = 1, ∆ = 4 − b
2
> 0

Ax + B
x
2
+ bx + 1
dx = A

xdx
x
2
+ bx + 1
+ B


dx
x
2
+ bx + 1
=
2B −Ab

4 − b
2
arctan
2x + b

4 − b
2
+
A
2
ln


x
2
+ bx + 1


+ C
A
6.1
=

1
8


2 −

2x + 2
x
2
+

2 −

2x + 1
dx =
=

2 +

2
8
arctan
2x +

2 −

2

2 +


2
+

2 −

2
16
ln

x
2
+

2 −

2x + 1

+ C
1
A
6.2
=
1
8



2 −

2x + 2

x
2


2 −

2x + 1
dx =
=

2 +

2
8
arctan
2x −

2 −

2

2 +

2


2 −

2
16

ln

x
2


2 −

2x + 1

+ C
2
A
6.3
=


2 +

2x + 2
x
2
+

2 +

2x + 1
dx =
=


2 −

2
8
arctan
2x +

2 −

2

2 −

2
+

2 +

2
16
ln

x
2
+

2 +

2x + 1


+ C
3
A
6.4
=



2 +

2x + 2
x
2


2 +

2x + 1
dx =
=

2 −

2
8
arctan
2x −

2 −


2

2 −

2


2 +

2
16
ln

x
2


2 +

2x + 1

+ C
4
A
6
= A
6.1
+ A
6.2
+ A

6.3
+ A
6.4
x
8
+ 1 = 0 ⇔ x
8
= −1 = cos (π + k2π) + i sin (π + k2π)
⇒ x = cos

π + k2π
8

+ i sin

π + k2π
8

k = 0, , 7
sin
π
8
= sin

8
= cos

8
=
1

2

2 −

2, sin

8
= sin

8
= cos
π
8
=
1
2

2 +

2 ,
cos

8
= cos

8
= −
1
2


2 −

2 ,

dx
1 + x
8
= −
1
8
3

k=0

ln

x
2
− 2x cos

(2k + 1) π
8

+ 1

× cos

(2k + 1) π
8


+
+
1
4
3

k=0



arctan



x sin
(2k + 1) π
8
1 − x cos
(2k + 1) π
8






× sin

(2k + 1) π
8


+ C, k = 0, , 7

×