Tải bản đầy đủ (.doc) (227 trang)

11 chuyên đề ôn thi THPT quốc gia môn toán

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (3.14 MB, 227 trang )

11 chuyên đề ôn thi THPT quốc gia môn Toán
CHUYÊN ĐỀ 1. KHẢO SÁT HÀM SỐ VÀ CÁC BÀI TOÁN LIÊN QUAN
Biên soạn và sưu tầm: Ngô Văn Khánh – GV trường THPT Nguyễn Văn Cừ-Bắc Ninh
1. Chủ đề 1: Bài toán về tiếp tuyến
1.1. Dạng 1Tiếp tuyến của đồ thị hàm số tại một điểm
 
       x y C y f x∈ =

 
 y f x=



 k f x=

 !
 y f x=
"#!
( )
 
M x y
$%&'
( )

  
 y y f x x x− = −
()
 
 y f x=
Ví dụ 1*+ !
,


, -y x x= − +
*./$%&'*
 "#!0123.
4 "#!+ 5678.
 "#!57
Giải:
a)9$%&'*"#!
  
  M x y
:"
  
  y y f x x x− = −

8
 , ,y x= −

 2 y⇒ − =
.
;+$%&'*"#!0123< 
3 y − =
73.
 b)=
8 3x y= ⇒ =
.
>87?.;+$%&'*"#!+ 5678< 
3 ? 8 3 ? 2@ ? 22y x y x y x− = − ⇔ − = − ⇔ = −
c)
, ,

- , - - ,  ,

,
x
y x x x x x
x
=


= ⇔ − + = ⇔ − = ⇔ = −


=

A9$%&'"*"#!-.
>71,.
;+$%&'< 
- , y x− = − −
71,6A
A9$%&'"*"#!
 ,-−
.
8
 , , , , By − = − − =
;+$%&'< 
- B ,y x− = +

B B , -y x= + +
.
A$%C$%&'*"
 ,-−
< 

B B , -y x= − +
.
Ví dụ 2:*+* !
, 8
8 8 Dy x x x= − + −
.
 /$%&'()*"+#!*()&E+ .
4 /$%&'()*"+#!*()&E.
/$%&'()*"#!6

F!GH6

7.
Giải:

8
 , D 8y x x= − +
.IJ
( )
 
M x y
< #!'$%&'
1
11 chuyên đề ôn thi THPT quốc gia môn Toán
     
      2y y y x x x y y x x x y− = − ⇔ = − +
a)K
 M C Ox= I
'


7( 6

< !$%&'

, 8
8 8 D  8x x x x− + − = ⇔ =
>87BLL&G4( +2$M$%&'

B 8y x= −
b)K
 M C Oy= I
'6

7

 Dy y⇒ = = −
( 

   8y x y= =
LL&G
4( +2$M$%&'
8 Dy x= −
.
c)K6

< !$%&'H7.H7B6ND.
H7
 
8 8 @@
B D 

, , 83
x x x y y
 
⇔ − = ⇔ = = ⇒ = = −
 ÷
 


8 8
  
, ,
y x y
 
= =
 ÷
 
LL&G4( +2$M$%&'
8 2
, 83
y x= −
Ví dụ 3: *+ !
,
, 2y x x= − +
*
/$%&':()*#!+ 5678.
4:O<"*"#!P'!J5#!P.
Giải
a) :"#!*+ 5
 
8 ,x y= ⇒ =


8

  , ,   8 ?y x x y x y= − ⇒ = =
9$%&':"#!*<
  
   ? 8 , ? 2-y y x x x y y x y x= − + ⇒ = − + ⇒ = −
/Q$%&':"#!*< 
? 2-y x= −
b)IRS:O*"P
TU$%&'
( )
( )
, , 8
8
, 2 ? 2- 28 2B  8 8 @ 
D
x
x x x x x x x x
x
=

− + = − ⇔ − + = ⇔ − + − = ⇔

= −

/Q
( )
D -2N − −
< #!V'!

Ví dụ 4:*+ !
,
, 2  y x x C= − +
( #!
 
  A x y ∈
**"
#!0O*"#!WXL#!0.'!+ 5#!WY+

x
Lời giải :
/'#!
 
  A x y ∈
*
,
  
, 2y x x⇒ = − +

 8  8
 
, ,   , ,y x y x x= − ⇒ = −
 !:"
 8 ,
      
8 ,
  
   , ,  , 2
, ,  8 2  
y y x x x y y x x x x x

y x x x x d
= − + ⇔ = − − + − +
⇔ = − − − +
9$%&'+ 5+#!:( *
2
11 chuyên đề ôn thi THPT quốc gia môn Toán

, 8 , , 8 , 8
      
8





, 2 , ,  8 2 , 8     8  
  
 
8
8 
x x x x x x x x x x x x x x
x x
x x
x
x x
x x
− + = − − − + ⇔ − + = ⇔ − + =
=

− =


⇔ ⇔ ≠


= −
+ =


/Q#!W+ 5

8
B
x x= −
++4.+!
Ví dụ 5: *+ !
, 8
2
8 ,
,
y x x x= − +
*./$%&':*"
#!+ 5

x
F!G


  y x =
( Z!:< *F
[.

Giải

 8 
D , 8 Dy x x y x= − + ⇒ = −

  
8
   8 D  8 8 
,
y x x x M= ⇔ − = ⇔ = ⇒
K"

k =
 

  8 2y x y= = −
/Q:*"#!
8
8
,
M
 
 ÷
 
$%&'
( )

  
 y y f x x x− = −


&
( )
8
2 8
,
y x− = − −

@
,
y x= − +
:

k =
12
\XL*"#!4[X]&^*
( )
8
 8

  D , 8 2 2k y x x x x k= = − + = − − ≥ − =

;[_7H6R&
2x⇔ =
^J5#!&`()
8
8
,
M
 
 ÷

 
/Q:*"#!
8
8
,
M
 
 ÷
 
F[.
Ví dụ 6: /$%&'()*
8
2
x
y
x
+
=

"L+#!*()
$ab:
, 8y x= −
.
A9$%&'+ 5+#!:( *
8
, 8 8 , 8 2
2
x
x x x x
x

+
= − ⇔ + = − −

672XcR< !$%&'
8
, B    8 8  Dx x x y x y⇔ − = ⇔ = = − ∨ = =
/Q+#!< 
2
18( 
8
8D
A
8
,

 2
y
x

=

.
A"#!
2
18'>71,^$%&'
, 8y x= − −
3
11 chuyên đề ôn thi THPT quốc gia môn Toán
A"#!
8

8D'>871,^$%&'
, 2y x= − +
!<"F!G^V4 +L< 
, 8y x= − −
( 
, 2y x= − +
.
Ví dụ 7: *+ !
, 8
2 2
, 8 ,
m
y x x= − +
*
!
.IJ< #!5*
!
+ 54d
12.'!!#()*
!
"++()$ab:-617
Giải

 8
y x mx= −
e$ab:-6174b-^#"++()$ab:
&$)V

 2 - 2 - Dy m m− = ⇔ + = ⇔ =
K

Dm =
 !
, 8
2 2
8
, ,
y x x= − +


2x = −
'

8y = −
9$%&':"

  
   - 2 8 - ,y y x x x y y x y x= − + ⇒ = + − ⇔ = +
fg& ++()$ab:
/Q
Dm =
< L&V'!.
Ví dụ 8:*+ !
, 8
,y x x m= − +
2.
'!!#2"#!+ 54d2OL&Eh6h<V<$M"
L#!0( W++:!Lh0W4d
,
8
.

Giải
/)
 
2 8x y m= ⇒ = − ⇒
2!N8
1"< :
8
  
, B   8y x x x x m= − − + −

:71,6A!A8.
1:O&Eh6"0
8 8
 , 8  
, ,
A A
m m
x m x A
+ +
 
= − + + ⇔ = ⇒
 ÷
 
1:O&Eh"W
8   8
B
y m B m= + ⇒ +
1
8
, 2 , 8

i ii i i ii i , 8 ,  8 ?
8 8 8 ,
OAB
m
S OA OB OA OB m m
+
= ⇔ = ⇔ = ⇔ + = ⇔ + =
8 , 2
8 , -
m m
m m
+ = =
 
⇔ ⇔
 
+ = − = −
 
/Q!72( !71-
1.2. Dạng 2: Viết tiếp tuyến của đồ thi hàm số
 y f x=
(C) khi biết trước hệ số góc của nó
AIJ
 
  M x y
< #!R$%&'

 
 f x k x x= ⇒ =

 

 y f x=
Aej&k(ldạng 1:m: <Q$M
 
 y k x x y= − +
 Các dạng biểu diễn hệ số góc k:hoctoancapba.com
4
11 chuyên đề ôn thi THPT quốc gia môn Toán
*+&C
,
- 2 ,
3
k k k k= = ± = ± = ±
"+()l:$%&Eh6!5
α
()
  
8
2- , D-   .
, ,
π π
α
 

 
 
K
X7

α
.

++()$ab:76A4.KX7.
(c()$ab:76A4
2
2ka k
a

⇒ = − ⇔ =
.
"+()$ab:76A4!5
α
.K

2
k a
ka
α

=
+
.
Ví dụ 9: *+ !
, 8
,y x x= −
*./$%&'*4
X71,.
Giải:

8
 , By x x= −
IJ

 
  M x y
< #!

"
 8
  
  , Bk f x x x= = −
Y+RX71,^
8 8
    
, B , 8 2  2x x x x x− = − ⇔ − + = ⇔ =
/'
 
2 8 2 8x y M= ⇒ = − ⇒ −
.
9$%&'V'!< 
, 2 8 , 2y x y x= − − − ⇔ = − +
Ví dụ 10: /$%&' !
, 8
, 2y x x= − +
*.W
++()$ab7?6AB.
Giải:

8
 , By x x= −
IJ
 
  M x y

< #!

"
 8
  
  , Bk f x x x= = −
Y+R++()$ab7?6AAB

X
7?


8 8
   

2  2 ,
, B ? 8 , 
, ,2
x M
x x x x
x M
= − ⇒ − −

− = ⇔ − − = ⇔

= ⇒

9$%&'*"121,< 
? 2 , ? By x y x= + − ⇔ = +
(loại)

9$%&'*",2< 
? , 2 ? 8By x y x= − + ⇔ = −
Ví dụ 11: *+ !
,
, 8y x x= − +
*./$%&'*4
(c()$ab
2
?
y x

=
.
Giải:
5
11 chuyên đề ôn thi THPT quốc gia môn Toán
 
8
 , ,y x= −
.;+*4(c()$ab
2
?
y x

=
^X7?.
;+
8 8
 , , ? D 8.y k x x x= ⇔ − = ⇔ = ⇔ = ±
A/)678

Dy⇒ =
.9"#!+ 5678< 
? 8 D ? 2D.y x y x= − + ⇔ = −
A/)
8 x y= − ⇒ =
.9"#!+ 56718< 
? 8  ? 2@y x y x= + + ⇔ = +
.
/QR*(c()$ab
2
?
y x

=
< 
7?612D( 7?6A2@.
Ví dụ 12: nQ$%&'()* !
D 8
2
8
D
y x x= +
4
(c()$ab:
- 82 x y+ − =
.
Giải:
:$%&'
2
D8

-
y x= − +
^:< 1
2
-
.
IJ

< V'!X'
2
. 2 -   
-
k k do d− = − ⇔ = ∆ ⊥
.

,
 Dy x x= +
^+ 5#!< !$%&'
,
D -x x+ =
, 8
?
D -   2 -  2  2
D
x x x x x x x y⇔ + − = ⇔ − + + = ⇔ − = ⇔ = ⇒ =
/Q#!J5< 
?
2
D
M

 
 ÷
 
$%&'
? 22
- 2 -
D D
y x y x− = − ⇔ = −
/QV'!$%&'
22
-
D
y x= −
.
Ví dụ 13: *+ !
8
8 ,
x
y
x
+
=
+
*./$%&'()*4&d
O&E+ "0&E"W++!Lh0W(cj"hkjh< J
5.
Giải


8

2
8 ,
y
x

=
+
6
11 chuyên đề ôn thi THPT quốc gia môn Toán
/'"+()&EJ5!5!L(cj^< 
2k = ±
KJ
( )
 
M x y
< #!()*


  2y x = ±

8


8
2
2
2
8 ,
x
x

x
= −


⇔ = ± ⇔

= −
+

/)

2x = −
'

2y =
<o:"
y x= −
&$aM <+"('
pJ5^Xc"+ !Lh0W
/)

8x = −
'

Dy = −
<o:"
8y x= − −
/QV'!< 
8y x= − −
Ví dụ 14: *+ !7

8 2
2
x
x


*.
nQ$%&'*++ OL&Ehxhy<V<$M"
L#!0( WF!Gh07DhW.
Giải
IRS:*"
 
    M x y C∈
Oh6"0h"W++
DhOA B
=
.
;+∆h0W(c"h^
2

D
OB
A
OA
= =
⇒q:4d
2
D
+\
2

D

.
q:< 

8 8
 
2 2 2
  
 2  2 D
y x
x x

= − < ⇒ − = −
− −
⇔
 
 
,
2  
8
-
,  
8
x y
x y

= − =




= =


K8F!G< 
2 , 2 -
 2
D 8 D D
2 - 2 2,
 ,
D 8 D D
y x y x
y x y x
 
= − + + = − +
 

 
 
= − − + = − +
 
 
.
1.3. Dạng 3: Tiếp tuyến đi qua điểm
*+*7r6./$%&'()*4p#!
  A
α β
.
Cách giải
A$%&':" 

  
    y f x f x x x− = −
()6

 < + 5
#!.
Ap
  A
α β
^
  
     f x f x x
β α
− = −
AIR$%&'#'!6

&&$%&'.
Ví dụ 15:*+*
,
, 2y x x= − +
($%&'()*4
p#!01812.
Giải:
7
11 chuyên đề ôn thi THPT quốc gia môn Toán

8
 , ,y x= −
IJ
( )

,
  
 , 2x x x− +
< #!.q< 
8
 
  , ,y x x= −
.
9$%&'()*"< 


( )
, 8
   
, 2 , , y x x x x x− − + = − −

p01812^
( )
, 8
   
2 , 2 , , 8 x x x x− − − + = − − −
, 8
 
, D x x⇔ + − =
 
8
  
 
2 2
 2 D D 

8 2
x y
x x x
x y
= ⇒ = −

⇔ − + + = ⇔

= − ⇒ = −

/QV'!$%&'< 
 2  ? 23y y x∆ = − ∆ = +
1.4. Dạng 4. Một số bài toán tiếp tuyến nâng cao.
Ví dụ 16:'!#!0W5* !
,
, 8y x x= − +
++
*"0( W++()( 5: +"0W7
D 8
.
Giải:
IJ
, ,
  , 8    , 8 A a a a B b b b a b− + − + ≠
< #!j4&^*.

8
 , ,y x= −
^L()*"0( W<V<$M< 


8 8
  , ,   , ,y a a v y b b= − = −
.
"0( W++()X
8 8
    , , , ,      ' y a y b a b a b a b a b v a b a b= ⇔ − = − ⇔ − + = ⇔ = − ≠ ⇔ − ≠
8
8 8 , ,
D 8 ,8    , 8  , 8 ,8AB AB a b a a b b
 
= ⇔ = ⇔ − + − + − − + =
 
8 8
8 , , 8 8 8
    ,  ,8      ,  ,8a b a b a b a b a b a ab b a b
   
⇔ − + − − − = ⇔ − + − + + − − =
   
8
8 8 8 8
      , ,8a b a b a ab b
 
⇔ − + − + + − =
 
714$M
( ) ( )
8 8
8 8 8 8 8 8 B D 8
D D , ,8 , @  B 2 @ b b b b b b b b b+ − = ⇔ + − − = ⇔ − + − =
8 D 8 8

8 8
 D 8 8  D 
8 8
b a
b b b b
b a
= ⇒ = −

⇔ − − + = ⇔ − = ⇔

= − ⇒ =


1 /)
8 8a v b= − = ⇒
 8  8DA B−
1 /)
8 8a v b= = − ⇒
8D   8A B −
!<"\#!0WV'!J5< 
 8  8 Dv−
Ví dụ 17: '!#!0W5* !
8 2
2
x
y
x

=
+

++
*"0( W++()( 5: +"0W7
8 2
.
Giải:
8
11 chuyên đề ôn thi THPT quốc gia môn Toán
q !$M(<"
,
8
2
y
x
= −
+
IJ
, ,
8  8
2 2
A a B b
a b
   
− −
 ÷  ÷
+ +
   
< \#!&^*F!G^V4 +L.
/)lX
 2 2a b a b≠ ≠ − ≠ −
.


8
,

 2
y
x
=
+
^L()*"0( W< 
8 8
, ,
   
 2  2
y a v y b
a b
= =
+ +
"0( W++X
8 8
, ,
   
 2  2
y a y b
a b
= ⇔ =
+ +

2 2
8

2 2 8
a b a b
a b
a b a b
+ = + =
 
⇔ ⇔ ⇔ = − −
 
+ = − − = − −
 
2:+
a b≠

8
8 8
, ,
8 2 D   D
2 2
AB AB a b
b a
 
= ⇔ = ⇔ − + − =
 ÷
+ +
 
8 8
8 8
, , B
 8 8 D D 2 D
2 2 2

b b
b b b
   
⇔ − − + − = ⇔ + + =
 ÷  ÷
+ − − +
   
:+k2
8
D 8
8
 2 2 2 2 2 2
 2 2 2 ? 
2 , 2 ,
 2 ?
b b b
b b
b b
b

+ = + = ∨ + = −

⇔ + − + + = ⇔ ⇔


+ = ∨ + = −
+ =


 8

8 
8 D
D 8
b a
b a
b a
b a
= ⇒ = −


= − ⇒ =



= ⇒ = −

= − ⇒ =

*\#!0( WV'!J5< 
 8-  2  82  D,v v− − −
Ví dụ 18:*+ !76
,
A,6
8
A!6A2*
!
!< !.TL!#*
!
O
$ab72",#!j4*2;s++L*

!
";( s
(c().
Giải
9$%&'+ 5+#!*
!
( $ab72< 
6
,
A,6
8
A!6A272 ⇔ 66
8
A,6A!7⇔
8

,  8
x
x x m
=


+ + =

*
!
O$ab72"*2;sj4
⇔9$%&'88!6
;
6

s
≠.
9
11 chuyên đề ôn thi THPT quốc gia môn Toán

8

? D 
D
 ,  
?
m
m
m
m


∆ = − >



 
<
+ × + ≠



no";s<V<$M< 
X
;

7>6
;
7
8
, B  8 
D D D
x x m x m+ + = − +
X
s
7>6
s
7
8
, B  8 .
E E E
x x m x m+ + = − +
*L";s(cX( tXX
;
X
s
7N2.
⇔ ,6
;
A8!,6
s
A8!7?6
;
6
s
AB!6

;
A6
s
AD!
8
7N2
⇔ ?!AB!
×
N,AD!
8
7N2('6
;
A6
s
7N,6
;
6
s
7!Y+<u/1.
⇔ D!
8
N?!A27⇔!7
( )
2
? B-
@
m
ev!7
( ) ( )
2 2

? B- ? B-
@ @
hay m− = m
Ví dụ 19: nQ$%&'()* !
8 8
2
x
y
x

=
+
4&d
X+RL=#!w128< <)[.
Giải:
IJ

< *"#!
( )
8 8
   
2
a
a M C
a

 

 ÷
+

 
.

( )
8 8
D D
    2
 2  2
y y a a
x a
= ⇒ = ≠ −
+ +
/Q
8 8
8
8 8 D
   D  2 8 D 8  
2  2
a
y x a x a y a a
a a

∆ − = − ⇔ − + + − − =
+ +
( )
8 8
D D
D 2  2 .8 8 D 8
@ 2


D  2 D  2
a a a
a
d I
a a
− − + + − −
+
∆ = =
+ + + +
.

8
D 8 8 8 D 8
D  2 8  2 8.8 2 D  2 8.8 2 8 2a a a a a a
 
+ + = + + ≥ + ⇒ + + ≥ + = +
 
( )
@ 2
 D
8 2
a
d I
a
+
⇒ ∆ ≤ =
+
./Q
( )
d I ∆

<)[X
( )
d I ∆
7D
8 8
2 8 2
8  2
2 8 ,
a a
a
a a
+ = =
 
⇔ = + ⇔ ⇔
 
+ = − = −
 
.*RL&lF!G
2a ≠
A/)72( +$M$%&'< 
D D D  2 x y x y− − = ⇔ − − =
A/)71,( +$M$%&'< 
D D 8@  3 x y x y− + = ⇔ − + =
!<"*V'!$%&'< 
2   3 x y x y− − = − − =

Ví dụ 20: *+*<  !
2
8 2
x

y
x
+
=
+
./$%&'()*4
10
11 chuyên đề ôn thi THPT quốc gia môn Toán
O&E+ &E$%Z"L#!0WF!G 

h0W
(cj"J5h.
Giải:
IJ 
( )
 
M x y
 < #!.()*"RF!G++()L
$ab76+\716.

8
2

8 2
y
x
= −
+
^()*"< 


8

2
  
8 2
y x
x
= − <
+
/Q()*"++()$ab:716
;+
8

8

2
2 8 2 2
8 2
x
x
− = − ⇔ + =
+


2
8
x = −
Xc< !$%&'
  
  

8 2 2  2
8 2 2 2 
x x y
x x y
+ = = ⇒ =
 
⇔ ⇔
 
+ = − = − ⇒ =
 
./Q#!< 
2 8
2   2M M −
.
A"#!
2
2$%&'< 716A2F!G++():
A"#!
8
12$%&'< 71612F!G++():
/QV'!$%&'< 
2 2y x y x= − + = − −
Ví dụ 21: *+ !
,
2
x
y
x
+
=


.
KR+LC4^( (x* !.
4*+#!
  
o o o
M x y
5*.*"

OL!Q*
"L#!0( W.*Z!
+
< &#!+"b0W.
Giải
a) C< !
b)
  
o o o
M x y


(C)




D
2
2
y

x
= +

.
9$%&':"


 
8

D
 
 2
y y x x
x
− = − −

I+#!:()L!Q< 
 
8 22 28 2A x B y− −
.
⇒
 

8 8
A B A B
x x y y
x y
+ +
= =

⇒

< &#!0W.
Ví dụ 22: *+ !
8
2
x
y
x
+
=

*
KR+LC4^( (x* !.
4*Z!&d!J*l<Q()$a!Q!5
!L:Xcy.
Giải
 C< !
11
11 chuyên đề ôn thi THPT quốc gia môn Toán
4 IRS
8

2
a
a
a
+
 
 ÷


 
∈*.
9:*"
8
 . 
2
a
y y a x a
a
+

= − +

⇔
8
8 8
, D 8
 2  2
a a
y x
a a
− + −
= +
− −
*L+#!:()L!Q< 
-
2
2
a

A
a
+
 
 ÷

 

8 22B a −
.
B

2
IA
a

 
=
 ÷

 


B
2
IA
a
=



8 8IB a

= −


8 2IB a= −
;
IAB∆
v
IAB∆
7
2
.
8
IA IB
7B(:

e9*.
Ví dụ 23: *+ !
8 ,
8
x
y
x

=

.
2KR+LC4^( (xC !.
8*+M < #!4[X'&^C.C)"M OL$a!QC"

A( B.IJI < +#!L$a!Q.'!J5#!M++$a&z+"
!LIAB :F[.
Giải
 IRS

 

8 ,
  8
8
x
M x x
x
 


 ÷

 

( )

8

2
 
8
y x
x


=

9$%&'∆()*"
( )
0
0
2
0
0
2 3
1
( )
2
2
x
y x x
x
x
-
-
= - +
-
-
J5+#!0W∆()!Q< 
( )



8 8
8  8 88

8
x
A B x
x
 


 ÷

 
[


8 8 8
8 8
A B
M
xx x
x x
+ −+
= = =



8 ,
8 8
A B
M
xy y
y

x
−+
= =

&< &#!0W.
\XLw88( ∆w0W(c"w^$a&z+"!Lw0W:
v7
8
8 8 8

 
8
 
8 , 2
 8 8  8 8
8  8
x
IM x x
x x
π π π π
 
   

 
= − + − = − + ≥
 ÷
 
− −
 
   

 
;[_7H6R&X

8

8


2
2
 8
,
 8
x
x
x
x
=

− = ⇔

=


;+#!V'!< 22+\,,
Ví dụ 24: *+ !
8 2
2
x
y

x

=
+
.'!J5#!++X+RL=#!
 28I −
)
12
11 chuyên đề ôn thi THPT quốc gia môn Toán
*"< <)[.
Giải.
P


,
 8  
2
M x C
x
 
− ∈
 ÷
+
 
'"$%&'

8
 
, ,
8  

2  2
y x x
x x
− + = −
+ +

8
  
,   2  8 , 2 x x x y x− − + − − + =
K+RL=
 28I −
)<
( )
  
D D
8



8

, 2  , 2 B 2
B
?
?  2
? 2
 2
 2
x x x
d

x
x
x
x
− − − + +
= = =
+ +
+ +
+ +
+
.
Y+4[bZ*c
8

8

?
 2 8 ? B
 2
x
x
+ + ≥ =
+
(j
Bd ≤
.
K+RLd<)[4d
B
X
( )

8
8
  
8

?
 2 2 , 2 ,
 2
x x x
x
= + ⇔ + = ⇔ = − ±
+
.
/Q#!
( )
2 ,8 ,M − + −
+\
( )
2 ,8 ,M − − +
Ví dụ 25: *+ !
8 2
2
x
y
x
+
=
+
./$%&'*4&d
Ll#!A8DB−D−8.

Giải
IJ6

< + 5#!

2x ≠ −
.
9:< 


8
 
8 22
 
 2 2
x
y x x
x x
+
= − +
+ +
⇔
8 8
  
 2 8 8 2 x x y x x− + + + + =

     d A d d B d=
⇔
8 8 8 8
     

8 D 2 8 8 2 D 8 2 8 8 2x x x x x x− + + + + = − + + + + +
⇔
  
2  8x x x= ∨ = ∨ = −
/Q4$%&'
2 -
 2 -
D D
y x y x y x= + = + = +
Chú ý: W +L #R4dLLl0W^8XR{
++&`0W+\p&#!0W
Ví dụ 26: *+ !
8
 
2
x
y C
x
=
+
'!#!
 C∈
++ !"
O&EJ5"0W++!Lh0W:4d
2
D
Giải:
13
11 chuyên đề ôn thi THPT quốc gia môn Toán
IJ


  

8
    
2
x
M x y C y
x
∈ → =
+

8
8

 2
y
x
=
+
":"
8
 
   
8 8 8
   
8 88 8
      
 2 2  2  2
x x

y y x x x y y x x y x d
x x x x
= − + ⇔ = − + ⇔ = +
+ + + +
IJ
  +6A d= ∩


J5#!0< !
8
8

8
8 8 

 
8
8
 
 2  2


x
y x
x x
A x
x x
y
y


= +

= −

⇔ ⇒ −
+ +
 
=


=

IJ
  +B d= ∩


J5#!W< !
8

8 8
8 8
 
 
8 8
 
8
8

8 8
 

 2  2
 2  2

x
y x
x
x x
B
x x
y
x x
x

= +
=


⇔ ⇒
+ +
 
=
+ +


=

!Lh0W(c"hh07
8 8
 
x x− =

hW7
8 8
 
8 8
 
8 8
 2  2
x x
x x
=
+ +

;!Lh0W
v7
2
8
h0.hW7
D

8

82 2
.
8  2 D
x
x
=
+
8 8
   

D 8  
 
8 8
   
 
2
8 2 8 2 
8
D  2
8
8 2 8 2 2 
2 2
x x x x
x y
x x
x x x x vn
x y

 
= + − − =
= − ⇒ = −

⇔ = + ⇔ ⇔ ⇔
 

= − − + +
 
 
= ⇒ =


/Q'!$M#!F!G^V4 +L
2 8
2
  8  22
8
M M− −
 Bài tập tự luyện
Bài 1. *+ !
, 8
, 8 -  y x x x C= − + −
./$%&'"#!+ 5
672
Bài 2. *+ !
,
2 8
, ,
y x x= − +
($%&'4(c()
$ab
2 8
 
, ,
y x d= − +
Bài 3. *+ ! 
, 8
, ? -  y x x x C= + − +
.&+[RL* '!
F[
14
11 chuyên đề ôn thi THPT quốc gia môn Toán

Bài 4. *+ !
D 8
2
x
y
x

=
+
*.:'b)"4k*&Eh( 
*"#!+ 567,.
Bài 5. *+ !
D 8
By x x= − − +
./$%&'*4
(c()$ab:
2
2
B
y x= −
Bài 6. nQ$%&'()* !
8 2
2
x
y
x
+
=
+
.Wp

#!012,.
Bài 7. *+ !7
8
8
x
x
+

*./$%&'*p01B-
Bài 8. nQ$%&'* !786
,
A,6
8
128612X|=#!
8,
 8
?
A
 

 ÷
 
Bài 9. *+ !
8 ,
8
x
y
x

=


*.
KR+LC4^( (x !*
4'!&^*}#!++"*O!Q*"
0W++0WO[
Bài 10. *+ !
2
2
x
y
x
+
=

.*f
PO$a!Q"0( W'#!< &#!
0W.
 4Jl"+()$a!Q!5!L:
Xcy.
 '![RL#!5 !++""+()$a!
Q!5!L(F[.
Bài 11. *+ !
,
2  2y x m x= + − +

 
m
C
.'!!#
 

m
C
"+#!
()&E"+()&EJ5!5!L:4d@.
Bài 12. *+ !
2
8 2
x
y
x

=
+
KR+LC4^( (x* !.
4'!}#!&^*++()*""+()&EJ5!5
!L&Jj!d!&^$abD6A7.
2. Chủ đề 2: Cực trị của hàm số.
2.1. Kiến thức cơ bản
15
11 chuyên đề ôn thi THPT quốc gia môn Toán
2.1.1. Các quy tắc tìm các điểm cực trị của hàm số:
QUY TẮC I QUY TẮC II
Bước 1:'!Te
Bước 2:
( )
~
f x
.TLLđiểm tới
hạn.
Bước 3:nQ4R4^.K<Q.

Bước 1:'!Te
Bước 2:
( )
~
f x
.IR$%&'
( )
~
f x =
( X
i
x

28 i =
< L
!.
Bước 3:
( )
~~
f x
( 
( )
~~
i
f x
.K<Q
2.1.2. Sự tồn tại cực trị
a/ Điều kiện để hàm số có cực trị tại x = x
0:




  
:c:p6
y x
y
=



hoặc




=




xy
xy
b/ Điều kiện để hàm số có cực đại tại x
0
:



  
:+: .

y x
y sang qua x
=



+ −


hoặc



<
=
0)(''
0)('
0
0
xy
xy

c/ Điều kiện để hàm số có cực tịểu tại x
0
:




  

:+: .
y x
y sang qua x
=



− +


hoặc
=


>

0
0
y'(x ) 0
y''(x ) 0
d/ Điều kiện để hàm bậc 3 có cực trị (có cực đại, cực tiểu):

>7!j4


a 0
0




∆>

e/ Điều kiện để hàm bậc 4 có 3 cực trị: 
~
7,!j4.
2.1.3. Tìm điều kiện để các điểm cực trị của hàm số thỏa mãn điều kiện cho trước.
Phương pháp:
• '!lX# !C&
• Wm:mlX4 +LpJ5L#!C& !=
$&lX!.
2.2. Ví dụ và bài tập
Ví dụ 1: '!C& !
, 8
2 2
8 8
, 8
y x x x
= − − +
.
Giải
Cách 1.
Q6Lf.
16
11 chuyên đề ôn thi THPT quốc gia môn Toán

8
2
 8  
8
x

y x x y
x
= −

= − − = ⇔

=

.
WR4^
6
−∞
N28
+∞
> ANA

/Q !"C""6712( L&C"y

( )
2?
2
B
y= − =

q !"C#"678( L&C#y
CT
( )
D
8
,

y

= =
.
Cách 2. (Sử dụng quy tắc 2)
Q6L.

8
2
 8  
8
x
y x x y
x
= −

= − − = ⇔

=

.

( )
 8 2  2 , y x y= − − = − <
^ !"C""#!6712( L&C"
y

( )
2?
2

B
y= − =

( )
 8 , y = >
^ !"C#"678( L&C#.
Ví dụ 2: '!C&L !

2
+ +8 2
8
y x c x= + −
4
8 2
,6 +
8
x
y x
+
= + +
(?) Ta thấy hàm số này rất khó xét dấu của y’, do đó hãy sử dụng quy tắc 2 để tìm cực trị?
Giải
a)Te;7f

 6 8y x= − −
6 
  62 8+  
8
2
8

+
,
8
x k
y x
x n
x
π
π
π










=
=
= ⇔ + = ⇔ ⇔
= ± +
= −

• + 8 +8y x c x= − −

•  +  8 + 8  2 8 y k c k c k
π π π

= − − = ± − <

q !"C#"
 x k k
π
= ∈Ζ
17
11 chuyên đề ôn thi THPT quốc gia môn Toán
2 ,
2 
8 8
8 8 D
• 8 + 18+
, , ,
y n c
π π π
π
     
= + = >
 ÷  ÷  ÷
     
± + = − ± ±

q !"C#"
8
8  
,
x n n Z
π
π

= ± + ∈
b)Te;7f.

 ,+ 6 2y x= − +
  ,+ 6 2y x= ⇔ − = −
, 2 2
+ 6
8 8 8
x⇔ − = −

2
 6 
, 8 B
π π
 
 ÷
 
⇔ − = =

8
8
3
8
B
x k
x k
π
π
π
π



⇔



= +
= +

• ,6 +y x= − −

A
• 8 , + , 
8 8 8
y k
π π π
π
 
 ÷
 
= + = − − = − <
A
3
• 8 , 
B
y k
π
π
 
 ÷

 
+ = >
/Q !"C""
8
8
x k
π
π
= +
q !"C#"
3
8
B
x k
π
π
= +
IL+(^V< !+J#&g!"(S:EpO2( pO8.
Chú ý€O2$#!< tV"+ ![!5&6U:[>( <Q4R
6U:[>=&L#!C&.P$pO2$M#!< zFR6U
:[>l XcR4+a•%R.
P4 +LXc^V'!#!C&'pO2< %=XS:EpO8.
v+pO8•$M#!< lX(H< &[Z"\4XXc
S:E$M&+&$aM


 f x
7



 f x
7.
€O2$a$M:`+L !Z !jZ( L<•=.
€O8$a$MS:E+L !<$ML.
Ví dụ 3: '!m# !
( ) ( )
, 8 8 8
2
8 , 2 -
,
y x m m x m x m= + − + + + + −
"C#"x=−8.
Giải:
( )
( )
8 8 8
8 8 , 2y x x m m x m

= + − + + +
⇒
( )
( )
8
8 8 8y x x m m
′′
= + − +
18
11 chuyên đề ôn thi THPT quốc gia môn Toán
e# !"C#"x=−8'
( )

( )
( ) ( )
( )
8
8
8  D ,  2 , 
,
8  2 

y m m m m
m
y m m
m m


 
− = − + − = − − =

⇔ ⇔ ⇔ =
  
′′
− > − >
− >

 

Ví dụ 4: *+ !
, 8
, 2 ?y x m x x m= − + + −
()!< !C.TL

m
# !
G+"C&"
2 8
x x
++
2 8
8x x− ≤
.
Giải
−
8
 , B 2 ?.y x m x= − + +
−q !C"C#6
2
6
8
.

9>7!j4< 6
2
6
8
.



8
8 2 , x m x− + + =
!j4< 

2 8
x x
.

8
  2 ,  2 ,  2 ,m m m⇔ ∆ = + − > ⇔ > − + ∨ < − −
2
Y+l
( )
8
2 8 2 8 2 8
8 D D x x x x x x− ≤ ⇔ + − ≤
Y+<u/Y
2 8 2 8
8 2 ,.x x m x x+ = + =

( )
8
 D 2 28 Dm⇔ + − ≤
8
 2 D , 2 8m m⇔ + ≤ ⇔ − ≤ ≤
=2( 8&L&!V'!< 
, 2 ,m− ≤ < − −
+\
2 , 2.m− + < ≤
Ví dụ 5: *+ !
( )
, 8
  , 2 2y f x mx mx m x= = + − − −
!< !.TLLL&

!# !
 y f x=
XcC&.
Giải
AK!7
2y x⇒ = −
^ !XcC&.
AK
m ≠

( )
8
 , B 2y mx mx m⇒ = + − −
q !XcC&X( tX
 y =
Xc!+\!XU
( )
8 8
 ? , 2 28 , m m m m m⇔ ∆ = + − = − ≤
2

D
m⇔ ≤ ≤
/Q
 Dm≤ ≤
< 
Ví dụ 6:*+ !
, 8 8
8 2  , 8 Dy x m x m m x= − + + − − + −
m< !< *

m
.
TLm#*
m
L#!C"( C#d!(l&E.
Giải

8 8
, 88 2  , 8y x m x m m

= − + + − − +
.
(C
m
) có các điểm CĐ và CT nằm về hai phía của trục tung

PT
y

=
có 2 nghiệm trái dấu

8
, , 8 m m− + <



2 8m
< <
.

Ví dụ 7:'!m# !
( ) ( ) ( )
, 8
2 2
2 , 8
, ,
f x mx m x m x= − − + − +
"C&"x
2
x
8
F
!G
2 8
8 2x x+ =
.
19
11 chuyên đề ôn thi THPT quốc gia môn Toán
Giải:
q !*e*⇔
( ) ( ) ( )
8
8 2 , 8 f x mx m x m

= − − + − =
8!j4⇔
( ) ( )
{
8


2 , 8 
m
m m m


∆ = − − − >
⇔
B B
2  2
8 8
m− < ≠ < +

/)lX'
( )
f x

=
8!j4x
2
x
8
(  !fx"C&"x
2
x
8
.
Y+<u/Y
( ) ( )
2 8 2 8
8 2 , 8


m m
x x x x
m m
− −
+ = =

( ) ( )
2 8 8 2
8 2 8 2
8 8 , D
8 2 2 
m m
m m m
x x x x
m m m m m
− −
− − −
+ = ⇔ = − = = − =
( )
( ) ( ) ( )
, 8
8 , D
8 , D , 8
m
m m
m m m m
m m m

− −

⇒ × = ⇔ − − = −
8
8
,
m
m
=



=

*R8L& lF!GlX./Q
2 8
8 2x x+ =
8
8
,
m m⇔ = ∨ =
Ví dụ 8.*+ !
, 8 ,
, Dy x mx m= − +
m< !< *
m
.TLm#*
m

L#!C"( C#6Zp$aby7x.
Giải
y>7,x

8
−Bmx7⇔

8
x
x m
=


=

e# !C"( C#'m≠.
IRS !#!C&< ADm
,
B8m⇒
,
8  D AB m m= −
uuur
&#!+"AB< Im8m
,

elX#AB6Zp$aby7x< AB(c()$aby7x( 
I5$aby7x
,
,
8 D 
8
m m
m m


− =



=


IR$%&'$M
8
8
m = ±
m7
KM()lX
8
8
m = ±
Ví dụ 9.*+ !
, 8 8 ,
, , 2y x mx m x m m= − + − − +
2.'!m# !2C&
aX+RL=#!C" !J5h4d
8
<VX+R
L=#!C# !J5h.
Giải
20
11 chuyên đề ôn thi THPT quốc gia môn Toán

8 8
, B , 2y x mx m


= − + −
q !2C&'9
y

=
8!j4
8 8
8 2 x mx m⇔ − + − =
8!j4
2  m⇔ ∆ = > ∀
K#!C"
 28 8 A m m− −
( #!C#
 2 8 8 B m m+ − −

8
, 8 8
8 B 2 
, 8 8
m
OA OB m m
m

= − +
= ⇔ + + = ⇔

= − −



.
Ví dụ 10.*+ !
( )
D 8 8
8 2
m
y x m x C= − +
2.'!!:# !24#!C&< 4
t!5!L(cj.
Giải

( )
, 8 8 8
8 8

 D D D   
x
y x m x x x m m
x m
=

= − = − = ⇔ ⇒ ≠

=

/)lX' !24#!C&.IJ4#!C&< 
( )
( ) ( )
D D
2  2  2A B m m C m m− − −

.;+4#!C&"+ !5!L(c
j'tx< 0.
;+[ !&`$%!L0W*G< !Lj&+^#F!G
lX!L< (c'0W(c()0*.
( ) ( )
( )
D D
    8 AB m m AC m m BC m⇔ = − − = − =
uuur uuur uuur
!L0W*(cX
( )
8 8 8 8 8 @ 8 @
DBC AB AC m m m m m= + ⇔ = + + +
( )
8 D D
8 2  2 2m m m m⇔ − = ⇒ = ⇔ = ±
/Q()!712( !72'F!G^V4 +L.
Ví dụ 11. *+ !
D 8 8
8 2y x m x= − +
2.'![RLL&!# !24
#!C&0W*( :!L0W*4d,8%(:.
Giải
A>7D6
,
ND!
8
6>7

8 8

x
x m
=


=

eK,#!C&!


AJ54#!C&02W1!2N!
D
*!2N!
D

A*!L0W*jt0.J5&#!wW*< w2N!
D
.
A
-
D
2
. ,8 8
8
ABC
S AI BC m m m m= = = = ⇔ = ±
V
!
Ví dụ 12.*+ !
D 8

8 2y x mx= − +
2.'!LL&!!# !2
4#!C&( $a&zp4#! 4LX4d2.
Giải

,
 D Dy x mx= −
21
11 chuyên đề ôn thi THPT quốc gia môn Toán

8

 
x
y
x m
=

= ⇔

=

q !,C&

>y:[,<V

$%&'>7,!j4

!‚
K!‚ !2,#!C&< 

8 8
 2    2    2A m m B m m C− − −
IJw< j!( f< 4LX$a&zp,#!0W*.
/'8#!0W6Zp&E^wd!&^&E.
e\w

.w*7f

8



2  2
8
y
y
y
=

⇔ − = ⇔

=

  I O⇒ ≡
+\
  8I
/)
  I O≡
w07f
8 8 D 8


2
2 -
2  2 8 
8
2 -
8
m
m
m m m m m
m
m
=


=


− −
⇔ + − = ⇔ − + = ⇔
=



− +
=


v+LlX!‚$M!72( !7
2 -

8
− +
/)w8
w07f
8 8 D 8
 2  2 8 m m m m m⇔ + − − = ⇔ + + =

9$%&'(c!X!‚
/Q4 +LF!GX!72( !7
2 -
8
− +
Ví dụ 13. *+ !
D 8
8 2y x mx m= − + −
2()
m
< !C.TL
m
# !
24#!C&aL#!C&"+ !5!L4LX
$a&z+"4d
2
.
Giải
( )
 , 8
8

D D D 

x
y x mx x x m
x m
=

= − = − = ⇔

=

q !G+4#!C&



y =
4!j4( 

y
y:[X
x
p
L!
m⇔ >
• K4#!C& !< 
22
11 chuyên đề ôn thi THPT quốc gia môn Toán
( )
( ) ( )
8 8
 2   2   2A m B m m m C m m m− − − + − − + −


8
2
.
8
ABC B A C B
S y y x x m m= − − =
V

D
 8AB AC m m BC m= = + =
( )
D
,
8
2
8
. .
2 2 8 2 
- 2
D
D
8
ABC
m
m m m
AB AC BC
R m m
S
m m
m

=

+

= = ⇔ = ⇔ − + = ⇔


=


V
 Bài tập tự luyện
Bài 1. *+ !
( )
, 8
8 , 2 By x m x mx= − + +
.
'!
m
# !C&.
4'!
m
# !C&&^
( )
+∞
.
'!
m
# !#!C&d!(l&E.
:'!

m
# !#!C&d!(l&E+ 
Bài 2. *+ !
( ) ( )
, 8
2 2
2 , 8
, ,
y mx m x m x= − − + − +
.'!
m
# !"C""
x =
.
Bài 3. '!
m
# !
( )
, 8 8
8 8
8 , 2
, ,
y x mx m x= − − − +
#!C&
2
x
( 
8
x
++

( )
2 8 2 8
8 2x x x x+ + =
Bài 4. '![RLL&
m
# !
( )
, 8 8
2 2
,
, 8
y x mx m x= − + −
C""x

C
#"
*
x
++x


*
x
< 5: L"(c"!5!L(c5: "
l4d
-
8
.
Bài 5. TL   
m

  #   !  
( )
, 8
8 2 2y mx m x x= − − − +
 "C &  " 
2 8
x x
 + +
2 8
2B
?
x x− =
.
Bài 6. TL   
m
 #   !   
( )
, 8
, 2 ?y x m x x m= − + + −
 "  C  &  " 
2 8
x x
 +  +
2 8
8x x− =
.
Bài 7. '!
m
# !
( )

, 8
8 , 2 By x m x mx= − + +
#!C&A( B++
$ab0W(c()$a.
Bài 8. '!
m
# !
, 8 ,
, ,y x mx m= − +
#!C&0( W++!L
h0W:4dD@.
Bài 9. *+ !
, 8 ,
, Dy x mx m= − +
2()!< !C.'!m# !2
23
11 chuyên đề ôn thi THPT quốc gia môn Toán
#!C&A ( B++
8 8
8OA OB+ =
.
Bài 10. *+ !
, 8
2
8 ,
,
y x x x= − +
2.
2.KR+LC4^( (x !2.
8.IJ

0W
<V<$M< L#!C"C# !2.'!#!5&E
+ ++!L0W:4d8.
Bài 11. *+ !
, 8 ,
, 2
8 8
y x mx m= − +
'!!# !#!C"C#
6Zp$ab76.
Bài 12. *+ !
, 8
76 ,!6 A8−
 2!< !'!!#$abp
#!C& !2"+()L&EJ5!5!L:4dD.
Bài 13. *+ !
( )
( )
, 8 8 8
, , 2 , 2 2y x x m x m= − + + − − −
'!!# !2C"
C#aL#!C"( C#`()J5h"+ !5!L
(c"h.
Bài 14. *+ !786
,
A?!6
8
A28!
8
6A2&+!< !.'![RLL&

!# !C""6
*e
C#"6
*
F!G6
8
*e
76
*
.
Bài 15. *+ !
( )
( )
, 8
, , 2 2 ,
m
y x x m x m C= − + − + +
'!!# !C"C
#aL#!C"( C#`()J5h"+ !5!L:
4dD.
Bài 16. *+ !
, 8 8 8
, ,2  8 8 2y x x m x m m= − + − + − −
m < !'![RLL
&!Cm# !G+C"C#a#!C&
 !6Zp$ab
 D - .d x y− − =
Bài 17. *+ !
, 8
,

 8 , 2 2
8
y x m x m x= − − − − +
2m< !.
KR+LC4^( (x !2X
8m
= −
.
4'!
m
>
# !2L&C"L&C#<V<$M< 
e

C CT
y y
F
!G
e
8 D
C CT
y y+ =
.
Bài 18. *+ !
, 8
2 -
D D  
, 8
y x mx mx C= − − −
.'!!# !"C&"

2 8
x x
++
4#Z
8 8
8 2
8 8
2 8
- 28
- 28
m x mx m
A
x mx m m
+ +
= +
+ +
"L&F[.
Bài 19. '!!# !
( ) ( )
, 8
2 2
2 , 8
, ,
y mx m x m x= − − + − +
"C&"6
2
6
8
F!G6
2

A86
8
72.
Bài 20. '!
m
# !
( )
D 8 8
? 2y mx m x= + − +
,#!C&.
24
11 chuyên đề ôn thi THPT quốc gia môn Toán
Bài 21. '!!# !716
D
A8!A86
8
N8!N,tC"XcC#.
Bài 22. '!
m
#*
( ) ( )
D 8
2
, 2 8 2
D
y x m x m= − + + +
,#!C&<Q !5!L
&Jj!< J5.
Bài 23. *+ !
D 8

8 2y x m x m= − + +
2!< !.
KR+LC4^( (x !2X!72.
4'!!# !24#!C&0W*++h07W*h< J
50< C&5&EW( *< #!C&z<".
Bài 24. *+ !
D 8
8 Dy x mx= − + −

( )
m
C
.
m
< !C
'![RLL& m#L#!C&
( )
m
C
d!&^L&EJ5.
Bài 25. *+ !
( )
D 8 8 D
8 2y x m x m m= − + +
!< !C.
'!m# !
( )
2
4#!C&<Q !5!L:4d2
Bài 26. *+ !

D 8
8 8 2y x mx m= − + − +
2m< !.
KR+LC4^( (x !2X
8m =
.
4'!m#eqv24#!C&d!&^!5$a&z4LX4d2.
Bài 27. *+ !
( )
D 8
D 2 8 2y x m x m= − − + −

( )
m
C
KR+LC4^( (x
( )
C
 !X
,
8
m =
.
4TL!m# !,C&"+ ,t!5!Ll
Bài 28. *+ !
D 8 8 D
8 22.y x m x m= − + +
'!!# !24#!C
&
 A B C

++L#!
 A B C
( #!
O
d!&^!5$a&z&+
O
< J
5.
Bài 29. *+ !
( )
D 8 8 D
8 2y x m x m m= − + +
!< !C.
KR+LC4^( (x !X
2m
= −
.
4'!m# !
( )
2
4#!C&<Q !5!L:4d
,8.
Bài 30. *+ !
D 8
8 2y x mx m= − + −

( )
m
C
.'!LL&C!

m
#

( )
m
C
4#!C&d!&^$a&z4LX4d2.
Bài 31. *+ !
D 8
2
8 8 2
,
y x mx= − +
()
m
< !.'!
m
# !
2
4#!C&"+ !5!Lj!$a&z+"&`()J5.
Bài 32. *+ !
( ) ( )
D 8 8
8 8 - -y f x x m x m m= = + − + − +

KR+LC4^( (x* !()!72.
25

×