Đề cương ôn thi HKI Năm học: 2013 - 2014
Trường THPT Nguyễn Quang Diêu
Tổ: Toán
ĐỀ CƯƠNG ÔN TẬP HỌC KÌ I
MÔN TOÁN – KHỐI 11
NĂM HỌC: 2013 – 2014
A. ĐẠI SỐ
CHƯƠNG I: HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC
Dạng 1: Tìm TXĐ
a. Phương pháp giải
- Các dạng cơ bản của TXĐ:
+ Hàm số
A
y
B
=
xác định khi
0B
≠
+ Hàm số
y A=
xác định khi
0A
≥
+ Hàm số
A
y
B
=
xác định khi
0B
>
- Nắm vững các kiến thức sau:
+ Tập giá trị của hàm số
siny
α
=
,
osy c
α
=
là
[ ]
1;1−
.
+ Những hằng đẳng thức đáng nhớ.
+ Các công thức biến đổi lượng giác: nâng cung hạ bâc, tích thành tổng, tổng thành tích…
+ Biết cách biểu diễn các họ nghiệm trên đường tròn lượng giác để giao nghiệm.
b. Bài tập
Tìm TXĐ của các hàm số sau:
( )
0
1). tan 3x 60
2). cot 2x 1
5
2 osx 3
3).
1 osx
5 sin 2x
4).
sinx 1
2sinx 1
5).
os7x os5x
3 4 os3x
6).
os 2x os
4 3
2 tan 4x 1
7).
sin 6x sin x
3 cot8x
8).
3
sin x+ sin 3
4 6
y
y
c
y
c
y
y
c c
c
y
c c x
y
y
x
π
π π
π π
= +
= − −
÷
+
=
−
−
=
+
−
=
+
−
=
− − −
÷ ÷
−
=
+
−
=
− +
÷ ÷
Dạng 2: Giải phương trình lượng giác
a. Phương pháp giải :
Nắm được dạng và cách giải của các phương trình lượng giác thường gặp.
Trang 1
Đề cương ôn thi HKI Năm học: 2013 - 2014
Các công thức biến đổi lượng giác.
b. Bài tập
1. Giải các phương trình sau:
1) sin
2
x + 2sinx – 3 = 0 2) 2sin
2
x + sinx – 1 = 0 3) 2sin
2
2x + 5sin2x + 2 = 0
4) 2cos
2
x – 3cosx – 2 = 0 5) 4cos
2
x + 4cosx – 3 = 0 6) 2cos
2
x – 5cosx – 3 = 0
7) 3tan
2
x – tanx – 4 = 0 8) 5 + 3tanx – tan
2
x = 0 9) -5cot
2
x – 3tanx + 8 = 0
2. Giải các phương trình sau:
( )
( ) ( )
( )
2
3
1) 3 sin cos 1
2) 2 cos 2 2 sin 3
3)2sin 3 sin 2 3
4)3cos 2 4sin 2 5
5)1 sin cos sin cos 0
6) 3 cos5 2sin 3 cos2 sin 0 ( 2009)
1 2sin cos
7) 3 ( 2009)
1 2sin 1 sin
8)sin cos sin 2 3 cos3 2 cos4 sin (
x x
x x
x x
x x
x x x x
x x x x dh D
x x
dh A
x x
x x x x x x
+ =
+ =
+ =
+ =
+ + + =
− − = −
−
= −
+ −
+ + = +
2
2009)
3 1
9) 3 sin cos
2cos
cos 2sin cos
10) 3
2cos sin 1
dh B
x x
x
x x x
x x
−
+
+ =
−
=
+ −
3. Giải các phương trình sau:
a. 3sin
2
x – 2sin2x – 3cos
2
x = 2 b. cos
3
x + sin
3
x = sinx + cosx c.
1
4sin 6cos
cos
x x
x
= +
4. Giải các phương trình
Trang 2
Đề cương ôn thi HKI Năm học: 2013 - 2014
3 3
3
3 3 2 2
1 2 3 2
1)cos3 2 cos 2)cos3 cos sin 3 sin
2 2
1
3)2 2 cos 3cos sin 0 4)2cos2 8cos 7
4 cos
5)sin 2 2cos 2 1 sin 4cos 6)2sin (1 cos2 ) sin 2 1 2cos
7)sin 3cos sin cos 3 sin cos 8)(1 s
x co x x x x x x
x x x x x
x
x x x x x x x x
x x x x x x
π
+
− + = − =
− − − = − + =
÷
+ = + − + + = +
− = − +
2 2
2
2
in )cos (1 cos )sin 1 sin 2
cos 2 1
9)(2cos 1)(2sin cos ) sin 2 sin 10)cot 1 sin sin 2
1 tan 2
cos2 sin 2
11)3 cot 3 12)2sin 2 4sin 1 0
sin cos 6
2sin 2 2cos 2sin 1
13) cos2
2cos 1
x x x x x
x
x x x x x x x x
x
x x
x x x
x x
x x x
x
π
+ + = +
− + = − − = + −
+
+ = + − + + =
÷ ÷
+ − −
=
−
( ) ( ) ( )
3 3
2 3
2
3
3 sin 1 14) sin cos 1 sin 2 cos sin
2
1 sin
15)tan 16)2sin cos 2 cos 0
2 sin
3 cos 2
17) 4cot 2 18)cos 2 3sin 2 2 3 sin 2cos 1 0
sin
tan 1 cos cos2 cos3 2
19) tan 2 20)
cot3 cos cos2 3
x x x x x x x
x
x x x x
x
x
x x x x x
x
x x x x
x
x x x
π
+ + + = + −
+
− = + + =
÷
+
− = − + − + =
+ + +
− = =
+
2 2 2
2
3 2
(3 3sin )
3 cos2 1
21)4sin 3cos 2 1 2cos 22) tan 3tan
2 4 2 cos
23)4sin 4sin 3sin 2 6cos 0 24)sin3 3 cos3 cos 2 3 sin 2 sin 3 cos
sin sin 2 cos2
25) 3 26)cot 1 si
cos cos 2 1 tan
x
x x
x x x x
x
x x x x x x x x x x
x x x
x
x x x
π π
−
−
− = + − + − =
÷ ÷
+ + + = + + − = +
−
= − = +
− +
2
1
n sin 2
2
x x−
CHƯƠNG II: TỔ HỢP – XÁC SUẤT
Dạng 1: Sử dụng QUI TẮC ĐẾM – HOÁN VỊ -CHỈNH HỢP – TỔ HỢP
a. Phương pháp giải
Nắm được hai qui tắc cộng và qui tắc nhân .
Nắm được định nghĩa hoán vị - Chỉnh hợp – Tổ hợp .
b. Bài tập
1.Có bao nhiêu số lẻ gồm 3 chữ số khác nhau được lập từ các chữ số 1,2,3,4,5.
2. Có bao nhiếu số có ba chữ số khác nhau .
3. Từ các chữ số 0,1,2,3,4,5 .Có thể lập được bao nhiêu số
a) Có 6 chữ số khác nhau b) Chẳn có 4 chữ số c) Chẳn có 6 chữ số khác nhau .
4.:Trên một giá sách có 10 quyển sách tiếng việt khác nhau , 8 quyển sách tiếng anh khác nhau và 6 quyển sách
khác nhau . Hỏi có bao nhiêu cách chọn:
a) Một quyển sách ?
b) Ba quyển sách tiếng khác nhau ?
c) Hai quyển sách tiếng khác nhau ?
5. Có bao cách chia 10 người thành :
a) Hai nhóm, một nhóm 7 người, nhóm kia 3 người.
b) Ba nhóm tương ứng 5, 3,2 người.
6. Một đòan đại biểu gồm 4 học sinh được chọn từ một tổ gồm 5 nam nà 4 nữ.Hỏi có bao nhiêu cách chọn sao cho
trong đó có ít nhất một nam và ít nhất một nữ ?( 120)
7. Tìm số nguyên dương n thỏa mãn phương trình :
3 2
2 9
n
n n
A C n
−
+ =
Trang 3
Đề cương ôn thi HKI Năm học: 2013 - 2014
Dạng 2: Khai triển nhị thức
a. Phương pháp giải
Sử dụng công thức nhị thức Niutơn.
b. Bài tập:
Hãy khai triển :
a)
( )
5
5x −
b)
( )
4
3 4x −
c)
6
1
2
x
x
+
÷
d)
( )
7
3 x+
e)
( )
6
1 x+
Dạng 3: Tìm hệ số của số hạng, tìm số hạng thứ k+1,tìm số hạng không chứa x trong khai triển công thức
nhị thức Niutơn :
a. Phương pháp giải:
( )
n
a b+
=
0
n
k n k k
n
k
C a b
−
=
∑
Hệ số của số hạng thứ k+1 là
k
n
C
và số hạng thứ k+1 là
k
n
C
n k k
a b
−
.
Số hạng tổng quát của công thức nhị thức Niutơn là :
k
n
C
n k k
a b
−
để tìm số hạng không chứa x
b. Bài tập:
1. Tìm số hạng thứ 5 trong khai triển
10
2
x
x
+
÷
,mà trong khai triển đó số mũ của x giảm dần
2. Tìm hệ số của
7
x
trong khai triển của
( )
15
3 2y−
3. Tìm hệ số của
3
x
trong khai triển
( )
5
3 4x −
4. Tìm số hạng không chứa x trong khai triển :
6
2
1
2x
x
−
÷
5. Trong khai triển
( )
1 ax
n
+
ta có số hạng đầu là 1 ,số hạng thứ hai là 24x ,số hạng thứ 3 là
2
252x
.Hãy tìm a
và n.
6. Biết rằng hệ số của
2n
x
−
trong khai triển
1
4
n
x
−
÷
là 31 .tìm n
Dạng 4: Tính xác suất của các biến cố
a. Phương pháp giải:
Áp dụng các công thức :
1.P(A) =
( )
( )
n A
n Ω
2.Nếu A
B
∩ = ∅
thì
( ) ( ) ( )P A B P A P B∪ = +
3.
( ) 1 ( )P A P A= −
4.Nếu A,B là hai biến cố độc lập thì
( . ) ( ). ( )P A B P A P B=
5.
( ) ( ) ( ) ( . )P A B P A P B P A B∪ = + −
6.Vận dụng các qui tắc đếm ,hóan vị ,chỉnh hợp ,tổ hợp để tính số phần tử của không gain mẫu ,số phần tử của
các biến cố.
7.Sử dụng các biến cố đối
b. Bài tập:
1. Lấy ngẫu nhiên một thẻ từ một hộp chứa 20 thẻ được đánh số từ 1 tới 20. Tìm xác suất để thẻ được lấy ghi số:
a) Chẵn;
b) Chia hết cho 3;
c) Lẻ và chia hết cho 3.
2. Một lớp học có 45 HS trong đó 35 HS học tiếng Anh, 25 HS học tiếng Pháp và 15 HS học cả Anh và Pháp.
Chọn ngẫu nhiên một HS. Tính xác suất của các biến cố sau:
a) A: “HS được chọn học tiếng Anh”
Trang 4
Đề cương ôn thi HKI Năm học: 2013 - 2014
b) B: “HS được chọn chỉ học tiếng Pháp”
c) C: “HS được chọn học cả Anh lẫn Pháp”
d) D: “HS được chọn không học tiếng Anh và tiếng Pháp”.
3. Một tổ có 7 nam và 3 nữ. Chọn ngẫu nhiên hai người. Tìm xác suất sao cho trong hai người đó:
a) Cả hai người đó đều là nữ;
b) Không có nữ nào;
c) Ít nhất một người là nữ;
d) Có đúng một người là nữ.
4. Đội tuyển học sinh của một trường gồm 18 em, trong đó có 7 học sinh khối 12 , 6 học sinh khối 11 và 5 học sinh
khối 10 .Chọn 8 học sinh trong đội đi dự trại hè .
a) Tính số phần tử không gian mẫu .
b) Tính xác suất sao cho có đúng 2 học sinh khối 12 được chọn .
c) Tính xác suất sao cho có ít nhất 3 học sinh khối 11 và ít nhất 3 học sinh khối 10.
d) Tính xác suất sao cho mỗi khối có ít nhất một em được chọn .
5. Một hộp đựng 5 viên bi đỏ, 4 viên bi trắng và 6 viên bi vàng .Người ta chọn ra 4 viên bi từ hộp đó .
a) Tính số phần tử không gian mẫu .
b) Tính xác suất của các biến cố sau : A:” Có 2 viên bi đỏ, 1 viên bi trắng và 1 viên bi vàng “
B:” ít nhất 2 viện bi vàng “
C:” không có đủ 3 màu “
6. Một bình chứa 16 viên bi với 7 viên bi trắng, 6 viên bi đen và 3 viên bi đỏ .Lấy ngẫu nhiên 4 viên bi .
a) Tính số phần tử không gian mẫu .
b) Tính xác suất để :
1
b
) Lấy được 4 viên bi trắng .
2
b
) Lấy được không quá 3 viên bi đen .
3
b
) Các viên bi cùng màu .
7. Từ một hộp chứa 6 quả cầu trắng và bốn quả cầu đen .Lấy ngẫu nhiên đồng thời 4 quả .Tính xác suất sao cho :
a) Bốn quả lấy ra khác màu.
b) Có ít nhất một quả màu trắng .
c) Có 2 quả cầu trắng .
8. Có hai hộp chứa các quả cầu .Hộp thứ nhất chứa 6 quả cầu trắng, 4 quả cầu đen .Hộp thứ hai chứa 4 quả trắng, 6
quả đen .Từ mỗi hộp lấy ngẫu nhiên một quả .Tính xác suất :
a) Hai quả cầu lấy ra cùng màu .
b) Hai quả cầu lấy ra khác màu .
CHƯƠNG III: DÃY SỐ - CẤP SỐ CỘNG – CẤP SỐ NHÂN
Dạng : Tìm các yếu tố của cấp số cộng
a. Phương pháp giải:
Định nghĩa:
*
1
,
n n
u u d n N
+
= + ∀ ∈
( d: là công sai của CSC) Hệ quả:
1n n
d u u
+
= −
Số hạng tổng quát:
1
( 1) ( 2)
n
u u n d n= + − ≥
Hệ quả:
1
1
n
u u
d
n
−
=
−
Tính chất:
1 1
, 2
2
k k
k
u u
u k
− +
+
= ≥
Tổng S
n
của n số hạng đầu:
1
1
( )
2
( 1)
2
n
n
n
n u u
S
n n d
S nu
+
=
−
= +
b. Bài tập:
Trang 5
Đề cương ôn thi HKI Năm học: 2013 - 2014
1. Tìm số hạng đầu và công sai của cấp số cộng
( )
n
u
,biết :
a)
1 5
4
2 0
14
u u
S
+ =
=
b)
4
7
10
19
u
u
=
=
c)
1 5 3
1 6
10
7
u u u
u u
+ − =
+ =
d)
7 3
2 7
8
. 75
u u
u u
− =
=
2. a) Tìm
,
n
u n
biết :
1
2; 5; 205
n
u d S= = − = −
.
b) Tìm
1
,
n
u u
biết :
15; 4; 120
n
n d S= = − =
.
c) Tìm
,
n n
u S
biết :
1
4
3; ; 7
27
n
u d u= = =
.
3. Viết 5 số hạng xen giữa hai số 25 và 1 để được một cấp số cộng có bảy số hạng .Số hạng thứ 50 của cấp số
này là bao nhiêu ?
B. HÌNH HỌC
CHƯƠNG IV: PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG
Dạng: Tìm ảnh của điểm, đường thẳng, đường tròn
a. Phương pháp giải:
Biểu thức tọa độ của các phép biến hình:
o Phép tịnh tiến:
'
'
x x a
y y b
= +
= +
o Phép quay:
' cos sin
' cos sin
x x y
y y x
α α
α α
= −
= +
o Phép vị tự:
( )
( )
' 1
' 1
x k a kx
y k b ky
= − +
= − +
Các tính chất của chúng.
b. Bài tập:
1. Thực hiện phép tịnh tiến theo vecto
( )
2;3v = −
r
. Tìm ảnh của:
a)
( )
3;4A −
b)
: 3 5 3 0d x y− + =
c)
1
2 3
:
1 2
x t
d
y t
= +
= −
d)
( )
2 2
: 2 4 4 0C x y x y+ − + − =
e)
( ) ( ) ( )
2 2
1
: 1 2 9C x y− + + =
2. Thực hiện phép quay tâm O góc
0
90
. Tìm ảnh của:
a)
( )
1;1A
b)
:5 3 15 0d x y− + =
c)
1
1
:
2 2
x t
d
y t
= +
= −
d)
( ) ( ) ( )
2 2
: 2 1 4C x y− + + =
e)
( )
2 2
1
: 4 6 12 0C x y x y+ + − − =
3. Trong mặt phẳng tọa độ Oxy, cho điểm
( )
4;1A −
đường thẳng
: 2 4 0d x y+ − =
, đường thẳng
1
1 2
:
2 3
x t
d
y t
= +
= −
đường tròn
( )
2 2
: 6 2 1 0C x y x y+ − + + =
và đường tròn
( ) ( ) ( )
2 2
1
: 1 3 9C x y− + + =
.
a) Tìm ảnh của điểm
A
qua phép vị tự tâm O tỉ số
2k = −
.
b) Tìm ảnh của đường thẳng
d
qua phép vị tự tâm
( )
2;3T −
tỉ số
2k =
.
c) Tìm ảnh của đường tròn
( )
C
qua phép vị tự tâm
( )
3;4I
tỉ số
1k = −
.
d) Tìm ảnh của đường tròn
( )
1
C
qua phép vị tự tâm O tỉ số
3k = −
.
e) Tìm ảnh của đường thẳng
1
d
qua phép vị tự tâm
( )
3;4I
tỉ số
2k =
.
CHƯƠNG II: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN.
Trang 6
Đề cương ôn thi HKI Năm học: 2013 - 2014
QUAN HỆ SONG SONG
Dạng 1: Xác định giao tuyến của hai mặt phẳng
a. Phương pháp giải:
Hai mặt phẳng không chứa hai đường thẳng song song: Đi tìm 2 điểm chung của 2 mặt phẳng (đường thẳng
đi qua 2 giao điểm là giao tuyến).
Hai mặt phẳng chứa hai đường thẳng song song: Đi tìm 1 điểm chung của 2 mặt phẳng (đường thẳng đi qua
giao điểm và song song với hai đường thẳng song song là giao tuyến).
b. Bài tập:
1. Cho hình chóp
.S ABCD
có đáy là tứ giác có các cặp đối không song song. Tìm giao tuyến của:
a)
( )SAC
và
( )SBD
; b)
( )SAB
và
( )SCD
; c)
( )SAD
và
( )SBC
.
2. Cho hình chóp
.S ABC D
có đáy
ABCD
là hình thang (
AD
là đáy lớn). Tìm giao tuyến của:
a)
( )SAC
và
( )SBD
; b)
( )SAD
và
( )SBC
; c)
( )SAB
và
( )SCD
.
3. Cho hình chóp
.S ABCD
có đáy
AB CD
là hình bình hành. Gọi
M
,
N
,
P
lần lượt là trung điểm của
BC
,
CD
,
SA
. Tìm giao tuyến của:
a)
( )SAC
và
( )SBD
; b)
( )SAD
và
( )SBC
; c)
( )MNP
và
( )SAB
;
d)
( )MNP
và ;
( )SAD
e)
( )MNP
và
( )SBC
; f)
( )MNP
và
( )SBD
.
4. Cho tứ diện
AB CD
. Gọi
I
,
J
lần lượt là trung điểm
AC
,
BC
;
K
là điểm thuộc
BD
sao cho
KD KB<
. Tìm giao tuyến của:
a)
( )IJ K
và
( )ACD
; b)
( )IJ K
và
( )ABD
.
5. Cho hình chóp
.S ABC D
có đáy là hình bình hành tâm
O
. Lấy
,N M
lần lượt thuộc
SA
,
SB
sao cho
1
4
BM BS=
;
3
4
SN SA=
. Tìm giao tuyến của:
a)
( )OMN
và
( )SAB
; b)
( )OMN
và
( )SAD
;
c)
( )OMN
và
( )SBC
; d)
( )OMN
và
( )SCD
.
Dạng 2: Xác định giao điểm của đường thẳng với mặt phẳng
a. Phương pháp giải : Phương pháp tìm giao điểm
I
của đường thẳng
a
và mặt phẳng
( )a
:
- TH1:
( )a
chứa đường thẳng
b
và
b
cắt
a
tại
I
thì
I
chính là giao điểm của đường thẳng
a
với mặt phẳng
( )a
.
- TH2:
( )a
không chứa đường thẳng nào cắt
a
+ Tìm mặt phẳng
( )b
chứa đường thẳng
a
;
+ Tìm giao tuyến
d
của
( )a
và
( )b
;
+ Tìm giao điểm
I
của
a
và
d
. Khi đó
I
là giao điểm cần tìm.
b. Bài tập :
1. Cho tứ diện
AB CD
. Gọi
M
,
N
lần lượt là trung điểm
AC
,
BC
;
K
là điểm thuộc
BD
sao cho
KD KB<
. Tìm giao điểm của:
a)
CD
và
( )MNK
; b)
AD
và
( )MNK
.
2. Cho tứ diện
ABCD
. Gọi
I
,
J
là các điểm lần lượt nằm trên các cạnh
AB
,
AD
với
1
3
AI AB=
và
3
4
AJ AD=
. Gọi
G
là trọng tâm tam giác
ACD
. Tìm giao điểm của:
Trang 7
Đề cương ôn thi HKI Năm học: 2013 - 2014
a)
IJ
và
( )BCD
; b)
IG
và
( )BCD
.
3. Cho tứ diện
AB CD
. Gọi
M
,
N
lần lượt là trung điểm
AC
,
BC
;
P
là điểm thuộc
BD
sao cho
2PB PD=
. Tìm giao điểm của:
a)
AC
và
( )MNP
; b)
BD
và
( )MNP
.
4. Cho hình chóp
.S ABCD
có đáy
ABCD
là hình bình hành. Gọi
M
là trung điểm của
SC
. Tìm giao điểm
của:
a)
AM
và
( )SBD
; b)
SD
và
( )ABM
.
5. Cho hình chóp
.S ABCD
có đáy
ABCD
là hình thang,
AB CDP
,
AB CD>
. Lấy
, ,I J K
lần lượt nằm
trên các đoạn
SA
,
CD
,
BC
. Tìm giao điểm của:
a)
SB
và
( )IJ K
c)
IC
và
( )SJ K
Dạng 3: Chứng minh 2 đường thẳng song song
a. Phương pháp giải
Phương pháp 1.
- Chứng minh hai đường thẳng cùng nằm trong một mặt phẳng hoặc hiểu hiểu ngầm rằng điều đó hiển nhiên xảy
ra nếu chúng nằm trong một hình phẳng nào đó.
- Dùng các phương pháp chứng minh song song trong hình học phẳng như: định lý Ta-let, các hình thang, hình
bình hành, đường trung bình của tam giác, quan hệ song song,…
Phương pháp 2.
- Chứng minh hai đường thẳng đó cùng song song với đường thẳng thứ ba.
Phương pháp 3.
- Áp dụng định lý về giao tuyến: Nếu hai mặt phẳng cắt nhau và lần lượt chứa hai đường thẳng song song cho
trước thì giao tuyến của chúng cùng phương với hai đường thẳng ấy.
b. Bài tập:
1. Cho tứ diện
AB CD
. Gọi
,M N
theo thứ tự là trung điểm của
AB
,
BC
. Mặt phẳng
( )P
đi qua
,M N
cắt
cạnh
,DA DC
tại
E
và
F
khác
, ,D A C
. Chứng minh
EF
song song với
MN
và
AC
.
2. Cho tứ diện
ABCD
. Gọi
I
,
J
lần lượt là trọng tâm các tam giác
ABC
và
ABD
. Chứng minh rằng
IJ
song song với
CD
.
3. Cho hình chóp
.S ABCD
có đáy
ABCD
là hình thang,
AB CDP
,
AB CD>
. Gọi
M
,
N
lần lượt là
trung điểm
SA
,
SB
.
a) Chứng minh rằng:
MN CDP
b) Tìm giao điểm
P
của
SC
và
( )AND
c)
AN
cắt
DP
tại
I
. Chứng minh rằng:
SI AB CDP P
Dạng 4: Chứng minh đường thẳng song song với mặt phẳng
a. Phương pháp giải:
Phương pháp 1. Để chứng minh
( )d aP
ta làm như sau:
- Chứng minh đường thẳng
d
song song với đường thẳng
D
nằm trong mặt phẳng
( )a
( )
( ) ( )
d
d
d
a
a aP
P
ì
ï
Ë
ï
ï
ï
Û D Ì
í
ï
ï
D
ï
ï
î
Phương pháp 2. Để chứng minh
( )d aP
ta làm như sau:
- Chọn mặt phẳng
( )b
chứa
d
- Tìm giao tuyến
D
của
( )a
và
( )b
;
- Chứng minh
d P D
.
Trang 8
Đề cương ôn thi HKI Năm học: 2013 - 2014
b. Bài tập
1. Cho hình chóp
.S ABCD
có đáy
AB CD
là hình bình hành. Gọi
M
,
N
,
P
lần lượt là trung điểm của
AB
,
CD
,
SA
.
a) Chứng minh rằng:
( )MN SBCP
và
( )MN SADP
b) Chứng minh rằng:
( )SB MNPP
và
( )SC MNPP
2. Cho tứ diện
AB CD
. Gọi
G
là trọng tâm tứ diện,
M BCÎ
sao cho
2MB MC=
. Chứng minh rằng:
( )MG ACDP
.
3. Cho hình chóp
.S ABCD
có đáy
ABCD
là hình thoi tâm
O
. Gọi
M
,
N
,
P
lần lượt là trung điểm của
SB
,
SO
,
OD
. Chứng minh rằng:
a)
( )MN ABCDP
và
( )MO SCDP
b)
( )NP SADP
;
NPOM
là hình gì? Vì sao?
Dạng 4: Xác định thiết diện
a. Phương pháp giải
Thiết diện (mặt cắt) là một đa giác được tạo bởi một mặt phẳng cắt một khối đa diện.
Phương pháp chung để xác định thiết diện
- Muốn tìm thiết diện của một khối đa diện cho trước cắt bởi mặt phẳng
( )a
ta cần tìm các đoạn giao tuyến của
( )a
với các mặt của khối đa diện. Mặt phẳng
( )a
này có thể không cắt tất cả các mặt của khối đa diện mà chỉ cắt
một số mặt nào đó.
b. Bài tập:
1. Cho tứ diện
ABCD
. Gọi
M
,
N
lần lượt là trung điểm
AB
,
CD
;
P ADÎ
và không là trung điểm
AD
.
Tìm thiết diện của tứ diện cắt bởi mặt phẳng
( )MNP
.
2. Cho hình chóp
.S ABCD
có đáy là hình bình hành tâm
O
. Gọi
M
,
N
lần lượt là trung điểm
BC
,
CD
;
P SAÎ
(
P
không trùng với
S
và
A
). Xác định thiết diện của hình chóp cắt bởi mặt phẳng
( )MNP
.
BÀI TẬP TỔNG HỢP
Bài 1. Cho hình chóp
.S ABCD
đáy là hình bình hành. Gọi
, ,I J K
là trung điểm
SA
,
SB
,
BC
.
a) Chứng minh rằng:
( )IJ SCDP
b) Chứng minh rằng:
( )SD IJ KP
c) Tìm giao điểm của
AD
với
( )IJ K
d) Xác định thiết diện của hình chóp với
( )IJ K
.
Bài 2. Cho hình chóp
.S ABCD
đáy là hình thang (
AB
là đáy lớn). Gọi
,M N
lần lượt là trung điểm
BC
,
SB
;
P ADÎ
sao cho
2PD PA=
.
a) Chứng minh rằng:
( )MN SCDP
b) Tìm giao điểm của
SA
và
( )MNP
.
c) Gọi
O
là giao điểm của
AC
và
BD
. Tìm giao điểm của
SO
và
( )MNP
.
Bài 3. Cho hình chóp
.S ABCD
đáy là hình bình hành tâm
O
. Gọi
, , ,Q E F I
lần lượt là trung điểm
BC
,
AD
,
SD
,
SB
.
a) Chứng minh rằng:
( )FO SBCP
b) Chứng minh rằng:
( )AI QEFP
c) Tìm giao điểm
J
của
SC
và
( )QEF
d) Tìm thiết diện hình chóp và
( )IJ F
Bài 4. Cho hình chóp
.S ABCD
đáy là hình bình hành tâm
O
. Gọi
,M N
lần lượt là trung điểm
SB
,
SC
; lấy
điểm
P SAÎ
.
a) Tìm giao tuyến của
( )SAB
và
( )SCD
Trang 9
Đề cương ôn thi HKI Năm học: 2013 - 2014
b) Tìm giao điểm của
SD
và
( )MNP
c) Gọi
J MNÎ
. Chứng minh rằng
( )OJ SADP
d) Tìm thiết diện hình chóp và
( )MNP
. Thiết diện là hình gì?
Duyệt của BGH Duyệt của Tổ trưởng Người soạn
Nguyễn Tấn Hanh Trần Văn Nhựt
Trang 10