Tải bản đầy đủ (.pdf) (60 trang)

Hàm lồi và ứng dụng xây dựng các bất đẳng thức

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (528.92 KB, 60 trang )

Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 

LỜI CẢM ƠN
 
Em xin cảm ơn sự giúp đỡ của các thầy cô trong tổ giải tích, các thầy 
cô trong khoa toán và trường ĐHSP Hà Nội 2 trong suốt quá trình học tập và 
nghiên  cứu.  Đặc  biệt  em  xin  bày  tỏ  lòng  biết  ơn  sâu  sắc  tới  thầy  giáo  – 
PGS.TS Khuất Văn Ninh người đã trực tiếp hướng dẫn và tạo mọi điều kiện 
giúp đỡ em trong  quá trình thực hiện khóa luận. 
Tuy đã có rất nhiều cố gắng, nhưng do là lần đầu thực hiện một đề tài 
nghiên cứu khoa học nên khóa luận của em không tránh khỏi những thiếu sót. 
Em rất mong được sự đóng góp ý kiến từ phía các thầy giáo, cô giáo và các 
bạn. 
Em xin chân thành cảm ơn! 
 
Hà Nội, ngày 14  tháng 5 năm 2012 
Sinh viên 

 

 

 

 

 

Trần Phương Anh


Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

1   


Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 

LỜI CAM ĐOAN 
 
Khóa luận của em được hoàn thành dưới sự hướng dẫn của thầy giáo 
PGS.TS Khuất Văn Ninh  cùng  với  sự  cố  gắng  của  bản  thân.  Trong  quá 
trình nghiên cứu em có tham khảo một số tài liệu của một số tác giả (đã nêu 
trong mục tài liệu tham khảo). 
Em xin cam đoan những kết quả trong khóa luận là kết quả nghiên cứu 
của bản thân không trùng với kết quả của tác giả khác. Nếu sai em xin chịu 
hoàn toàn trách nhiệm. 
 
                                                                                          
                                                                               Sinh viên
 
                                                                      Trần Phương Anh

Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

2   



Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 

MỤC LỤC

LỜI NÓI ĐẦU ............................................................................................ 1
CHƯƠNG I: KIẾN THỨC CƠ SỞ ........................................................... 2
1. Định nghĩa.......................................................................................... 2 
2. Tính chất ............................................................................................ 3 
3. Các điều kiện tương đương ................................................................ 11 
CHƯƠNG II: ỨNG DỤNG HÀM LỒI XÂY DỰNG CÁC BẤT
ĐẲNG THỨC ............................................................................................. 12
1. Các bất đẳng thức kinh điển ............................................................... 12 
2. Các bất đẳng thức đại số..................................................................... 21 
3. Các bất đẳng thức lượng giác trong tam giác...................................... 35 
4. Các bất đẳng thức hình học ................................................................ 48 
KẾT LUẬN................................................................................................. 55 
TÀI LIỆU THAM KHẢO.......................................................................... 56

Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

3   


Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 

LỜI NÓI ĐẦU
 

Trong chương trình toán học phổ thông, vấn đề về bất đẳng thức luôn là 
chuyên đề chiếm vị trí quan trọng đòi hỏi sự sáng tạo từ phía các em học sinh. 
Những bài toán thuộc chuyên đề này là những vấn đề khó nhưng mang lại cho 
người học nhiều kiến thức hay và sự tư duy cao. Điều quan trọng là làm thế 
nào để chúng ta thật sự có được những bất đẳng thức hay và phong phú cho 
người  học.  Có  rất  nhiều  phương  pháp  xây  dựng  bất  đẳng  thức,  trong  đó  sử 
dụng  những  tính  chất  của  hàm  lồi  (lõm)  là  một  phương pháp  cho  nhiều bài 
toán hay, mang tính độc đáo. 
Chính  vì  vậy  tôi chọn đề tài  nghiên  cứu: “Hàm lồi và ứng dụng xây
dựng các bất đẳng thức”,  tìm  hiểu  phương pháp  hàm  lồi  xây  dựng  các bất 
đẳng thức từ đơn giản đến phức tạp. 
Khóa luận gồm 2 phần: 
Phần I: Các kiến thức cơ sở. Trình bày những kiến thức cơ bản có liên 
quan đến việc xây dựng các bất đẳng thức. Trong đó có định nghĩa, tính chất 
của hàm lồi và các điều kiện tương đương. 
Phần  II:  Ứng dụng hàm lồi xây  dựng  các bất đẳng  thức: Dựa vào bất 
đẳng thức  Jen xen các tính  chất thích hợp của hàm  lồi để chọn  một hàm  số 
thích hợp, từ đó đưa ra cách xây dựng các bất đẳng thức, từ các bất đẳng thức 
kinh điển, các bất đẳng thức quen thuộc đến sáng tạo ra những bất đẳng thức 
phong phú thuộc các chủ đề. 

Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

4   


Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 
CHƯƠNG I

KIẾN THỨC CƠ SỞ
1. Định nghĩa
1.1. Định nghĩa
Giả  sử  hàm  số  f  xác  định  trên  khoảng  I  (khoảng  mở,  đóng  hoặc  nửa 
đóng, hữu hạn hoặc vô hạn). Hàm số f được gọi là hàm lồi trên khoảng I nếu 
 x1, x2   I, x1  x2 ta có: 

f(  x1 + (1    )x2) <   f(x1) + (1    )f(x2),    (0; 1).

 

1.2. Ý nghĩa hình học
Giả sử x1, x2   I; M1, M2 là hai điểm bất kì của đường cong y = f(x). 
M1(x1; f(x1)), M2(x2; f(x2)). Khi đó 

y

phương trình tham số của M1, M2  là: 
 x  x 2  (x1  x 2 )
 

 y  f  x 2   (f (x1 )  f (x 2 ))

y = f(x)
M2

 
M1

Với: 0 <    < 1,    là tham số. 

Như vậy: Hàm số f(x) là lồi trên khoảng 
I nên với 2 điểm bất kì M1, M2  của đường 

x1

x2

x

cong y = f(x), cung M1M2  của đường 
cong nằm về phía dưới đoạn M1M2 . 
1.3. Ví dụ
a. Ví dụ 1: Hàm số f(x) = x2 lồi trên (   ; +  ) 
Thật vậy:    x1, x2   (   ; +  ), x1  x2 ta có: 
f(  x1 + (1    )x2) = (  x1 + (1    )x2)2 
 

2

 =   2 x12   +  1    x 22  + 2  (1    )x1x2 

 f(x1) + (1    )f(x2) =   x12 + (1    )x22 

Ta thấy:  

Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

5   



Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 
2

 x12  + (1    ) x 22 – (  2 x12   +  1    x 22  + 2  (1    )x1x2) = 
=   (1     ) x12  +    (1    ) x 22  2  (1    )x1x2 
= ( λ 1    x1    (1   ) x2)2  > 0                          

(  ) 

(  ) là bất đẳng thức luôn đúng       (0; 1) và x1  x2. 
Do đó: f(  x1 + (1    )x2) <   f(x1) + (1   )f(x2) 
Vậy f(x) = x2 là hàm số lồi trên (   ; +  ). 
b. Ví dụ 2: Hàm số f(x) = ex lồi trên (   ; +  ). 
Chứng minh tương tự như ví dụ (1) ta cũng có được điều khẳng định. 
1.4. Hàm lõm
a. Hàm số f xác định trên I được gọi là hàm lõm trên nó nếu –f là lồi, 
tức là    x1, x2   I, x1  x2. Ta có: 
f(  x1 + (1    )x2) >   f(x1) + (1    )f(x2) 
b. Ví dụ: Hàm số y = f(x) =   x2 là hàm lõm trên (   ; +  ). 
2. Tính chất
2.1. Định lý 1
Giả  sử  f(x)  là  hàm  lồi  trên  khoảng  I  và   1,   2,  …,   n    là  những  số 
không âm sao cho   1 +   2 + …+   n  = 1 và x1, x2, …, xn   I thì: 
f(  1x1 +   2x2 + …+    nxn)      1f(x1) +   2 +…+   n f(xn)     

(1) 

Chứng minh

 ) Trước hết bằng quy nạp ta chỉ ra rằng: Nếu x1,  x2, …, xn    I và   1, 

 2,  …,   n  là  những  số  không  âm  sao  cho:   1  +   2  +…+   n  =  1  thì 
1x1   2 x 2  ...   n x n    I. 

Thật vậy: 
Với n = 2 khẳng định trên đúng vì theo định nghĩa hàm lồi    
f(  x1 + (1    )x2) nghĩa là:   x1 + (1    )x2   I. 

Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

6   


Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 
Với n > 2, giả sử điều khẳng định đúng. Ta sẽ chứng minh nó đúng với 
n + 1, tức là: Nếu x1, x2, …, xn, xn + 1    I và   1 +  2  +…..+   n +   n+1 = 1 thì 

 1x1 +   2x2 +…+   nxn +   n+1xn+1   I 
Từ giả thiết:   1 +  2 +…+   n +   n+1 = 1       i > 0,  i  1, n  1  

  Giả sử   i > 0 với i    n. Khi đó:   1 +  2 +…+   n > 0 
Ta có:   1x1 + …+   nxn +   n+1 xn+1 = (  1 +   2 +…+   n )   Từ giả thiết 
quy nạp ta suy ra: 
u =

1
n

x1  ... 
xn  I  
1   2  ...   n
1   2  ...   n

Do đó   1x1 +…+  nxn  +   n+1 xn+1   I 

  Nếu   1 =…=  n = 0 thì   n+1 = 1 và   1x1 +…+   nxn  +  n+1xn+1 = xn+1 
  I 
 ) Ta chứng minh (1) bằng quy nạp. 

Với n = 2, bất đẳng thức (1) đúng theo định nghĩa hàm lồi. 
Dấu “ = ” của bất đẳng thức xảy ra khi  1 và  2   nhận các giá trị 0 hoặc 
1 hoặc khi x1 = x2 
Giả sử (1) đúng với n. Ta chứng minh (1) cũng đúng với n + 1. Tức là: 
Nếu   1, …,  n+1 là những số không âm sao cho:   1 +…+   n+1 = 1 thì: 
f(  1x1 + …+    n+1 xn+1)      1f(x1) +…+   n+1f(xn+1). 
Thật vậy: Nếu   1 +  2 +…+   n > 0 thì: 
f(  1x1 + …+    n+1 xn+1) 


1
n
 f  (1  ...   n )(
x1  ... 
x n )   n 1x n 1 
1  ...   n
1  ...   n




 



1
n
 (1  ...   n ) 
x1  ... 
x n    n 1f (x n 1 )(2)
1  ...   n 
 1  ...   n

(vì f là hàm lồi) 
Theo giả thiết quy nạp: 

Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

7   


Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 


1
n
1
n

f
x1  ... 
xn  
f (x1)  ... 
f (xn )   (3) 


...




...




...




...


n
1
n
n
1

n
 1
 1

Từ (2) và (3)    (1) đúng. 
Nếu   1 = … =  n = 0, hiển nhiên khẳng định (1) đúng. 
Hệ quả: (bất đẳng thức Jen-xen)
Nếu f là một hàm lồi trên I thì   x1, x2, …, xn    I ta có: 
 x  ...  x n  f (x1 )  ...  f (x n )
      với n là số dương bất kỳ 
f 1

n
n



Dấu của bất đẳng thức   x1 = x2 = …= xn. 
Chứng minh
Bất đẳng thức được suy ra trực tiếp từ định lý với 

1  ...   n 

1
 
n

2.2. Bổ đề
Giả sử f là hàm lồi trên khoảng I. khi đó với x1, x2, x3    I và x1 < x2 <  
x3 ta có: 

a) 

f (x 2 )  f (x1 ) f (x 3 )  f (x1 )
 

x 2  x1
x 3  x1

b) 

  

f (x 2 )  f (x1 ) f (x 3 )  f (x 2 )
 

x 2  x1
x3  x 2

y

Chứng minh

y = f(x)

Gọi M1, M2, M3 là 3 điểm của đường cong  
y = f(x) theo thứ tự có các hoành độ x1, x2, x3 

M2
M1


  I . 
Gọi M là giao điểm của đường thẳng 

x1

x2

x

x = x2 với đường thẳng M1M3. 

Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

8   


Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 
Vì f là hàm lồi nên đoạn M1M3 nằm trên phía cung M1M3   của đường 
cong y = f(x). 
Do đó  y M 2     y M  ( y M 2 ,  y M  theo thứ tự là tung độ của M2 và M). 
Phương trình đường thẳng là M1M3 là: 
y  f (x1 ) 

f (x 3 )  f (x1 )
(x  x1 )  
x 3  x1

   y M  f (x1 ) 


f (x 3 )  f (x1 )
(x 2  x1 )  
x 3  x1

Từ   y M 2  y M  f (x 2 )  f (x1 ) 
 

f (x 3 )  f (x1 )
(x 2  x1 )  
x 3  x1

f (x 2 )  f (x1 ) f (x 3 )  f (x1 )
 

x 2  x1
x 3  x1

(1) 

Từ (1) ta suy ra:  
[f(x2)  f(x1)](x3  x1) < [ f(x3)  f(x1)](x2  x1) 
 [f(x2)  f(x1)][(x2  x1)+(x3  x2)] < [f(x3)  f(x2) + (f(x2)  f(x1))](x2  x1) 
   (f(x2)   f(x1)(x3  x2) <  (f(x3)   f(x2))(x2   x1) 
 

f (x 2 )  f (x1 ) f (x 3 )  f (x1 )
  

x 2  x1

x 3  x1

(2) 

Từ (1) và (2)    điều phải chứng minh. 
2.3. Định lý 2
Nếu f là hàm số lồi trên (a; b) thì f liên tục trên (a; b). 
2.4. Định lý 3
Nếu f là hàm số lồi trên khoảng I và f có đạo hàm   x   I thì đạo hàm f 


của f là một hàm đồng biến trên khoảng I. 
Chứng minh
Giả sử x1, x2   I và x1 < x2. Ta chứng minh: f '(x1) < f '(x2).   
Thật vậy: Gọi   ,   ,    là 3 số thực sao cho: x1 <    <    <    < x2. 

Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

9   


Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 
Khi đó   x   (x1;   ) và t   (  ; x2) ta có x1 < x <    <    <    < t < x2. 
Theo bổ đề trên ta có: 
f (x)  f (x1 ) f ()  f (x) f ()  f () f ()  f () f (t)  f () f (t)  f (x 2 )
 






x  x1
x

 
t 
t  x2

f (x)  f (x1 ) f ()  f () f ()  f ()
f (t)  f (x 2 )
 


 Lim
x  x1
t x 2
x  x1

 
t  x2

 Lim

(1) 

Theo giả thiết f(x) có đạo hàm tại x1 và x2 nên: 
f (x)  f (x1 )
 f (x1 );

x  x1
x  x1

Lim

f (t)  f (x 2 )
Lim
 f (x 2 ).
t x 2
t  x2

                  

(2) 

Từ (1) và (2)    f '(x1) < f '(x2)    điều phải chứng minh. 
Hệ quả: Nếu f là hàm số lồi trên khoảng I và f có đạo hàm cấp 2 tại 
mọi điểm x  I thì 
f ''(x)    0   x   I. 
Chứng minh
Vì f lồi nên theo định lý 3, đạo hàm f ' của f  là hàm số đồng biến trên I. 
Do đó f '' (x)    0   x   I     điều phải chứng minh. 
2.5. Định lý 4
Giả sử hàm số f có đạo hàm trên khoảng I. Nếu f '   là hàm số đồng biến 
trên I thì f  lồi trên khoảng này. 
Chứng minh
 ) Trước hết ta chứng minh: Nếu x1, x2, x3   I và x1 < x2 <  x3 thì: 
f (x 2 )  f (x1 ) f (x 3 )  f (x 2 )

;                                                 (1) 

x 2  x1
x3  x2

f (x 2 )  f (x1 ) f (x 3 )  f (x 2 )

.                                                 (2)   
x 2  x1
x3  x2

Thật vậy theo định lý lagrăng,    c   (x1; x2) và d   (x1; x3) sao cho: 

Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

10  


Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 
f (x 2 )  f (x1 )
f (x 3 )  f (x 2 )
 f (c);  
 f (d)  
x 2  x1
x3  x 2

Vì f '  đồng biến và c < d    f '(c) < f '(d) 


f (x 2 )  f (x1 ) f (x 3 )  f (x 2 )

  hay (1) đúng 

x 2  x1
x3  x 2

 ) Ta sẽ chứng minh (1) tương đương với (2). 

Thật vậy: (1)  [f(x2)  f(x1)](x3  x2) <  [f(x3)  f(x1)](x2  x1) 
  [f(x2)  f(x1)][(x3  x1)  (x2  x1)] <  [f(x3)  f(x1)  (f(x2)  f(x1))] 
   [f(x2)  f(x1)](x3  x1) <  [f(x3)   f(x1)](x2   x1) 


f (x 2 )  f (x1 ) f (x 3 )  f (x1 )
   (2) 

x 2  x1
x 3  x1

 ) Ta áp dụng (2) để chứng minh f lồi trên I 

Thật vậy: giả sử x1, x2   I và x1 < x2 
Gọi M1, M2 là 2 điểm của đường cong y = f(x), theo thứ tự có hoành độ 
x1, x2. Phương trình của đường thẳng M1M2 là: 
y  f (x1 ) 

f (x 2 )  f (x1 )
(x 2  x1 )  g(x) . 
x 2  x1

 x   (x1; x2) ta có: 


f (x)  g(x)  f (x)  f (x1 ) 

f (x 2 )  f (x1 )
(x  x1 )
x 2  x1

 f (x)  f (x1 ) f (x 2 )  f (x1 ) 


 (x  x1 )
x 2  x1 
 x  x1

 

Vì x1 < x < x2 nên từ (2) suy ra: 
f (x)  f (x1 ) f (x 2 )  f (x1 )


x  x1
x 2  x1

Do đó f(x) – g(x) < 0   x    (x1; x2)  tức là cung M1M2 của đường cong 
y = f(x) nằm dưới đoạn M1M2. Vậy f lồi trên I (điều phải chứng minh). 

Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

11  



Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 
Hệ quả: Giả sử f có đạo hàm cấp 2 trên khoảng I. Nếu f ' (x) > 0   x    
I thì f lồi trên khoảng này. 
2.6. Định lý 5
a) Nếu hàm số f(x) liên tục trên   a;b)  và f có đạo hàm cấp 2  f ''(x) > 0 
 x     a;b)  thì f lồi trên   a;b) . 

b) Nếu hàm số f(x) liên tục trên   a;b  và f có đạo hàm cấp 2  f ''(x) > 0 
 x     a;b   thì f lồi trên   a;b  . 

Chứng minh
Định lý được chứng minh tương tự như định lý 4. 
Các điều kiện trong giả thiết của định cho phép áp dụng định lý lagrăng 
để chứng minh hai bất đẳng thức (1) và (2) trong chứng minh của định lý 4. 
2.7. Định lý 6
Nếu f là hàm số lồi và có đạo hàm trên khoảng I (I = (a; b) hoặc [a; b), 
hoặc (a; b] hoặc [a; b] ) thì tiếp tuyến của đường cong y = f(x) tại mỗi điểm 
M0(x0, f(x0)), x0   I đều nằm phía dưới của đường cong. 
Chứng minh
Giả sử x0   I và M0 là điểm trên đường cong y = f(x) có hoành độ x0. 
Phương trình tiếp tuyến của đường  cong tại M0 là:  y  = f  '(x0) + f  '(x0) 
(x  x0) 
Giả sử x là số thực tùy ý sao cho x < x0, x    I; M, P theo thứ tự là các 
điểm thuộc đường cong y = f(x) và tiếp tuyến  

y = f(x)


M0T của đường cong tại M0 có hoành độ x. Ta 
chứng minh yM  >  yP 

M

Thật vậy:  
Ta có yM    yP = f(x)   f(x0)   f '(x0)(x  x0) 

Mo

P
O

x

xo

x

 

Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

12  


Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 
Theo định lý lagrăng 

 c   (x; x0) sao cho: f(x)   f(x0) = f '(x)(x  x0) 

Vì f lồi và có đạo hàm trên khoảng I, theo định lý 3, f ' là hàm đồng biến 
trên khoảng I. 
Do đó từ c < x0    f '(c) < f '(x0)     yM  yP = (f '(c)   f '(x0))(x  x0) > 0 
hay yM > yP 
  Tiếp tuyến của đường cong tại x0 nằm phía dưới của đường cong. 

Với x < x0 ta cũng chứng minh được: Tiếp tuyến của đường cong tại x0 
nằm phía dưới của đường cong. Do x0 là bất kỳ nên định lý được chứng minh. 
2.8. Định lý 7
Giả sử hàm số f có đạo hàm trên khoảng I. Nếu tiếp tuyến của đường 
cong  y  =  f(x)  tại  mỗi  điểm  của  đường  cong  đều  nằm  phía  dưới  của  đường 
y

cong thì f là hàm số lồi trên I. 
y = f(x)

Chứng minh

M2

Giả sử x1, x2   I và x1 < x2 

M1

Gọi M1, M2 là 2 điểm của đường cong 

N1


y = f(x) có hoành độ tương ứng là x1, x2. 
O

x1

N
N2

M
x

x2

x

Giả sử x là một số thực bất kỳ sao cho: 
x1 < x < x2 . N, M  theo thứ tự là điểm thuộc đường thẳng M1M2 có hoành độ 
x và đường cong y = f(x). 
Ta chứng minh: yM < yN 
Thật vậy: Gọi N1,  N2 là giao điểm của tiếp tuyến tại M của đường cong 
với đường thẳng x = x1 và x = x2 
Theo giả thiết, trên khoảng I, tiếp tuyến nằm phía dưới của đường cong. 
Do đó  y N1     y M1 ,  y N2   y M2

 

  Đoạn thẳng N1N2 nằm về phía dưới đoạn thẳng M1M2 . 

Tức là mọi số thực       (x1, x2):  ()  ()  


Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

13  


Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 
Trong đó: y =   (x) và y =   (x) theo thứ tự là phương trình của đường 
thẳng N1N2 và M1M2. Từ đó suy ra yM < yN (điều phải chứng minh). 
 Chú ý:  Các  tính  chất  được  phát  biểu  cho  hàm  lồi  cũng  được  phát 

biểu một cách tương tự đối với hàm lõm. 
3. Các điều kiện tương đương
Từ các tính chất của hàm lồi ta có các điều kiện tương đương sau: 
3.1. Giả sử hàm số f có đạo hàm trên khoảng I, f là hàm số lồi trên I 
  f '(x) là hàm đồng biến. 

3.2. Giả sử hàm số f có đạo hàm cấp 2 trên khoảng I, f là hàm số lồi 
trên I 
  f '(x) > 0     x   I. 

3.3. Nếu f có đạo hàm trên khoảng I (I = (a; b) hoặc [a; b) hoặc (a; b] 
hoặc [a; b] ), f  là hàm số lồi trên I    tiếp tuyến của đường cong y = f(x) tại 
mỗi điểm của đường cong nằm về phía dưới của đường cong. 
 
 
 
 
 

 
 
 
 
 
 
 
 

Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

14  


Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 
CHƯƠNG II
ỨNG DỤNG HÀM LỒI XÂY DỰNG CÁC BẤT ĐẲNG THỨC. 
 
Trong chương này ta sẽ đi xây dựng các bất đẳng thức nhờ sử dụng các 
tính chất của hàm lồi. Ta tiến hành xây dựng bất đẳng thức dựa trên những ý 
tưởng sau: 
Xây dựng một hàm lồi f  bằng cách chọn hàm f xác định trên I (I là một 
khoảng hoặc một đoạn) khả vi hai lần và có  f (x)  0 ,  x  I  hoặc chọn một 
hàm t(x) liên tục và không âm trên I sau đó lấy nguyên hàm hai lần ta được 
hàm f xác định và lồi trên  I. Khi đó dựa vào các tính chất của hàm lồi và các 
bất đẳng thức hàm lồi ta xây dựng các bất đẳng thức. 
1. CÁC BẤT ĐẲNG THỨC KINH ĐIỂN
1.1. Bất đẳng thức Cauchy

Chọn  T(x) 

1
 0 . Ta có T liên tục trên (0;   ) nên tồn tại nguyên 
x2

hàm của T và ta có: 
1

1

 T(x)dx   x dx   x  c . 
1

Chọn c1 = 0, ta được      T(x)  
Lại có:    

1

x

1
dx   ln x  c 2 . 
x

Chọn  c2  =  0  ta  được  hàm  f (x)   ln x   và  f (x)  T(x)  0   x   
(0; ) . 

Suy ra hàm số  f (x)   ln x  lồi trên  (0; ) . 
Áp  dụng  bất  đẳng  thức  Jenxen  cho  hàm  lồi  f (x)   ln x   x1 ,..., x n  

 (0; )  

Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

15  


Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 
 x  x 2  ...  x n
Ta có:   f  1
n


 1
  (f (x1 )  f (x 2 )  ...  f (x n )  
 n

 x  x 2  ...  x n
  ln  1
n


1

   (ln x1  ln x 2  ...  ln x n )  
n



 x  x 2  ...  x n
  ln  1
n



  ln n x1x 2 ...x n . 


Như vậy ta có bất bất đẳng thức côsi với bài toán như sau: 
 
 
 

Cho  x1 , x 2 ,..., x n  0 . Chứng minh rằng: 
x1  x 2  ...  x n n
 x1x 2 ...x n . 
n

 
1.2. Bất đẳng thức Bunhiacopxki
Chọn  f (x)  x 2   trên 

.  Ta  có  f (x)   khả  vi  hai  lần  và  f (x)  2  0  

x   . 

Suy ra f lồi trên  . 
n


Theo định lý (1) ta có:  i  0 ,   i  1  và  x   
i 1



 
 n 


f  n 1 x1  n 2 x 2  ...  n n x n    n k f (x k )  
 i
i
i  k 1  i



i 1
i 1
i 1
 i1

2



 

n




  n 1 x1  n 2 x 2  ...  n n x n    n k x 2k  
 i
i
i  k 1  i



 i 1

i 1
i 1
i 1

Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

16  


Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 


(1x1   2 x 2  ...   n x n ) 2
n

( i)

 (1   2  ...   n ) 


2

 

(1) 

i 1

 (1x12   2 x 22  ...   n x 2n )

Đặt   i  b i 2 ,  x 

ai
 với ai, bi là các số thực và  i  1,n . 
bi

Khi đó: 
(1)   (a1b1  a 2 b 2  ...  a n b n ) 2  (a12  a 22  ...  a 2n )(b12  b 22  ...  b n2 ) . 
Dấu đẳng thức   x1  x 2  ...  x n  hay  

a1 a 2
a

 ...  n . 
b1 b 2
bn

Như vậy ta có bất đẳng thức Bunhiacopxki với bài toán như sau: 
 

Cho 2 số thực a1, a2, …,a2 và b1, b2, …, bn. Khi đó ta có: 
(a12  a 22  ...  a 2n )(b12  b 22  ...  b 2n )  (a1b1  a 2 b 2  ...  a n b n ) 2  
 
a
a
a
Dấu đẳng thức   1  2  ...  n . 
 
b1 b 2
bn
 

 
 
1.3. Bất đẳng thức Minkowski
ex
Chọn hàm số  T(x) 
 0 ,  x   
(1  e x ) 2

Ta có T liên tục trên   nên tồn tại nguyên hàm của T: 

 T(x)dx  

ex
ex
dx

 c1 . 
(1  e x ) 2

1  ex

ex
Chọn c1 = 0, ta được:   T(x)dx 

1  ex
ex
Lại có:  
dx  ln(1  e x )  c 2 . 
x
1 e

Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

17  


Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 
Chọn c2 = 0, ta được hàm  f (x)  ln(1  e x )  với  f (x)  T(x)  0 x   
Suy ra hàm số  f (x)  ln(1  e x )  lồi trên  . 
Áp dụng bất đẳng thức Jenxen ta có: 
 n

  x1  1 n
b 
f  i1    f (x i )  với  x i  ln  i    (a i ,bi  0)  
 n  n i1
 ai 





n

b 
1

ln i 
n  a 
1 n  bi 
i 1  i  

 ln 1  e

ln 1    

 n
i 1
 ai 




b b ...b 
(a  b )(a  a 2 )...(a n  b n )
 
 ln  1  n 1 2 n   ln n 1 1 2
a1a 2 ...a n 

a1a 2 ...a n

n



a1a 2 ...a n  n b1b 2 ...b n
n

a1a 2 ...a n

n

(a1  b1 )(a 2  a 2 )...(a n  b n )
 
a1a 2 ...a n

 n a1a 2 ...a n  n b1b 2 ...b n  n (a1  b1 )(a 2  a 2 )...(a n  b n )  

Dấu “ = ” xảy ra khi và chỉ khi   

b1 b 2
b

 ...  n . 
a1 a 2
an

Ta có bất đẳng thức Minkowski như sau: 
 

Cho 2n số dương a1, a2, …, an và b1, b2, …, bn. Khi đó  
 n a1a 2 ...a n  n b1b 2 ...b n  n (a1  b1 )(a 2  a 2 )...(a n  b n )  
 
b b
b
Dấu đẳng thức   1  2  ...  n . 
 
a1 a 2
an
  
 

1.4. Bất đẳng thức Honder
Chọn hàm  T(x)  p(p  1)x p2  0   x  (0; ) ;  p  0  
Do T liên tục trên  (0; )  nên tồn tại nguyên hàm T: 

Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

18  


Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 

 T(x)dx   p(p  1)x
Chọn  c1 = 0, ta được: 

p 2


dx  px p1  c1 . 

 T(x)dx  px

p 1



Ta có :   px p1dx  x p  c 2 . 
Chọn  c2  0 , ta được hàm  f (x) = x p  với  
f (x) = T(x)  > 0   x   (0; +  ) 

Suy ra hàm số f(x) =  x p  lồi trên  . 
Áp dụng định lý 1:   λ i   0,    λ i = 1 và x i  (0; ),   i  1, n :  
n

n

                                 f ( λi x1 )   λi f(x1 ) .   
n 1

biq

Ta chọn:    λ i = 

n 1

i  ;   x i  a i b1i q    i  1,n . 

n


b

                        (1) 

q
j

j1

1 1
Trong đó :  a i  0,   bi  0,   q  0  sao cho    1 . 
p q

Ta thấy rằng : 
n

n

 i x i   a i b1i q
i 1

i 1

biq

n

n


b

q
j


i 1

j1

a i bi



n

b

a
j

j1

1
n

b

n


a b

i i

     

(2) 

q i 1
j

j1

Khi ấy thay (2) vào (1) ta có : 
p



p


q
n
n
 1  a i bi   bi  a i b1i q  
n
 n q i1

q i 1
b

 j
 bj
j1
 j1






Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

19  


Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 
p

 n

1 n p q p(1q)

ab  n
 a i bi bi .     
p  i i 
q i 1

 n q   i1

bi

 bj 
j1
 j1 
1

(3) 

1 1
Do:    1  => p + q    pq = 0 => p(1    q) + q = 0 =>  biq bip(1q)  1. 
p q

                                                                                                      (4) 
Từ (3) và (4)  suy ra : 
p

n
 n

p 1
a
b
a ip
p

i
i




n
n
n
 i1
  i1   a b   a p  bq   
 i i   i  j 
p
n
q
i 1
 i1

 n q
 j1 
bj

 bj 
j1
 j1 
1
n

 n
p  n

  a i bi    a ip    biq 
i 1
 i 1   i1 
1


p 1
p

 
1

n

 n
p  n
q
  a i bi    a ip    biq  . 
i 1
 i1   i1 

Khi ấy ta có bất đẳng thức Honder được phát biểu như sau : 
 
1 1
  Với  a i  0,   bi  0;   i  1,n;   p  0,   q  0  và    1  
p q
 
1
1
n
 n p p  n q q
  ta có:   a i bi    a i    bi  . 
i 1
 i1   i 1 
 


Ta cũng có bất đẳng thức Honder dưới dạng tích phân: 
Giả sử f và g là hai hàm số liên tục trên đoạn   a;b   và 

1 1
  1 . Khi 
p q

đó: 

Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

20  


Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 
1
p

b

b

1
q


 


p
p
f
x
dx
f
x
dx
 
 

f
x
g
x
dx











  




a
 a


Đẳng thức xảy ra khi và chỉ khi tồn tại hai số thực A và B không đồng 
thời bằng 0 sao cho: 
p

q

A f  x   =  B g  x      x     a;b  

1.5. Bất đẳng thức Svac-xơ
Chọn  hàm  số  f(x)  =  x2  trên  R.  Do  f  khả  vi  hai  lần  và  f’’(x)  =  2  >  0 
n

x  R . Suy ra f lồi trên R, với   i  0   và     i  1,   i  1,n  : 
i 1

Áp dụng định lý 1: Cho   i 

bi

;   x1 

n

b


ai
 với  i  1,n . 
bi

j

j1

Ta có: 
f (1x1  ...   n x n )  1f  x1   ...   n f  x n 
2



2
2






b
a
b
a
b
a
b

a
1
1
n
n
1
1
n
n
 
f n
 ...  n
   ...  n    
n

b1
bn 
b
b
bj  bj  1 
bj  n 


  bj
j1
j1
j1
 j1



 a  ...  a b 
 1
b1  ...  b n

2



a12
a2
 ...  n .
b1
bn

Dấu đẳng thức   x1  x 2  ...  x n  hay 

a1 a 2
a

 ...  n . 
b1 b 2
bn

Như vậy ta có bất đẳng thức Svac-xơ như sau: 
 
   Cho 2 số thực  a1 ,a 2 ,...,a n ;   b1 ,b 2 ,...,b n . Trong đó  bi > 0  i  1, n .  
2
 
a12 a 22
a n2  a1  ...  a b 

   Khi đó ta có:      ... 


 
b1 b 2
bn
b1  ...  b n
 

Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

21  


Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 
1.6. Bất đẳng thức Petrovica
Chọn f(x) là một hàm số lồi bất kỳ trên [0; a] 
n

Khi ấy  x i  [0;a],   i  1,n  sao cho   x i  [0;a]  ta có : 
i 1



x

j
 x n


f (x i )  f  n i  x i  jn1 .0  . 
 x i1
x1 

 i
x 1
 i1

n

Do   x i    [0;a] ,  0  [0;a]  và  
i 1

x

xi

+

n

j

j1
n

x x
i


 1 ;  
i

i 1

i 1

Theo định nghĩa hàm lồi ta có : 

xj
 n  j1
f (x i )  n
f   xi   n
f  0  ;   i  1,n .           
i 1


 xi
 xi
xi

i 1

(1) 

i 1

Cộng theo vế n bất đẳng thức dạng (1) ta có : 

 n  n xi

1 n 
f  xi   f   xi   n
 f  0 n
xj 


i 1
 i1  i 1
 xi
 x i i1  j1 
n

i 1

i 1

 

n
 n 
  f  x i   f   x i    n  1 f  0  .
i 1
 i1 

Như vậy ta có thể phát biểu nội dung bất đẳng thức Petrovica như sau : 
 
  Giả sử f(x) là hàm lồi trên [0; a]. Lấy  x i  [0; a], i = 1,n  sao cho: 
n
n
 n 

   x i  [0; a] . Khi ấy ta có:   f (x i )  f   x i    n  1 f  0  . 
i 1
i 1
 i 1 
 
 

Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

22  


Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 
Từ bất đẳng thức Petrovica ta suy ra được bất đẳng thức Petrovica tổng 
quát như sau: 
 
 n

 
Cho f(x) là hàm lồi trên [0; a]; với  pi  0,   i  1,n; x, sao cho  x i  0;  x jp j   
 j1

 
n
n
n
n


 

và   x jp j  a . Ta đều có   pi f  x i   f   x i pi     pi  1 f  0  . 
j1
i 1
 i1
  i1

 

1.7. Bất đẳng thức Vasic
Theo bất đẳng thức Petrovica tổng quát ta có : 
n j1 1



i n j

 n j1 1
  n j1 1

p jf (x i )  f   pi x i     pi  1 f  0      
 in
  in

 j
  j


(1) 


(Với  j = 0, 1,…, k  1;  n 0  1;   n k  n  1 ). 
n j1 1

Giả sử ta có: 


i n j

pi x i 

1 n
 pi x i . 
k i1

Khi ấy cộng từng vế k bất đẳng thức dạng (1) ta được: 
n

1 n
  n

p
f
x

kf
x
p




i
i
 k  i i     pi  k  f  0 
i 1
 i 1
  i1

n

n
1 n
 

  pi f  x i   kf   x i pi    k   x i pi  f  0  .
i 1
i 1
 k i1
 


 

Vậy ta đi đến bất đẳng thức Vasic như sau : 
 
Cho f(x) là hàm lồi trong đoạn [0; a] và  x1 , x 2 ,..., x n ;   p1 ,p 2 ,...,p n  là các 
 
dãy số không âm thỏa mãn các điều kiện:  
     1.   x i  [0; a] i = 1, 2, ..., n ; 
     2.   pi  1    i = 1, 2, …, n; 

n1 1

n 2 1

n

     3.    pi x i   pi x i  ...   pi x i ; 
i 1
i  n1
i n k
 
n
1
     4.    pi x i  [0; a] . 
k i 1
Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

23  


Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 
1.8. Bất đẳng thức Becnulli
Chọn  T(x)  a  a  1 x  1

a 2

 0   trên  khoảng  (  1;  )  a  1   hoặc 


a  0 . Do T liên tục và không âm trên (  1;  ) nên ta có: 

 T  x dx   a  a  1 x  1

a 2

 a  x  1

a 1

 c1 . 

a 1

Chọn  c1 = 0 ta được   T  x dx = a  x  1 . 
a 1

a

Lại có :   a  x  1 dx   x  1  c 2 . 
a

Chọn  c2 =  0,  ta  được  hàm  f  x    x  1 với  f ''  x   T  x   0   x   
(  1;  ). Do đó f là một hàm số lồi trên (  1;  ). 
Theo định lý 6 ta có mọi tiếp tuyến với đồ thị hàm số y = f(x) đều nằm 
phía dưới đồ thị hàm số y = f(x). Tiếp tuyến tại (0; 1) có phương trình là y = 
ax+1. Từ đó suy ra: (1+x)a    1  ax .                             

 


 

(1) 

a

Từ (1) ta cũng có được :  1  x    1  ax  nếu a < 0 
Vậy bất đẳng thức Becnulli được phát biểu như sau: 
 
 
 
 

Giả sử x >   1 khi đó :  
a
1.  1  x    1  ax  nếu  a  1  hoặc  a  0 ; 
a

2.  1  x    1  ax  nếu 0 < a < 1. 

 
2. CÁC BẤT ĐẲNG THỨC ĐẠI SỐ
2.1. Chọn T(x) = 12x 2  > 0   x     . Do T liên tục trên   nên tồn tại nguyên 
hàm của T: 
2

 T(x)dx  = 12x dx  =  4x

3


 +  c1 . 

Chọn  c1  = 0, ta được   T(x)dx  =  4x 3 . 

Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

24  


Khóa luận tốt nghiệp đại học                Trần Phương Anh – K34A SP Toán         
 
Lại có      4x 3dx  =  4x 4  +  c 2 . 
Chọn  c 2  = 0. Khi ấy ta áp dụng bất đẳng thức Jenxen cho hàm lồi f(x) 
=  x 4  trên  ;   x, y, z      ta có: 
xyz 1
f
    f  x   f  y  f  z   
3

 3
4

1 4
xyz
4
4
  
   x  y  z  
3

3





 x, y, z    

 x  y  z



. Chứng minh rằng: 
4





     27 x 4  y 4  z 4 . 
4





     x  y  z       27 x 4  y 4  z 4 . 

Từ đó ta có bài toán sau: 
 

 

    x,  y,  z     . Chứng minh rằng:  
4
    x  y  z       27 x 4  y 4  z 4 . 





 
Ta có thể sử dụng bất đẳng thức Bunhiacopxki để chứng minh bất đẳng 
thức trên. 
2.2. Chọn T(x) = 6x > 0   x   ( 0; +  ). Do hàm T liên tục trên ( 0; +  ) nên 
tồn tại nguyên hàm của T: 
2

 T(x)dx  =   6xdx  = 3x  + c1. 
Chọn c1 = 0, ta được   T(x)dx  = 3x2. 
Lại có   3x 2dx  = x3 + c2. 
Chọn c2 = 0, ta được hàm số f(x) = x3 với f’’(x) = T(x) > 0   x    ( 0; 
+  ) 

Hàm lồi và ứng dụng xây dựng các bất đẳng thức 
 

25  



×