Tải bản đầy đủ (.doc) (20 trang)

SỬ DỤNG CÁC PHƯƠNG PHÁP LUẬN SÁNG TẠO ĐỂ GIẢI QUYẾT BÀI TOÁN MOTION DETECT

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1016.11 KB, 20 trang )

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN
KHOA MẠNG MÁY TÍNH VÀ TRUYỀN THÔNG
PHƯƠNG PHÁP LUẬN SÁNG TẠO
KHOA HỌC
SỬ DỤNG CÁC PHƯƠNG PHÁP LUẬN SÁNG TẠO ĐỂ GIẢI
QUYẾT BÀI TOÁN MOTION DETECT
Giảng viên hướng dẫn
GS,TS Hoàng Văn Kiếm
Sinh viên
Nguyễn Hoài Phương - 06520356
20/20
Kh
oa
Mạ
ng

y
Tín
h
&
Tr
uy
ền
Th
ôn
g –
Tr
ườ
ng
Đạ
i


họ
c

ng
Ng
hệ
Th
ôn
g
Tin
Tài liệu: Docs.vn Hỗ trợ : Y!M minhu888
TỔNG QUAN
Hiện nay, có rất nhiều phương pháp detect motion trong video. Nhưng hầu hết chúng
đều có chung một phương pháp cơ sở là việc so sánh giữa frame hiện tại với một hoặc
các frame trước đó. Nói đơn giản hơn là làm việc với các ảnh số, vi vậy chúng ta phải
áp dụng một số kỹ thuật của image processing để thực hiện vấn đề này.
Để tiếp cận dễ dàng hơn vấn đề của bài viết, ta đi vào tìm hiểu một khái niệm có
nhiều diểm tương đồng với motion detect, đó là phương pháp nén video.
Một file video gồm 2 phần chính, đó là hình ảnh và âm thanh. Ở đây chúng ta chỉ cần
quan tâm đến yếu tố hình ảnh. Chẳng hạn, với cách lưu trữ video theo chuẩn NTSC:
cứ mỗi giây së tương ứng 30 frame. Trong quá trình hiển thị, các frame xếp chồng lên
nhau với tốc độ rất nhanh, vì vậy ta sẽ có cảm giác các đối tượng trong frame đang
chuyển động. Nói như vậy, ta cần phải quan tâm đến vấn đề lưu trữ frame. Nếu như
lưu trữ một cách thông thường theo các frame, ta lấy ví dụ chẳng hạn một frame có
dung lượng 10 Kb thì để lưu trữ 1 giây thì ta sẽ mất đến 3 Mb. Dung lượng cần để lưu
trữ như vậy là quá lớn, chính vì vậy khái niệm nén video đã được ra đời
Nhận thấy rằng trong 1 scene sẽ có một số thành phần không thay đổi trong suốt quá
trình diễn ra scene đó. Vi vậy dẫn đến ý tưởng ta có thể tách những thành phần không
đổi đó ra thành một frame chung, còn được gọi là “background”. Tại những frame còn
lại của scene ta chỉ cần lưu trữ các đối tượng còn lại, hay còn gọi là foreground. Thao

tác này sẽ giảm bớt việc lưu trữ các “background” lập lại ở mỗi frame. Nhờ đó mà
dung lượng lưu trữ sẽ giảm đáng kể.
Từ ý tưởng của phương pháp nén video, ta đã có ý niệm tổng quát để xây dựng
phương pháp detect motion trong phần còn lại.
20/20
Kh
oa
Mạ
ng

y
Tín
h
&
Tr
uy
ền
Th
ôn
g –
Tr
ườ
ng
Đạ
i
họ
c

ng
Ng

hệ
Th
ôn
g
Tin
Tài liệu: Docs.vn Hỗ trợ : Y!M minhu888
CÁC PHƯƠNG PHÁP SỬ DỤNG
NGUYÊN TẮC PHÂN NHỎ
Chia nhỏ đối tượng thành các thành phần độc lập.
Tăng mức độ phân nhỏ của đối tượng.
Bài toán detect motion được phân thành nhiều vấn đề nhỏ, với mỗi vấn đề nhỏ có
phương pháp riêng để giải quyết chúng. Các phương pháp được dùng như sau đây.
Một chương trình detect mộtion hiểu hay tiếp cận một cách đơn giản nhất là làm sao
để detect được những đối tượng có sự thay đổi giữa các frame. Để thực hiện điều này,
ta có thể sử dụng một số phương pháp:
• Phương pháp tách background, cập nhật background.
• Phương pháp tách đối tượng (foreground) từ các frame đang xét và
background.
• Phương pháp lấy ngưỡng (threshold) để loại bỏ nhiễu.
• Phương pháp erosion và dilatation khử nhiễu.
• Và một số phương pháp khác để tối ưu tốc độ xử lí của chương trình.
Trước tiên ta cần xem xét vấn đề làm sao để cải thiện được tốc độ xử lý của chương
trình, đồng thời phải tiếp cận được phương pháp lấy ngưỡng. Một frame hay ảnh có
nhiều đặc trưng, chẳng hạn như đặc trưng về không gian giữa các pixel, đặc trưng về
màu sắc, về texture hay shape. Để có thể áp dụng phương pháp lấy ngưỡng, ta cần
phải thực hiện phép so sánh với ít nhất một trong các đặc trưng trên. Mà màu sắc là
một yếu tố cơ bản vô cùng quan trọng. Tuy nhiên, ảnh số được lưu trữ bởi không gian
màu RGB với mỗi pixel lưu trữ ba giá trị kênh màu rời rạc gồm 256 mức. Chính vì
vậy, chúng ta cần phải biến đổi giá trị màu ấy về một dải màu (hay kênh màu) duy
nhất. Không gian màu có thể đáp ứng được yêu cầu trên là grayscale.

NGUYÊN TẮC TÁCH KHỎI
Tách phần gây phiền phức (tính chất gây phiền phức) hay ngược lại, tách phần duy
nhất cần thiết (tính chất cần thiết) ra khỏi đối tượng.
Ở đây ta tách bỏ các màu sắc không cần thiết và chỉ lại yếu tố màu cần thiết bằng
phương pháp lọc grayscale.
GRAYSCALE
Trong hầu hết quá trình xử lí ảnh, chúng ta chủ yếu chỉ quan tâm đến cấu trúc của ảnh
và bỏ qua ảnh hưởng của yếu tố màu sắc. Do đó bước chuyển từ ảnh màu thành ảnh
xám là một công đoạn phổ biến trong các qua trình xử lí ảnh vì nó làm tăng tốc độ xử
lí là giảm mức độ phức tạp của các thuật toán trên ảnh. Chúng ta có công thức chuyển
các thông số giá trị màu của một pixel thành mức xám tương ứng như sau:
20/20
Kh
oa
Mạ
ng

y
Tín
h
&
Tr
uy
ền
Th
ôn
g –
Tr
ườ
ng

Đạ
i
họ
c

ng
Ng
hệ
Th
ôn
g
Tin
Tài liệu: Docs.vn Hỗ trợ : Y!M minhu888
G = α.C
R
+ β.C
G
+ δ.C
B
Trong đó các giá trị C
R
, C
G
, C
B
lần lượt là các màu đỏ, xanh lá và xanh biển của pixel
màu. Các hệ số α, β, và δ là các giá trị thay đổi tùy thuộc hệ màu. Với hệ màu NTSC
thì α = 0.29890, β = 0.58662, δ = 0.11448. Ta sẽ được:
G = 0.29890C
R

+ 0.58662.C
G
+ 0.ll448.C
B
PHƯƠNG PHÁP SAI BIỆT FRAME
Để định nghĩa phương pháp này, trước tiên ta làm quen với cụm từ “phương pháp trừ
ảnh nền” (background subtraction). Đây là phương pháp được sử dụng rộng rãi để
nhận diện các đối tượng chuyển động trong video. Để thực hiện việc trừ ảnh nền đầu
tiên ta phải học một mô hình của ảnh nền. Sau đó mô hình ảnh nền được dùng để so
sánh với ảnh hiện tại, loại bỏ đi những phần ảnh nền đã biết. Các đối tượng sau trừ
được xem là không phải nền (foreground). Các đối tượng đó có thể là các đối tượng
chuyển động (moving object, mộtion). Một phương pháp trừ ảnh nền phổ biến là
phương pháp sai biệt frame.
Phương pháp trừ ảnh nền đơn giản nhất là trừ frame này với frame khác, sau đó gán
nhãn các vùng khác biệt ‘đủ lớn’ là phần ảnh không phài nền (foreground). Lý do chi
gán nhãn cho các vùng khác biệt đủ lớn (threshold) là để loại trừ các trường hợp
khác biệt do nhiễu.
PHƯƠNG PHÁP NỀN TRUNG BÌNH
Tuy nhiên, để tăng hiệu quả, chúng ta có thể giữ lại thông tin thống kê về trung bình
và sự khác biệt trung bình của các pixel trong cảnh. Đó là cách làm của phương pháp
cải tiến: phương pháp nền trung bình.
Nguyên tắc
Về cơ bản, phương pháp ảnh nền trung bình học giá trị trung bình và độ lệch chuẩn
của từng pixel để xây dựng mô hình của ảnh nền trung bình. Sau đó, ta sử dụng mô
20/20
Kh
oa
Mạ
ng


y
Tín
h
&
Tr
uy
ền
Th
ôn
g –
Tr
ườ
ng
Đạ
i
họ
c

ng
Ng
hệ
Th
ôn
g
Tin
Tài liệu: Docs.vn Hỗ trợ : Y!M minhu888
hình ảnh nền đã học được để tách ảnh ra làm phần nền (background) và đối tượng
không phải nền (foreground). Đối tượng không phải nền đó chính là đối tượng chuyển
động.
Nhận xét về phương pháp ảnh nền trung bình

Đây là phương pháp đơn giản để học ảnh nền và phân tách ành ra làm phần nền và
không nên. Tuy nhiên, phương pháp này chi hiệu quả trong các trường hợp ảnh có nội
dung là các cảnh không chứa các thành phần nền có chuyển động (vi dụ như một tấm
màn phất phơ, hay các cây xanh có lá rung rinh); đồng thời độ sáng tương đối không
thay đổi (các ảnh tịnh trong nhà).
Ví dụ phương pháp sai biệt frame
Cửa sổ 1 : frame hiện tại.
Cửa sổ 2 : frame trước đó.
Cửa sổ 3 : ảnh sai biệt giữa frame hiện tại và frame trước đó (lấy frame hiện tại trừ
cho frame trước đó).
20/20
Kh
oa
Mạ
ng

y
Tín
h
&
Tr
uy
ền
Th
ôn
g –
Tr
ườ
ng
Đạ

i
họ
c

ng
Ng
hệ
Th
ôn
g
Tin
Tài liệu: Docs.vn Hỗ trợ : Y!M minhu888
Cửa sổ 4 : loại bỏ bớt nhiễu chỉ giữ lại những sai biệt “đủ lớn”.
MORPHOLOGY OPERATION
Sử dụng ảnh camera, ta sẽ không tránh khỏi trường hợp có “nhiễu” (nhiễu do môi
trường, do nhiệt, do không khí...) khi đó vùng foreground của mỗi frame tách ra sẽ
xảy ra hiện tượng bị thừa ra ngoài hoặc khuyết một số pixel. Điều đó làm cho việc lấy
ngưỡng thiếu chính xác hoặc có thể bị sai lệch. Vì thế ta cần tìm ra phương pháp để
“cắt đi” những pixel thừa và “lấp đầy” những pixel khuyết. Bằng các phương pháp
Morphology ta có thể thực hiện điều đó; cụ thể với phương pháp Erosion, ta có thể
thực hiện thao tác cắt và với phương pháp Dilatation, ta “lấp” được chỗ khuyết.
AForge.NET hỗ trợ các đối tượng Erosion, Dilatation, Openning Và Closing để thực
hiện việc khử nhiễu. (ImaginglFilterslMorphology/*. Cs).
Erosion là phương pháp làm co biên của đối tượng đi một pixel để loại bỏ các pixel
thừa; hay nói cách khác, những pixel của foreground mà thuộc background sẽ được
chuyển thành pixel của background (hinh b). Dilatation thi ngược lại, nó làm giãn
biên của đối tượng thêm một pixel, dựa vào đó mà nhũng lỗ khuyết sẽ được lấp đầy;
hay nói cách khác những pixel của background thuộc về foreground nó sẽ được
chuyển thành các pixel của foreground.
Thao tác Erosion và Dilatation có một khuyết điểm, đó là nó co hay giãn biên 1 pixel,

sẽ làm cho đối tượng gốc bị co lại hay giãn ra và từ đó độ lớn của đối tượng sẽ không
còn chính xác nữa. Chính vì vậy mà phải xuất hiện thêm hai phương pháp: Openning
và Closing để lấy lại độ lớn chính xác của đối tượng. Đây là hai phương pháp sử dụng
liên tiếp hai phương pháp cũ. Openning dùng Erosion để cắt bớt những pixel thừa
trước rồi dùng Dilatation để làm giãn đối tượng về độ lớn cũ. Còn Closing dùng
Dilatation để làm đầy những pixel trước rồi dùng Erosion để co đối tượng về độ lớn
20/20
Kh
oa
Mạ
ng

y
Tín
h
&
Tr
uy
ền
Th
ôn
g –
Tr
ườ
ng
Đạ
i
họ
c


ng
Ng
hệ
Th
ôn
g
Tin
Tài liệu: Docs.vn Hỗ trợ : Y!M minhu888
cũ. Nếu kết hợp cả hai phương pháp này, ta có thể đồng thời lọai bỏ những pixel thừa
và lấp đầy những pixel khuyết. Kết quả mặc dù có chính xác hơn tuy nhiên thao tác
lặp lại trong tính toán là rất lớn dẫn đến làm chậm hệ thống, nên tùy theo bài toán mà
ta áp dụng một trong bốn phương pháp trên.
EDGE DETECTION
Trong phần cài đặt trên AForge.NET sắp xét tới đây, chúng ta cần thực hiện thao tác
tách biên cho những vùng pixel (region) trả về nhằm xác định đối tượng. Có rất nhiều
phương pháp hỗ trỡ cho thao tác nay, và thông thường ta chỉ cần áp dụng mã xích,
hoặc mã crack để dò biên là dủ. Tuy nhiên cần chú ý các đối tượng nhận được thường
là một cụm các pixel liền kề nên ta có thể áp dụng một số phương pháp thuộc Edge
Detection để dò biên. AForge.NET cung cấp cho chúng ta bộ lọc Edge để sử dụng các
phương pháp về Edge Detection.
Khái niệm:
Ta thấy một hình ảnh không phải là một hàm liên tục a(x, y) theo cac biến tọa độ, mà
chỉ là những hàm rời rạc a[m, n] với các biến tọa độ nguyên. Vì thế để lấy được các
cảnh quan trọng ta cần phải sử dụng việc lấy đạo hàm.
Với bộ lọc Edge ta có 4 kĩ thuật phổ biến:
- Bộ lọc Sobel.
- Bộ lọc Difference of Gauss
- Bộ lọc Laplace
- Bộ lọc Canny
Sobel

Bộ lọc sobel sử dụng các mặt nạ để xấp xỉ đạo hàm bậc nhất. Nói cách khác bộ lọc
sobel sử dụng gradient theo một hướng (từ thấp đến cao hoặc từ cao đến thấp) tại
điểm tâm trong một lân cận được tính theo bộ lọc sobel. Bộ lọc có kích cỡ ma trận
3x3.
20/20
Kh
oa
Mạ
ng

y
Tín
h
&
Tr
uy
ền
Th
ôn
g –
Tr
ườ
ng
Đạ
i
họ
c

ng
Ng

hệ
Th
ôn
g
Tin
Tài liệu: Docs.vn Hỗ trợ : Y!M minhu888
Khi muốn lấy cạnh của một ảnh nguồn ta sử dụng phép nhân ảnh nguồn với ma trận
3x3. ví dụ ta có ảnh nguồn là A, Gx, Gy là 2 ảnh lọc theo 2 hướng x và y.
Laplace
Phương pháp vi phân bậc 1 làm việc khá tốt khi độ sáng thay đổi rõ nét. Khi mức
grayscale thay đổi chậm, miền chuyển tiếp trải rộng thì phương pháp sobel làm việc
không hiệu quả. Và laplace là phương pháp hiệu quả hơn, laplace là phương pháp vi
phân bậc 2.
Toán tử laplace được định nghĩa :
Kỹ thuật laplace sử dụng nhiều ma trận khác nhau để xấp xỉ đạo hàm bậc 2. có 3 kiểu
ma trân thường dùng:
Trong cài đặt thư viện Aforge ta chỉ sử dụng ma trận H1.
Canny
Bộ tác sườn ảnh Canny dựa trên cặp đạo hàm riêng bậc nhất với việc làm sạch nhiễu.
Mục này được để riêng vì đây là phương pháp tách đường biên khá phổ biến được
dùng theo toán tử đạo hàm. Như đã nói phương pháp đạo hàm chịu ảnh hưởng lớn của
nhiễu. Phương pháp đạt hiệu quả cao khi xấp xỉ đạo hàm bậc nhất của Gauss.

×