Chu(Jng
3: MQl s(/ bai loan quy v~ phuang trinh tfch chi;ip
CHu'dNG
3:
"
,..",
~
M9TSOBAITOANqUYVE
1-IIUdNG TIIINII rrtcll CII~I.
Qua
tdnh giai quye't nhi@u b~ti loan c1iav~t ly, ky thu~t nhu' cac b~ti to?
nhi~t, cac b~ti loan chuySn tru'ong ... phliong tdnh Hch ch?p (1ftl1tdnh nay, b~ng cong ql ly thuye't tniong va bien 06i Fourier, chung ta quy hai b~1i
loan nhi~t v@ phuong tdnh tich ch?p. D6 la bai toan nhi~t ngu'c;Jcthai gian
(Backward heat equation) va bai loan nhi~t trong 16 khoan tham do (Borchole
measurements heat equation).
3.1 Bdi tacm nhhT!tngllde thai gian
Tren mQt thanh d§n nhi~t dai va h,;lI1,gi{l sli cho biet Jlhi~t c1Qu d vi tri x tai
thai oiSm t nao c16,ch~ng h<;111
t = 1, 1a u(x, 1) = u(x). Ta can Om nhi~t dQ u 0 vi Iri x
Iuc t = 0, tlic 1a Om v(x) = u(x,O).
Trudc lien ta xet bai loan I1hi~t gia tf! c1au: Cho bilt
v(x)
= u(x,O). 11m
phfln
b6 nhi~t u(x,t) (1vi tri x vao thai c1iSm1.
Bai loan nhi~t gia tri c1auco phliong tdnh:
a2u au
~ax = -;at
(3.1)
XE R, t > o
{ u(x,O)= v(x). Tim u(x, t)?
."
' ?
Nh an xet: T a co tIleJl g la
th let u,
~
/
/
.
(-
00
.
v
.
au au I
a cae Ilam so b I c h an Iren micn
& ffl
.
.
'
--,-
/
'
~/
~
;:;
< x < + 00, t > 0) vI trang thl!c te Jlhi~t dQ eung nhli t6c (1Qbien thie n clla nbi~ t
(1Qtbeo khong gian va thai gian khong th@ tang den va h<;1l1.
8iJ c1~3.1. 1
Gia su u(x) 1a ham sO'bt ch?n tren R va lien t\ICt<;1ix = O. Kbi c16:
'
I1m
r~
-OCJ
n
I1X2
--.e--.u
11--+00 OCJ 7t
(
x )d x = U 0
(
)
Chuang 3: Mrlt so' bili tocin quy vi phu'cJn[?trinh rich ch('ip
-----
C/ui'ng minl1:
= ~.~ .e-""
£J~t f,,(x)
I
r:
TnI'dc he't ta chli'ng minh
oo
Tac6:
1=
-.e-lIx dx = 2 £
-00 n
)
--,e-I1X dx
n
~~-1
2
D6i bie'n sO' v = x, J;; ta dLI'QC:I
4
12 = -
~
n
[
00
e
-v
(x) = 0
,!i~AJ fl1
-00
2
f~
r:
(x)dx = 1 va
fl1
2
d v,
[
00
e
-y
)
= .Jn
2
2
roo
2
1) e ~v
dv
2
2
4
- ( v +y )
dy = dvdy
e
£ £
n))
-00
-00
Chuy€n sang tQa dQ c1,1'c:
7t
(0 ~ r < +00; 0 ~ (P ~ -)
2
V = r.COS(P
,
,
{ y = r.SlIHp
ta c6: I = n
"
M~t
khac
'-00
4 ~
2
1)2
d(p,
roo
2
1
e-r ,rdr
IIY1 f (x )
- lim
11-~I~1I
-
~
[
'im [11(x)dx
00
0011~00
1 = 1 00fl1(x)dx
=1
1
'
= 1I-~002\/
11m
r--2
I1X2
7tH.X ,e -
11-~00Fn,el1X2
=0
~
= 1. V~y
h. k. n. tren R
=0
(3.2)
Ham u(x) lien t~lct~i x = 0 ~ \if > 0, 38 >0 saGcho voi x ~ 8 thl
I
I
u(x) --
Vi u bi ch~n tren R nen ta d~t M = 2
I
E
u(O)1 <--
2
lIulloo
Tll' (3.2) SHYfa: Voi 8 >0 cO'dinh, 3 no E N sao cho \i n 2 no ta c6:
r
f (x)dx < ~
2M
~xl>/j II
ChU'cIng
3: Mell s{/ hdi loan quy v€ phU'(fng lrll1h ([eh eh~lp
Suyra: II~XJfl1(x).u(x)dx - U(o)!=1£:'[11(x).u(x)dx -£:fl1 (X).U(O)d~S;
s;r:f" (x)lu(x)- u(O)ldx = f f"(x)lu(x)-
u(O)ldx+
IxJ:58
+
f (, (x)lu(x)- u(O)ldx< ~ f f"(x)dx + M. f fn (x)dx <
Ixl>8
S
<-
,V~y
IXI:58
I
!~
Hx, ,
S
Ixl>8
S
f (x)dx+M--=-.I+-=s
2 -if) n
2M 2
2
r: f" (x)u(x)dx = u(O)
J!~XJ
86' d~ 3. 1.2
Hams6r(x,t,~,1:)=
-(X-~)2
1
thoa phu'dng tr)nh truy€n nhiet
.exp
2~n(t - 't)
[ 4(t - 1:) ]
(3.1) va c1~ng th((c:
o2r
or
o(i --7);
ClllJ'ng minh:
o2r
1. Ta clul'ngminh:
or
-1
-=
ax
-1
3 exp
ox
4.Jn(t -1:)2
-1
:
,
1-
4vn(t-1:)2
~ [.
or = ~
at
=
2.Jn
{
[
{. 2(t-1)2
-1
~
]
-.
-
)
2
'"
[ 4(t -1:) ]
exp--
.
.[
_(X-~)2
(X-~)2
J
.exp
2(t - 1:)
[
4(t -1:)
J}
_(X-~)2
4(t - 1:)
]
exp ~ix - ~)2 + -~
(X-~)2
,[
4vn(t -1:)2
o2r D[
=>--=ax 2 Ut
_ (X_!:
4(t -1:)
(x- ~)22(t - 1)
-1
3
or
= - at
-(X-_~)2
~=
=
oX2
(x-~).exp
,~
4vn(t-1:)2
o2r
--
(x - ~)2 exp --=-(x -:~
[ 4(t-1:) ] ..)t-1 4(t-1)
_(X-~)2
exp
2(t'-1:). ]
[ 4(t-1:) ]
V~y r (hc'SaplU(dng (dnh (rUY€llllhi~( (3.1)
-
4(t-1:)
]j
Chuang 3: M(jl sf)' bel; loan quy v€ phuang lrlnh tfch dl(lP
a2r
ar
2. Ta ch((ng lTIinh: a~ 2 ==- at
ar
x ~
-
-
==
a~
exp
[ 4(t - t) ]
4-Fn(t - t)3/2 .
a2r
1
-==
a~2
-exp
4l;;(t-t)3/2'
{
1
==
.exp
I
~
4\111:(t-t)2
ar ==~
at
t 2(t-t)2
I
a2r
[
.
~ .exp [ 4(t-1)
- II
J
.
(X-~)2
]{ 1- 2(t-~) }
ar
a1
0
==----
a~ 2
I
(X-~)2
]{ 2(t-t)
4(t-t)
_(X-~)2
4\111:(t-1)2
===> --
_(X-~)2
]}
r
1
==
_(X-~)2
_(X-~)2
(X-~)2
+
ex
p[ 4(t-t)
[ 4(t-t) ] 2(t-t)
-(X-~)2
-(X-~)2
(X-~)2
1
1
.cxp
.exp
~.
[ 4(t - t) ]
[ 4(t - t)2 ]
[ 4(t -1) ] ~
1
2J11:
- (x - ~)2
Menh d~ 3.1.3
Bai loan nhi9t gia td dfiu co nghi9lTIdliQcxac djnh bdi cong th('(c:
~2J;t fOOexp-
u(x, t) ==
[
-00
(x 4t
~)2
X E R, t > 0
1 v(~)d~;
CluIng min/1l.
D?t r(x, tf ~f 1:) ==
-- (x-=-~~
.exp
[ 4(t 1:) ]
2~n(t - 1:)
1
Voi (x, t) c6 (1jnh,ham s6
r
xac djnh vOl:
-
00
< ~<+oo;0 < 1 < t
Lay u (~, 1:) la lTIQtnghi9lTIcua plu(ong trlnh (3.1)
(3.3)
'C6 djnh (x,t) , (x ER, t> 0). Xet trliong vectO F:
,
a
a
F(~ t) == u(~,1:)--r(x,t,~,1:)-r(x,t,~,1:)-u(~,1:);U(~,l)r(X,t,~,1:)
,
a~
a~
(
(- 00< ~ < + 00; 0 < 1: < t)
J
Chuang3: Mf)l stYbai loan quy vi phuang lrlnh lfch ch912
J:)~t D= {(~,T)ER2 \-n<~
Kl hi~u aD la bien cua mi~n md D. Ap d~lI1gdjnh ly divergence cho tnrong
vectOF tren D, ta co:
->
(3.4)
fdiv F(~, T)d~dT = f<F(~, T),n(~, T) > ds
D
00
Nho b6 d~ 3.1.2 va (3.3) ta co:
a
.
of.
dlVF(~ T)=u--f,
a~ [ a~
= u or -
aT
au
a
a2f
+-(uf)=u--r-+a~] aT
a~2
a2u
a(uf)
a~ 2
aT
r au + a(ufL = 0
at
(3.5)
aT
T
->
t ,- - - - - - - - - - - - - - - - -
->
->
n1
~~ (BInh 1)
~~
Ll
L
~
~
n
-11
Ky hi~u nhl( trel1Bluh 1 ta co:
f< F(~,l),~(~,T)> ds = f< F,l~ > ds + f< F,l~ > ds + f< F,t;: > ds + f< F,t~:> cis(3.6)
aD
LI
L2
L]
4
->
Tiy (3.4), (3.5) va (3.6) ta SHYfa: I J < F(~,T),11;(~,T)> cis= 0
;=1L;
L'I
Chu'ong 3: M()t sc/ b!!i loan quy v~ phuong trlnh rich ch(lP
~
-t
TrenL,:
~=n,
-~
O
I"
=(1;0)
a
a
a~
a~
f<F,n, >cls= f [ lI(n,t)--f(x,t,n,t)-f(x,t,n,t)~lI(n,l)
LI
0
a
t"
t".
a
ft(x,t,n,l)--u(n,t)dt
= fu(n,t)--r(x,t,n,t)dta~
0
I"
1
X- n
f
= -4\1 In
0
- (x - n )
exp
3
-
(t-t)2
[
I"
1,
,:ro
f (t-t)2
.u(n, t)el1: -
I"
f-
1
f
2\1 n 0
(t-t)2
- (x - n )
,-exp
-,
[
2
,
4(t - t)
;::)
uU
]
.~(n,
a~
1)el1:
ve san cling ta ou'Qc:
(j
)
'"
2
'
I
.u(n, t)clt S
]1
exp [ - 4(t-t)
~3
0
oK
]
-. ( x-n
x-n
= 4\1nf-
JI
1
4(t - t)
Danh gia cac Hch phan
,
2
ell:
=
a~
0
l
4\1nI
X-11
-
/
f-}exp
0-
I-
(t-t)2
(X-H)
,2
,.u(n,
]
4(t-t)
1)<11
X-H
K
I
I
= 2~"t-t
DOlblensO:UI
D~t8=t-to
Do Ubj ch~n lien :3M]> 0 saG cho:
1
=> Jis
IX-III
2J~
f.e
r
too
-II~
(
( ))d
,U 11,1 u]
u1-
f
--I1~
1 e
""nix-II!
2l;
(u I) d Ur
'
,xn.::.::-.!.!!IX-I1
l2Ji'2J~ , l
--c/J
Ap d~lng ojnh 1;' hQi t\1bj ch~n ( 1.5, CI1l(ang 1) tren R, trong 06 :
2
f ( u ) =e-IlI
11
X
.
I
T a c6: J I
Do au
a~
0 khi n --+
--+
.
1
=
I
2-vn
f
-co
g(ul)=e-lIj
(3.7)
1: >
8 nen :3M 2 > 0 saG cho :
.
1
tf)
f
0
= M2" OOexp
n=1,2,3...f(u1)=Ova
00
bi chan va t --
,
J2
rl~~-nl
l 2 -Jl .2..;c- ]
,
( u I')
-x-n
(
I
"2
(t -- 1:)
-
exp
-
1:) ]
2
;:)
u
-u(t,'l)eh
[ 4(t - 'l) ] a~
(x - n)2_ ,x
[
[ 4(t
)
j
I"
'
S M2 fexp
[
0
(1)d'l.
010
Ap cI~lngojnh 1;' hOi t\1 bj ch~n (1.5, Chuang 1) tren R, trong (16:
-X-ll
(
,
)
2
4(t - T) ]
eh
.Chuang 3: MQ{ slYbiti {Danquy vi phuang {dnh tfch ch4p
f
'T
(x - n)2 .
'T ell
XrO,to!()
]
P[ 4(t-'T)
, 11( )
,
-
= ex
Ta co: J 2
~
0 khi n ~
n = 1,2,3...;f('T) = 0, g('T)= X[Oto j ('T)
(3.8)
Cf)
->
f < Ft 11I > cis --)- 0
Tli (3.7) va (3.8) ta SHYfa:
khi
11 --)- co
LI
'Ly lu~n tl(dng t~(nhu' tren Ll, ta cling co ke't que! tre11L, nhl( san:
-->
f
> ds ~ 0 khi n ~
Cf)
L,
--+
Tren
L2 :
'T
-t
= 0,
- 11 <
~< n,
n2 = (0;-1)
II
(
OCJ 1
11<F,112 >= -JU(~,O).r(x,t,~,O)d~
= -J2-fnt
~)2
exp [ - X4~
] V(~)'X[-II,II](~)d~
Do ham s6 v bj ch~n, ap d\l11gd1nh ly hQi t~1b1 ch~n (1.5, Chl(dng 1) tren R,
trong do:
.
_(X-~)2
_(X-~)2
(~) = exp - 4t
'X[-I1I1](~)'
n
=
1,2,3,
f(~)
=
g(~)
=
exp
.
4t
[
]
[
[II
ta dl(c;Jc:
1
--+
f< F,n2 > ds ~
I.
-
_(X-~)2
+OCJ
fexp
2-vnt -OCJ
, L2
[
]
4t
.v(~)d~ khi n ~
00
--+
TrenL4:
'T=to'
->
-n<~
n4 =(0;1)
11
f< F,n4 > ds = fu(~,to).r(x,t,~,to)d~ =
L~
-11
+OCJ
=
f 1
_OCJ2~n(t -
to)
exp
[
(x - ~)2
4(t - to)
.
] 'X[-Il,Il](~)lI(~,
to )cI~
A P d\lng dinh ly hQi t~lnoi LIen, trong d6:
f (~)=
11
f(~)
-(X _~)2
1
2~rc(t- to) ex { 4(t - to ] .X[-n,n](~)
= g(~) =
1
2~n(t-to)
exp
-
(x - ~)2
[ 4(t-to)
]
, n = 1, 2, 3 ...
-
]
Chu'ang 3: M(Jl srI hili loan quy v€ phuong trlnh tfch ch~lp
.
,
->
tadtiQc,
1
+00
J
>ds-+
J
(t-t)
-00 2~n
L,
.
khl n-+oo
- (x - ~)2
exp-
j
[ 4(t-to)
()
u(~,to)d~
Nhti v~y, tli (3,6) ta suy fa:
+00 1
f "ex -002-v71:t {
(~)2
x4t
1
v
B ~t
t-to =-,
n
+oo
{-4(t-to)
(x - ~)2]
;?'
-2
[
x-~
=-,ta
-ex
71:
{
4
,
n
luTI
-e
n-,oo-00 71:
fJ¥
]
{
n(x - ~)2
---
4
1
.u(~,t--)d~
j
11
1
11 -nt2
-e
71: iu(x-2tl't--~)dt111
f~
.u(~,t--)d~=
n
-00
taco:
1
-nt2
iu(x-2t[,t---)dt]
1
Suyra:
-
-ex
f~~.171:
2-00
+OO
1
Apd~1l1gkStquacuab6d~3,l.l,
+oo
.11(~,to)d~
'
): 2
~
f
,u(~,to)d~=-
- n(x -.., )
n
l
d tidc:
2
+OO
-00
1 +oo
I
ex I
",:,,:
' B 01 tJlenso:t
~)2
suyra:
-002~71:(t-to)
1
]
(
f
ex - x{ 4(t-to)
-002~71:(t-to)
,v(~)d~=
1
f
1
+00
u(x,t)=
=u(x,t)
n
- (x Sex
--2 71:t-00
4t
+00
.;
{
~)2
]
.v(~)d~;
x E R,t > 0
(3.9)
Bay 1a ham phan b6 nhi~t dQ (j V1tri x t~i thai di€m t > 0 cua b?ti tmll1 nhi~t
gia trj dfiu,
Bay giG ta xet bai tmln nhi~t ngl(c,1cthai gian:
a2u au
ax-2 -
[ u(x,l)
Tt( cong th((c (3,9), thay t
at
'
= u(x),
X E R, t > 0
TIm vex) = lI(X,O)?
= 1, ta dl(QCphu'dng trtnh tich pilau
Fredholm Im~i 1
(fin v):
+00
):2
- 1
- ( x-C;)
2';; -!exp [ -- 4
] ,v(~)d~ = HeX),x E R
(3.10)
Chu'(jng 3;' MQ[ so' bili loan quy v~ phuong [dnh tfch ch(ip
E>~t K, (x) = 2}; exp(_x: ). Khi do phuong trlnh (3.10) duQc vie't dtfoi cI~lI1g
tich ch~p:
(Kl*v) (x) = U (x)
3.2 Bai tocm nhh~t trong 16 khoan thorn do
Ta xem 16 khoan tren m~t da't nhti 1a nlia thanh cl5n nhi~t dai vo Iwn va t~li
di0m khoan ling voi tQa dO x
= 0,
Ngudi ta mu6n xac dinh nhi~t dO t?i t?i m?t c1a't(ling voi x = 0) vao thai di~111
t nao do. Do nhi€u lac dOng eua moi tnidng hen ngoai qua (HItl11ake't qua thu du'Qc
d~fa tren tinh loan tr~e tie'p se co sai sO',VI the' ngtfdi ta xae dinh nhi~t dO d vi tri
x> 0 t?i thdi di0m t, san do SHYra gia tri c~n tIm.
Truoe lien, ta xet b~tiloan nhi~t gia tri bien:
Cho bie't u(O,t) = v(t), TIm phan b6 nhi~t u(x,t) t?i vi tri x >0 vao thai c1i~mt.
B~d loan khong ma't Hnh t6ng quat ne'u gia sli ding t?i mQi vi tri x >0 dell c6
nhi~t dO bfing 0 t?i thdi di0m t =0,
. B~titmln nhi~t gia tfi bien co phuong trlnh:
au
a2u
-,
ax2
at
u(x,O) = 0 ,
u(O, t) = v(t);
x> 0
t >0
(3.11)
x> 0
t > 0,
?
TIm u ( x, t) ?
au au 1"
1 , sox
a caCUlill
"
,
I
TtfOn g tti n 1lU (I b al
loan n hlet gm tn (1au, ta g m tllet
u, - ,'A"
.
'
;1;
'?
'X
.'
ax
bi ch~n, Ngoai fa, ta md rOng ham sO'u(x,t) bfing each b6 sung:
u(x,t) = 0, x < 0, t >0
Khi c16:ham u xac dinh tren R x R+
B6 c1~3.2.1
E>~t
r(x, t,~, T)=
1
2~1t(t - T)
exp
-
(x -
~)2
[ 4(t - T) ]
(-CX)<~<+CX),
0<1
at
I
!
Chuang 3: MQl sf)'hili loan quy vJ phuang lrinh tich ch(ip
Khi do ham s6: G(x, t,~, 't) = r(x, t,~, 't)
-
r(x, t,-~, T)
thoa phuong trlnh truy~n nhi<$t(3.11) va co dc tich chat:
a2G
aG
-
G(x,t,O,t)= 0; ~
=-
a~
at
C/1l/'ng m;nh:
1. D€ thay G(x, t,O,t) = r(x, i,D,t) - r(x, t,O,t) = °
a2G
2. Ta chung minh
aG
-
ax
=
a2G
;-
ax+
-
exp
[
T) { 2(t - T)
- (x
~
X-
(x - ~)2
]
4(t - T)
(x + ~)2
+ ~)2
(x + ~)2
-
+ exp
(x -
~)2
7
exp
exp
2(t- T) [ 4(t - T) ] 4(t - T)2 [ 4(t - T) ]}
1
- (x - ~)2
exp
ao
at
T)~
][
[
{
3
-
J
4\1n(t - T)2
-
exp
{
- (x - ~)2
[
4(t - T) ]
-
[
1]
exp
=
(x + ~)2
-
+exp
4(t - T) . 2(t - T)
- 1
=
(x - ~)2
X+ ~
- (x - ~)2
exp
+
[ 4(t - T) ]
4(t - T)-
+.
(x + ~)2
-
.
[ 4(t - t) ] 2(t - T)}
4(t - t) ] 2(t - t)
-I
2~n(t -
4); (t -
+
{
t) {
1
1
at
ex - (x - ~)2 .
-
=
=
-
ax2 -
1
2~n(t -
aG
4(t -
- (x + ~)2
[ 4(t - T) ]}
T)'
(x + ~)2
---
][1
2(
t - T)
]}
+
1
- (x - ~)2 (x - ~)2
- (x + ~)2 (x + ~)2
exp
- exp[ 4(t - T) ] . 2(t - T)2}
2~n(t - T) { [ 4(t - T) ] . 4(t - T)2
-
_(X-~)2
]
-
3
J
-
4\1n (t - T) 2 {
exp --
[
4(t - T)
a2o
~-=-
ax2
.
(X-~)2
][ 2(t -
T)
-(x+~)2
-
1]
+ exp --
(X+~)2
-.-
[ 4(t - T) ]l].
,
2(t - T) ] }
aG
at
V~y G thoa phuong trlnh truy~n nhi<$t(3.11).
3. Ta chang minh : a2G = - aG
a~2
at
22
Chuang 3: M()t stYbdi roan quy vi phuO'ng trinh rich ch~lp
aG -
1
_(X-~)2
x-~
_(X+~)2
a~ - 2-JTC(t-T) { 2(t-T) exp [ 4(t-T)
=
a 2G 2 a~
1
4FnCt - T)~
1
+
exp
1
aG
aJ
=~
f
2-vTC
-
.1
t 2( t -
T)
-
4(t-T)
][
J exp
1
[
J
4Fn(t-T)2
2(t-J)
exp
(X-~)2
]
]
4(t-T)
a2G
-(x+~
. +
]}
2
j}
4(t-T)
_(X+~)2
_(X+~)2
exp
[
][
- 4(t-T)
[
4(t--T)
j
]j
(X+~ )
+ exp
[
'4(t-T)
J[
Menh de' 3.2.2
B~ti loan nhi~t gia tri bi(~nco nghi~m dt(Qc xac djnh beji rang thleC:
-x2
vCr)
i
u(x,t)=-, -~exp
2 -Vre)
~
(t
- 1:)2
[
4( t - 1:)J
CluIng minh:
Voi (x,t) cOdjnh, x> 0, t >0, ta d~t:
1
[(X,t,~,T)=
_(X-~)2
2.J re(t- T) exp [ 4(t - T) ]
( - 00 <
~< +00,
0 < T < t)
(11:, x>O
,t>O
2
]
':>
, 2(t-T)
0
t
J
=
aT
x
+1
+
_(X+~)2
]
2(t-T)
2(t-T)
.
_(X+~)2
-
1
]
--(X-_~)2
expo
[ 4(t-T)
.s.
(X-~)2
-
J
':>
aG
=:>-=-a~2
)
4( t - T)l
4(t-T)2
][1
].
4(t-T)
4(t - T)
l
1
.
-
+--sexp,
_(X-~)2
[
-
1 +
]
(X+~)2
4(t-T)
{
exp
2(t-T)
_(X-~)2
_(X+~)2
1
-
[ 4(t-T)
~
(X+~)2
[
[
(x - ~)2
-
2(t - T)
(X-~)2
4(t-T)
exp
3
2(t-T)2
-
[
{
4Fn(t-T)%
]
-(X-~)2
exp
]
4(t - T)
_(x+~)2
[
{
4FnCt-T)%
=
[
{
(x - 02
+
}
-(x+~)2
+(x+~)exp
]
4(t-T)
- (x - ~) 2
- exp
1
[
] '2(t-T)
] +exp [ 4(t-T)
-(X-~)2
1
~. (x-~),exp
{
4FnCt-T)2
x+~
-
]}
Chuang 3: M6t seJbd(todn quy vi phu'ang trinh tfch ch(zp
Xet ham Green cho bai loan Direchlet:
G(x, t,~, 1) = r(x, t,~, T)- r(x, t,-~, 1)
Lffy U(~,1 ) la mOt nghi~m cua phuong trlnh (3,11)
(3.12)
CO'dinh (x,t), x> 0 , t> 0, Xet tntong vect(i F:
F(~,1) = u(~, 1)~G(X,
(
,
a~
t,~, 1) - G(x, t,~, 1)~
a~
u(~, 1); u(~, 1).G(X, t,~, T)
]
(0< ~<+CO,O< 1< t)
D~t Q = ~~,1) E R21 0 < ~ < 11;0 < 1 < to < t; 11EN}
Ki hi~u 30 la bien clla mien md Q. Ap d\l1lgdjnh ly divergence cho tHrong
vectd F tren Q, ta co:
--,
f divF(~, 1)d~d1 =,Xlf <
n
(3.13)
F(~, 1), n(~, 1) > ds
Nho b6 d€ 3,2.1 va (3.12) ta co:
,
a
aG
au
dlVF(~ 1)=u---G'.
a~ [ a~
a~ ]
a(uG)
+--
a1
= u a2G -G a2u + a(uGl
a~ 2
a~ 2
ch
=- u aG - G au + a(uG)
a1
a1
a1
=0
(3.14)
l'
(Hlnh 2)
->
->
~
x
Ky hi~u nhl! tren Hinh 2, ta co:
11
~
ChLCang3: M()[ sf)' bili [Dan quy v~ phLCang trinh tfch ch4p
->
-->
f
-->
f<F,n, >ds+ f<F,112 >ds
un
s,
s)
-->
f< F, n
+
3
-->
> ds +
S,
f< F,
114
(3.15)
> ds
S4
4
Tli (3.13), (3.14) va (3.15) ta suy fa:
-->
L f<F(~,T),l1i(~,T) > cIs =0
(3.16)
i=1 s;
-->
Tren 51: T = 0, 0 <
~< n,
111
= (0;
-1)
Vi u(~,O) =0 nen ta co:
f< F,l~ > ds =
s,
-
I u(~,O).G(x, t,~,O)d~ = 0
(3.17)
-->
0 < T < to,
Tren 52: ~ =11,
112
= (1; 0)
CG
a
f<F,n2 >ds= 1 u(I1,T)--(x,t,n,T)dT-1)G(x,t,n,T)-u(n,T)ch=
a;
a;
-->
r"
r"
S2
1
.= A I
" x-n
'+V7T
i
1 ex
)
.
-(x-n)2
:.
(t-T)2
1
--
r"
{
4(t-T)
-(x-n)2
1
2[;; 1)) -exl-~t-T
--
[
1
)cl
(
un, T T+ A I
.
]
'+V7T
" x+n
i
)
(t-T)2
aIr"
-(x+n)2
~
ex!
{ 4(t-T) ]
-(x+n)2
1
-_exl--
.
4(t-T) ] -u(n,T)ch-+---=))
a;
2J7T) ft-T
LIen,T)dT
f
4(t-T) ]
a
-u(n,T)clT
a;
5ti dl,ll1gket qua oil tlnh tren Ll trong chling ll1jnh m~nh c1~3.1.3, ta SHYfa:
-->
J<F,112>ds
5,
-~Okhjn-~oo
(3.18)
->
Tren 53: T = to, 0 <
~ < n , 113 = (0;1)
-->
f< F,n] > ds = - [u(~, to)G(x, t,~, to)d~ =
S,
= [u(~, to)r(x, t,~, to)d~ - [u(C; to)r(x, t,~ to)d~
Thea ket qUC!oil tlnh tren L4 trong chling minh ll1~nh c1~3.1.3, ta co:
_Chu'o'ng3: M()l so' bcii loan guy v~ pluiong tdnh tlch ch(ip
11
11
~
U( c"to)
f~
0fl1(~,to)l(x,t,~,to)d~=
-n2
-1-0')
-0')
4(t-to)
~ 2
J d~
.
2
(~ )
uc,t
-x-)
[- n,n ](~)d~
2 ~ n ( t' 0 toO) exp [ 4((t - t~ ) ] X
f
=
-(x-c,)
,exp [
net-to)
.---
0
JU(~,lo)r(X,
M~c khac:
I,-~, 10)d~ =
~
HeX,t)
-112
net-to)
J Jl(~,
10)
khi n
.exr [-
-
--)- 00
(x ~ ~)2 d~
4(t
to)
]
1
J:
-I-
_(X+~)2
d
f
]
[
= _Cf)2~n(t-to) exp 4(t-to)
X[-n.n](~)~~
O')
u(~,to)
-IO') u(~,to)
f
~
_(X+~)2
exp
[ 4(t - to) ]d
_CI)2~n(t- to)
IV
vat t
.
'
kl1J n -~
,:?,
n
2'
oo
oo
00
' K
c1
to =- 1, va c1 01 bJen
soK t l = -,X + ~ talidc:
-
+
u(~,to)
f
_002~n(t-to)
;_(X+~)2
J: - 1 +
exp -c,--exp
[ 4(t--to) ]d
2-00 n
f~
+oo
~ fe
11
=
~
c,
-n
-l1li
-00
-11(X+~)2
[
---
4
J
~
.U(c"t--
.
)d c,
n
1
u(2t,-x,t---)dt,
n
Apch;ll1g k€t qua ci'1ab6c1€3,l.I,tac1l(Qc:
+OO
,
IHn
I~-en
11-'DO
-DO
I
-1112
(VJ (-x) < 0)
'u(2t,-x,t--)dt,=u(-x,t)=0
7t
n
->
V~y :
(3.19)
I< F,n, > ds -+ u(x,t) khi n-+ co
s)
Tren 54:
~ = 0,
->
0 < 1" < to ,
I"
I<F,114 >ds=s,
-,
114=(-1;0)
au.
l"au(O,1") ,
fu(O,1")--(X,t,O,'t:)d1" +
0
a~
f
0
U(x,t,O,1")ch
a~
t
,
v I U (x, t, 0,1")d 1"= 0, ta soy
-
ra
I
" au(O,1") --,
0
I"
au
IU(O, 1")-(x,
aJ:
°
c,
I"
(j(x, t, 0 ,1")d 1"= 0
a~
--x2
xv(1")
t,O, 1")d1"= J-~--~exp
I
°2\i7t(t-1")2-
-
. (h
[ 4 ( t - 1") ]
Chuang 3: M()[ so' bai loan quy vi phuang [dnh tich ch4p
x
-
2Fn [
-
oo
-- X2
v ('t )
00
(t-'t)2
('t)d't
[ ]
- exp [ 4(t-'t) ] X o,t_.!..
11
Ap d~lllg dinh 19 hQi tv bi ch~n, ta c6:
x ro vCt)
11)
3 ex
2-..;n
)
-
(t-1)2
"
V <;lY
-x
X
2
{ --4(t-1)
->
]
d1~-
-
K€t hQp tli (3.17) o€n (3.20),
J
i
-
2 n)
v( 't)
3
(t - 't)2
{ 4(t
2
{ 4(t-'t)
- X2
3exl.
(t - 1f
x
:1 ex
~
v(1)
!
2-..;n )
$4
HeX,t) =
!
(t-1)2
X
I
J < F ,n4>cs~--1
1
2-..;n)
-x
vCt)
'
J
ch kIll n~Cf)
'
- 1) ]d
1:
khIn~Cf)
(3.20)
ta SHY ra:
-x 2
exp
d't, x > 0, t > 0
[ 4( t - 't) ]
(3.2l)
Day 1a ham phan b6 tinh nhi~t dQ d vi tri x >0 VaG thai c1i@mt clJa bai tmln
nhi~t gia tri bien.
Bay gia ta xet bai loan nhi~t trong 16 khoan tham do:
a2u
ax 2 --
au
at'
u(x,O)= 0 ;
x> 0, t> 0
x>O
t>0
u(1,t) = net);
Tli cong thltc (3.21), thay x
,TIm vet) = tI(O,t)?
= 1, ta Ol(\jCphl(Ong
trlnh rich phan Fredholm
lo<;li 1
\In v):
1
I
2-vn
f
I
°
-1
Vel:)
3
:.
exp
[ 4(t-l:)
(t-l:)2
r
,D;,ltK2(t)=
ch = net),t > 0
(3.22)
.
1
-1
--.exp(-);t>
~
4t
,
]
0
2t2Fn
t
0
va md rQng ham s6 v voi v (t)
;t sO
= 0 khi t s
O. Khi d6 phl(Ong trlnh (3.22) dl(QC viet
du'oi d<;lngrich ch~p:
(K2
*
v) (t)
= net)