Tuần 1:
Tiết 1
Ngày soạn:17/8/2015
Ngày dạy:
CHƯƠNG I - TỨ GIÁC
Bài 1: TỨ GIÁC
I/ Mục tiêu
• Nắm được định nghĩa tứ giác, tứ giác lồi, tổng các góc của tứ giác lồi.
• Biết vẽ, biết gọi tên các yếu tố, biết tính số đo các góc của một tứ giác lồi.
• Biết vận dụng các kiến thức trong bài vào các tình huống thực tiễn đơn giản.
II/ Phương tiện dạy học
• GV: SGK, thước thẳng, thước đo góc, bảng phụ hình 1 và 2 trang 64, hình 11 trang 67.
• HS: SGK, thước thẳng, thước đo góc.
III/ Quá trình hoạt động trên lớp
1.Ổn định lớp
• Hướng dẫn phương pháp học bộ môn hình học ở lớp cũng như ở nhà.
• Chia nhóm học tập.
2. Kiểm tra bài cũ:
3. Bài mới
Ở lớp 7, học sinh đã được học về tam giác, các em đã biết tổng số đo các góc trong một
tam giác là 1800. Còn tứ giác thì sao ?
Ghi bảng
Hoạt động của HS
Hoạt động của GV
Hoạt động 1 : Tứ giác
1/ Định nghĩa
Cho học sinh quan sát hình 1
Tứ giác ABCD là hình
(đã được vẽ trên bảng phụ)
gồm bốn đoạn thẳng AB,
và trả lời : hình 1 có hai
BC, CD, DA, trong đó bất
đoạn thẳng BC và CD cùng
kì hai đoạn thẳng nào cũng
nằm trên một đường thẳng
B
không cùng nằm trên một
nên không là tứ giác.
A
đường thẳng.
→Định nghĩa : lưu ý
1
Tứ giác lồi là tứ giác luôn
_ Gồm 4 đoạn “khép kín”.
2
luôn trong một nửa mặt
_ Bất kì hai đoạn thẳng nào
phẳng mà bờ là đường
cũng không cùng nằm trên
thẳng chứa bất kì cạnh nào
một đường thẳng.
1
2
của tứ giác.
Giới thiệu đỉnh, cạnh tứ giác.
D
C
?1
B
a/ Ở hình 1c có cạnh AD
(chẳng hạn).
A
b/ Ở hình 1b có cạnh BC
(chẳng hạn), ở hình 1a
không có cạnh nào mà tứ
giác nằm cả hai nửa mặt
D
C
phẳng có bờ là đường thẳng
chứa bất kì cạnh nào của tứ
giác → Định nghĩaB tứ giác
lồi.
A trả lời các câu
Tứ giác ABCD là tứ giác
?2 Học sinh
•M
lồi
•Q
MM
Trang 1
•P M
D
C
Hình 2
hỏi ở hình 2 :a/ B và C, C và
D.
•N C
ˆ
ˆ
ˆ
d/ Góc : Â, B,C, D . Hai góc
ˆ và D
ˆ .
đối nhau B
e/ Điểm nằm trong tứ giác :
M, P
Điểm nằm ngoài tứ giác :
N, Q
Hoạt động 2 : Tổng các góc của một tứ giác
2/ Tổng các góc của một tứ
3
giác.
a/ Tổng 3 góc của một tam
Định lý:
giác bằng 1800
Tổng bốn góc của một tứ
b/ Vẽ đường chéo AC
giác bằng 3600.
Tam giác ABC có :
ˆ + Cˆ 1 = 1800
Â1+ B
Tam giác ACD có :
ˆ 2 = 1800
ˆ +C
Â2+ D
ˆ +D
ˆ + (Cˆ 1+ Cˆ 2)
(Â1+Â2) + B
0
= 360
ˆ +D
ˆ + BCD = 3600
BAD + B
→ Phát biểu định lý.
?4
a/ Góc thứ tư của tứ giác có
số đo bằng : 1450, 650
b/ Bốn góc của một tứ giác
không thể đều là góc nhọn vì
tổng số đo 4 góc nhọn có số
đo nhỏ hơn 3600.
Bốn góc của một tứ giác
không thể đều là góc tù vì
tổng số đo 4 góc tù có số đo
lớn hơn 3600.
Bốn góc của một tứ giác có
thể đều là góc vuông vì tổng
số đo 4 góc vuông có số đo
bằng 3600.
→ Từ đó suy ra: Trong một
Trang 2
tứ giác có nhiều nhất 3 góc
nhọn, nhiều nhất 2 góc tù.
4. Củng cố:
Bài 1 trang 66
ˆ + Cˆ + D
ˆ = 3600
Hình 5a: Tứ giác ABCD có : Â+ B
1100 + 1200 + 800 + x = 3600
x = 3600 – (1100 +1200 + 800)
x = 500
Hình 5b : x= 3600 – (900 + 900 + 900) = 900
Hình 5c : x= 3600 – (650 +900 + 900) = 1150
Hình 5d : x= 3600 – (750 + 900 +1200) = 950
Hình 6a : x= 3600 – (650 +900 + 900) = 1150
Hình 6a : x= 3600 – (950 + 1200 + 600) = 850
ˆ = 3600
ˆ +N
ˆ + Pˆ + Q
Hình 6b : Tứ giác MNPQ có : M
3x + 4x+ x + 2x = 3600
360 0
10x = 3600 ⇒ x =
= 360
10
Bài 2 trang 66
ˆ = 3600 – (750 + 1200 + 900) = 75
Hình 7a : Góc trong còn lại D
Góc ngoài của tứ giác ABCD :
Â1 = 1800 - 750 = 1050
ˆ 1 = 1800 - 900 = 900
B
Cˆ 1 = 1800 - 1200 = 600
ˆ 1 = 1800 - 750 = 1050
D
Hình 7b :
Ta có : Â1 = 1800 - Â
ˆ 1 = 1800 - B
ˆ
B
0
Cˆ 1 = 180 - Cˆ
ˆ 1 = 1800 - D
ˆ
D
ˆ 1+ Cˆ 1+ D
ˆ 1= (1800-Â)+(1800- B
ˆ )+(1800- Cˆ )+(1800- D
ˆ )
Â1+ B
ˆ + Cˆ + D
ˆ ) = 7200 - 3600 = 3600
ˆ 1+ Cˆ 1+ D
ˆ 1= 7200 - (Â+ B
Â1+ B
5 : Hướng dẫn học ở nhà
Về nhà học bài.
• Cho học sinh quan sát bảng phụ bài tập 5 trang 67, để học sinh xác định tọa độ.
• Làm các bài tập 3, 4 trang 67.
• Đọc “Có thể em chưa biết” trang 68.
• Xem trước bài “Hình thang”.
IV. RÚT KINH NGHIỆM :
………………………………………………………………………………………………………
………………………………………………………………………………………………………
Duyệt:17/8/2015
………………………………………………………………………………………………………
Trang 3
Hồ Minh Đương
Tuần 2
Tiết 2
Ngày soạn:23/8/2015
Ngày dạy:
HÌNH THANG
I/ Mục tiêu
• Nắm được định nghĩa hình thang, hình thang vuông, các yếu tố của hình thang. Biết cách
chứng minh một tứ giác là hình thang, là hình thang vuông.
• Biết vẽ hình thang, hình thang vuông. Biết tính số đo các góc của hình thang, của hình
thang vuông.
• Biết sử dụng dụng cụ để kiểm tra một tứ giác là hình thang.
• Biết linh hoạt khi nhận dạng hình thang ở những vị trí khác nhau (hai đáy nằm ngang) và ở
các dạng đặc biệt (hai cạnh bên song song, hai đáy bằng nhau).
II/ Phương tiện dạy học
SGK, thước thẳng, Eke, bảng phụ hình 15 trang 69, hình 21 trang 71.
III/ Quá trình hoạt động trên lớp
1/Ổn định lớp
2/Kiểm tra bài cũ
• Định nghĩa tứ giác EFGH, thế nào là tứ giác lồi ?
Trang 4
• Phát biểu định lý về tổng số đo các góc trong một tứ giác.
• Sửa bài tập 3 trang 67
a/ Do CB = CD ⇒ C nằm trên đường trung trực đoạn BD
AB = AD ⇒ A nằm trên đường trung trực đoạn BD
Vậy CA là trung trực của BD
b/ Nối AC
Hai tam giác CBA và CDA có :
BC = DC (gt)
⇒ ∆ CBA = ∆ CDA (c-g-c)
BA = DA (gt)
C
CA là cạnh chung
ˆ =D
ˆ
⇒B
B
A
ˆ +D
ˆ = 3600 - (1000 + 600) = 2000
Ta có : B
ˆ =D
ˆ =1000
Vậy B
D
• Sửa bài tập 4 trang 67
−Đây là bài tập vẽ tứ giác dựa theo cách vẽ tam giác đã được học ở lớp 7.
−Ở hình 9 lần lượt vẽ hai tam giác với số đo như đã cho.
−Ở hình 10 (vẽ đường chéo chia tứ giác thành hai tam giác) lần lượt vẽ tam giác thứ nhất với
số đo góc 700, cạnh 2cm, 4cm, sau đó vẽ tam giác thứ hai với độ dài cạnh 1,5cm và 3cm.
3/ Bài mới
Cho học sinh quan sát hình 13 SGK, nhận xét vị trí hai cạnh đối AB và CD của tứ giác
ABCD từ đó giới thiệu định nghĩa hình thang.
Hoạt động của GV
Giới thiệu cạnh đáy, cạnh
bên, đáy lớn, đáy nhỏ,
đường cao.
?1 Cho học sinh quan sát
bảng phụ hình 15 trang 69.
a/ Tứ giác ABCD là hình
thang vì AD // BC, tứ giác
EFGH là hình thang vì có
GF // EH. Tứ giác INKM
không là hình thang vì IN
không song song MK.
b/ Hai góc kề một cạnh
bên của hình thang thì bù
nhau (chúng là hai góc
trong cùng phía tạo bởi hai
đường thẳng song song với
một cát tuyến)
?2
a/ Do AB // CD
⇒ Â1= Cˆ 1 (so le trong)
AD // BC
⇒ Â2 = Cˆ 2 (so le trong)
Hoạt động của HS
Hoạt động 1 : Hình thang
Ghi bảng
1/ Định nghĩa
Hình thang là tứ giác có hai
cạnh đối song song.
A Cạnh đáy B
Cạnh
bên
Cạnh
bên
C
H
Nhận xét: Hai góc kề một
cạnh bên của hình thang thì
bù nhau.
Nếu một hình thang có hai
cạnh bên song song thì hai
cạnh bên bằng nhau, hai
cạnh đáy bằng nhau.
Nếu một hình thang có hai
cạnh đáy bằng nhau thì hai
cạnh bên song song và bằng
nhau.
D
A
D
B
2 1
12
C
Trang 5
Do đó ∆ ABC = ∆ CDA
(g-c-g)
Suy ra : AD = BC; AB =
A
B
DC → Rút ra nhận xét
2 1
b/ Hình thang ABCD có
AB // CD ⇒ Â1= Cˆ 1
Do đó ∆ ABC = ∆ CDA
1 2
D
(c-g-c)
C
Suy ra : AD = BC
Â2 = Cˆ 2
Mà Â2 so le trong
ˆC 2
Vậy AD // BC → Rút ra
nhận xét
Hoạt động 2 : Hình thang vuông
Xem hình 14 trang 69 cho
2/ Hình thang vuông
biết tứ giác ABCH có phải
Định nghĩa: Hình thang
là hình thang không ?
vuông là hình thang có một
Cho học sinh quan sát hình
cạnh bên vuông góc với hai
17. Tứ giác ABCD là hình
đáy.
B
A
thang vuông.
Cạnh trên AD của hình
thang có vị trí gì đặc biệt ?
→ giới thiệu định nghĩa
hình thang vuông.
C
Dấu D
hiệu nhận biết:
Yêu cầu một học sinh đọc
Hình thang có một góc
dấu hiệu nhận biết hình
vuông là hình thang vuông.
thang vuông. Giải thích
dấu hiệu đó.
4. Củng cố:
Bài 7 trang 71
ˆ = 1800
Hình a: Hình thang ABCD (AB // CD) có Â + D
x+ 800 = 1800
⇒ x = 1800 – 800 = 1000
ˆ (đồng vị)
ˆ = 700 Vậy x=700
Hình b: Â = D
mà D
ˆ = Cˆ (so le trong) mà B
ˆ = 500 Vậy y=500
B
Hình c: x= Cˆ = 900
ˆ = 1800 mà Â=650
 +D
ˆ = 1800 – Â = 1800 – 650 = 1150
⇒D
Bài 8 trang 71
ˆ = 200
Hình thang ABCD có : Â - D
ˆ = 1080
Mà Â + D
180 0 + 20
ˆ = 1800 – 1000 = 800
⇒ Â=
= 1000; D
2
ˆ + Cˆ =1800 và B
ˆ =2 Cˆ
B
Trang 6
Do đó : 2 Cˆ + Cˆ = 1800 ⇒ 3 Cˆ = 1800
180 0
ˆ =2 . 600 = 1200
Vậy Cˆ =
= 600; B
3
5. : Hướng dẫn học ở nhà
• Về nhà học bài.
• Làm bài tập 10 trang 71.
• Xem trước bài “Hình thang cân”.
Duyệt: 24/8/2015
IV. RÚT KINH NGHIỆM :
………………………………………………………………………………………………………
………………………………………………………………………………………………………
………………………………………………………………………………………………………
Tuần 3:
Tiết 3
Ngày soạn: 30/8/2015
LUYỆN TẬP
Hồ Minh Đương
IV/ Mục tiêu
• Nắm được định nghĩa tứ giác, tứ giác lồi, tổng các góc của tứ giác lồi, hình thang.
• Biết vẽ, biết gọi tên các yếu tố, biết tính số đo các góc của một tứ giác lồi, hình thang.
• Biết vận dụng các kiến thức trong bài vào các tình huống thực tiễn đơn giản.
V/ Phương tiện dạy học
• GV: SGK, thước thẳng, thước đo góc, bảng phụ hình 1 và 2 trang 64, hình 11 trang 67.
• HS: SGK, thước thẳng, thước đo góc.
VI/ Quá trình hoạt động trên lớp
1.Ổn định lớp
• Hướng dẫn phương pháp học bộ môn hình học ở lớp cũng như ở nhà.
• Chia nhóm học tập.
2. Kiểm tra bài cũ:
3. Bài mới
Ở lớp 7, học sinh đã được học về tam giác, các em đã biết tổng số đo các góc trong một
tam giác là 1800. Còn tứ giác thì sao ?
Hoạt động của GV
Hoạt động của HS
Ghi bảng
Bài 1 trang 66
Bài 1 trang 66
Bài 1 trang 66
Hình 5a: Tứ giác
Hình 5a: Tứ giác
Hình 5a: Tứ giác
ABCD có :
ABCD có :
ABCD có :
0
0
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ + Cˆ + D
ˆ = 3600
Â+ B + C + D = 360
Â+ B + C + D = 360
Â+ B
1100 + 1200 + 800 + x =
1100 + 1200 + 800 + x =
1100 + 1200 + 800 + x =
3600
3600
3600
0
0
0
0
0
0
x = 360 – (110 +120 +
x = 360 – (110 +120 +
x = 3600 – (1100 +1200 +
800)
800)
800)
0
0
x = 50
x = 50
x = 500
0
0
Hình 5b : x= 360 –
Hình 5b : x= 360 –
Hình 5b : x= 3600 –
(900 + 900 + 900) = 900
(900 + 900 + 900) = 900
(900 + 900 + 900) = 900
0
0
Hình 5c : x= 360 –
Hình 5c : x= 360 –
Hình 5c : x= 3600 –
(650 +900 + 900) = 1150
(650 +900 + 900) = 1150
(650 +900 + 900) = 1150
0
0
Hình 5d : x= 360 –
Hình 5d : x= 360 –
Hình 5d : x= 3600 –
Trang 7
(750 + 900 +1200) = 950
(750 + 900 +1200) = 950
(750 + 900 +1200) = 950
Hình 6a : x= 3600 –
Hình 6a : x= 3600 –
Hình 6a : x= 3600 –
0
0
0
0
0
0
0
0
(65 +90 + 90 ) = 115
(65 +90 + 90 ) = 115
(650 +900 + 900) = 1150
0
0
Hình 6a : x= 360 –
Hình 6a : x= 360 –
Hình 6a : x= 3600 –
(950 + 1200 + 600) = 850
(950 + 1200 + 600) = 850
(950 + 1200 + 600) = 850
Hình 6b : Tứ giác MNPQ có :
Hình 6b : Tứ giác MNPQ có :
Hình 6b : Tứ giác MNPQ có :
0
0
ˆ
ˆ
ˆ = 3600
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ +N
ˆ + Pˆ + Q
M + N + P + Q = 360
M + N + P + Q = 360
M
3x + 4x+ x + 2x = 3600
3x + 4x+ x + 2x = 3600
3x + 4x+ x + 2x = 3600
0
0
360
360
360 0
0 ⇒
0
0 ⇒
0
0 ⇒
10x = 360
x=
= 36
10x = 360
x=
= 36
10x = 360
x=
= 360
10
10
10
Bài 2 trang 66
Bài 2 trang 66
Bài 2 trang 66
Hình 7a : Góc trong còn lại
Hình 7a : Góc trong còn lại
Hình 7a : Góc trong còn lại
0
0
0
0
0
0
0
0
ˆ
ˆ
ˆ = 3600 – (750 + 1200 + 900)
D = 360 – (75 + 120 + 90 )
D = 360 – (75 + 120 + 90 )
D
= 75
= 75
= 75
Góc ngoài của tứ giác
Góc ngoài của tứ giác
Góc ngoài của tứ giác
ABCD :Â1 = 1800 - 750 = 1050 ABCD :Â1 = 1800 - 750 = 1050 ABCD :Â1 = 1800 - 750 = 1050
ˆ 1 = 1800 - 900 = 900
ˆ 1 = 1800 - 900 = 900
ˆ 1 = 1800 - 900 = 900
B
B
B
Cˆ 1 = 1800 - 1200 = 600
Cˆ 1 = 1800 - 1200 = 600
Cˆ 1 = 1800 - 1200 = 600
ˆ 1 = 1800 - 750 = 1050
ˆ 1 = 1800 - 750 = 1050
ˆ 1 = 1800 - 750 = 1050
D
D
D
Hình 7b :
Hình 7b :
Hình 7b :
Ta có : Â1 = 1800 - Â
Ta có : Â1 = 1800 - Â
Ta có : Â1 = 1800 - Â
ˆ 1 = 1800 - B
ˆ
ˆ 1 = 1800 - B
ˆ
ˆ 1 = 1800 - B
ˆ
B
B
B
0
0
0
Cˆ 1 = 180 - Cˆ
Cˆ 1 = 180 - Cˆ
Cˆ 1 = 180 - Cˆ
0
0
ˆ 1 = 180 - D
ˆ
ˆ 1 = 180 - D
ˆ
ˆ 1 = 1800 - D
ˆ
D
D
D
0
0
ˆ 1+ Cˆ 1+ D
ˆ 1= (180 -Â)
ˆ 1+ Cˆ 1+ D
ˆ 1= (180 -Â)
ˆ 1+ Cˆ 1+ D
ˆ 1= (1800-Â)
Â1+ B
Â1+ B
Â1+ B
ˆ )+(1800- Cˆ )+(1800ˆ )+(1800- Cˆ )+(1800ˆ )+(1800- Cˆ )+(1800+(1800- B
+(1800- B
+(1800- B
ˆ )
ˆ )
ˆ )
D
D
D
0
0
ˆ
ˆ
ˆ 1+ C 1+ D
ˆ 1= 720 - (Â+
ˆ 1+ C 1+ D
ˆ 1= 720 - (Â+
ˆ 1+ Cˆ 1+ D
ˆ 1= 7200 - (Â+
Â1+ B
Â1+ B
Â1+ B
ˆ + Cˆ + D
ˆ ) = 7200 - 3600 =
ˆ + Cˆ + D
ˆ ) = 7200 - 3600 =
ˆ + Cˆ + D
ˆ ) = 7200 - 3600 =
B
B
B
3600
3600
3600
4. Củng cố:
Bài 7 trang 71
ˆ = 1800
Hình a: Hình thang ABCD (AB // CD) có Â + D
x+ 800 = 1800
⇒ x = 1800 – 800 = 1000
ˆ (đồng vị)
ˆ = 700 Vậy x=700
Hình b: Â = D
mà D
ˆ = Cˆ (so le trong) mà B
ˆ = 500 Vậy y=500
B
Hình c: x= Cˆ = 900
ˆ = 1800 mà Â=650
 +D
ˆ = 1800 – Â = 1800 – 650 = 1150
⇒D
Bài 8 trang 71
ˆ = 200
Hình thang ABCD có : Â - D
ˆ = 1080
Mà Â + D
Trang 8
180 0 + 20
ˆ = 1800 – 1000 = 800
= 1000; D
2
ˆB + Cˆ =1800 và B
ˆ =2 Cˆ
Do đó : 2 Cˆ + Cˆ = 1800 ⇒ 3 Cˆ = 1800
180 0
ˆ =2 . 600 = 1200
Vậy Cˆ =
= 600; B
3
⇒ Â=
Bài 9 trang 71
Các tứ giác ABCD và EFGH là hình thang.
5. : Hướng dẫn học ở nhà
• Về nhà học bài.
• Làm bài tập 10 trang 71.
• Xem trước bài “Hình thang cân”.
IV. RÚT KINH NGHIỆM :
………………………………………………………………………………………………………
………………………………………………………………………………………………………
………………………………………………………………………………………………………
Duyệt: 31/8/2015
Hồ Minh Đương
Trang 9
Tuần 4
Tiết 4
Ngày soạn:6/9/2015
HÌNH THANG CÂN
I/ Mục tiêu
• Nắm được định nghĩa, các tính chất, các dấu hiệu nhận biết hình thang cân.
• Biết vẽ hình thang cân, biết sử dụng định nghĩa và tính chất của hình thang cân trong tính
toán và chứng minh, biết chứng minh một tứ giác là hình thang cân.
• Rèn luyện tính chính xác và cách lập luận chứng minh hình học.
II/ Phương tiện dạy học
• GV: SGK, thước chia khoảng, thước đo góc, bảng phụ hình 23 trang 72, hình 30, 31, 32
trang 74, 75 (bài tập 11)
• HS: SGK, thước chia khoảng, thước đo góc.
III/ Quá trình hoạt động trên lớp
1/ Ổn định lớp
2/ Kiểm tra bài cũ
•
Định nghĩa hình thang, vẽ hình thang CDEF và đường cao CK của nó.
• Định nghĩa hình thang vuông, nêu dấu hiệu nhận biết hình thang vuông.
• Sửa bài tập 10 trang 71
Tam giác ABC có AB = AC (gt)
C
B
Nên ∆ ABC là tam giác cân
1
⇒ Â1 = Cˆ1
Ta lại có : Â1 = Â2 (AC là phân giác Â)
1
Do đó : Cˆ1 = Â2
⇒ BC // AD
2
D
A
ˆ
Mà C so le trong Â2
1
Vậy ABCD là hình thang
3/Bài mới
Cho học sinh quan sát hình 23 SGK, nhận xét xem có gì đặc biệt. Sau đó giới thiệu hình thang
cân
Hoạt động của GV
Hoạt động của HS
Ghi bảng
Hoạt động 1 : Định nghĩa hình thang cân
?1 Hình thang ABCD ở hình
/ Định nghĩa
bên có gì đặc biệt?
Hình thang cân là hình thang
Hình 23 SGK là hình thang
có hai góc kề một đáy bằng
cân.
nhau.
A
B
Thế nào là hình thang cân ?
?2 Cho học sinh quan sát bảng
phụ hình 23 trang 72.
a/ Các hình thang cân là :
D
ABCD, IKMN, PQST.
AB // CD C
ˆ
b/ Các góc còn lại : Cˆ = 1000,
Cˆ = D
O
ˆ =700, Sˆ = 900.
ˆ)
ˆI = 1100, N
(hoặc  = B
c/ Hai góc đối của hình thang
cân thì bù nhau.
Hoạt động 2 : Các định lý
Chứng minh:
2/ Tính chất:
2
A 2
B
1
1
Trang 10
D
C
a/ AD cắt BC ở O (giả sử AB <
CD)
ˆ (ABCD là hình
Ta có : Cˆ = D
thang cân)
Nên ∆OCD cân, do đó :
OD = OC (1)
Ta có :
ˆ =B
ˆ (định nghĩa hình thang
A
1
1
cân)
ˆ =B
ˆ ⇒ ∆OAB cân
Nên A
2
2
Do đó OA = OB (2)
Từ (1) và (2) suy ra:
OD - OA = OC - OB
B
Vậy AD
A = BC
b/ Xét trường hợp AD // BC
(không có giao điểm O)
Khi đó AD = BC (hình thang
có D
C
hai cạnh bên song song thì hai
cạnh bên bằng nhau)
Chứng minh định lý 2 :
Căn cứ vào định lý 1, ta có hai
đoạn thẳng nào bằng nhau ?
Quan sát hình vẽ rồi dự đoán
xem còn có hai đoạn thẳng nào
bằng nhau nữa ?
Hai tam giác ADC và BDC
có :
CD là cạnh chung
ADC = BCD
AD = BC (định lý 1 nói
trên)
Suy ra AC = BD
Định lý 1 : Trong hình thang
cân hai cạnh bên bằng nhau
A
ABCD là hình thang cân ⇔
(đáy AB, CD)
D
GT
KL
B
ABCD là
C
hình thang cân
(đáy AB, CD)
AD = BC
Định lý 2 : Trong hình thang
cân hai đường chéo bằng nhau.
GT
KL
ABCD là
hình thang cân
(đáy AB, CD)
AC = BD
∆ADC = ∆BCD
(c-g-c)
Hoạt động 3 : Dấu hiệu nhận biết
?3
Dùng compa vẽ các
Điểm A và B nằm
Trên m sao cho :
AC = BD
(các đoạn AC và BD phải cắt
nhau). Đo các góc ở đỉnh C và
D của hình thang ABCD ta
ˆ . Từ đó dự đoán
thấy Cˆ = D
ABCD là hình thang cân.
m
3/ Dấu hiệu nhận biết
Định lý 3 : Hình thang có hai
đường chéo bằng nhau là hình
thang cân.
Dấu hiệu nhận biết :
a/ Hình thang có hai góc kề
một đáy bằng nhau là hình
thang cân.
b/ Hình thang có hai đường
chéo bằng nhau là hình thang
cân.
Trang 11
4 : Củng cố:
Bài 11 trang 74
Đo độ dài cạnh ô vuông là 1cm. Suy ra:
AB = 2cm
CD = 4cm
AD = BC = 12 + 3 2 = 10
5 : Hướng dẫn học ở nhà
• Về nhà học bài
• Làm bài tập 12 18 trang 74/75.
IV. RÚT KINH NGHIỆM :
………………………………………………………………………………………………………
………………………………………………………………………………………………………
………………………………………………………………………………………………………
Duyệt: 7/9/2015
Hồ Minh Đương
Trang 12