Tải bản đầy đủ (.pdf) (14 trang)

Bài tập Turbine chap 12

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (265.68 KB, 14 trang )

Chapter 12 / Turbomachinery

CHAPTER 12
Turbomachinery
Elementary Theory

ω = 800 × π / 30 = 83.8 rad/s
u1 = ωr1 = 83.8 × 0.04 = 3.35 m/s
u 2 = ω r2 = 83.8 × 0.125 = 10.48 m/s

Q = 2π r1b1Vn1 , but Vn1 = u1 since β1 = 45D

12.2

∴Q = 2π × 0.04 × 0.05 × 3.35 = 0.0421 m3 / s
Vn2 =

Q
0.0421
=
= 2.14 m/s
2π r2b2 2π × 0.125 × 0.025

Vt2 = u2 −

Vt1 = 0

Vn2

tan β 2


= 10.48 −

2.14
= 6.77 m/s
tan 30D

(α1 = 90D under ideal conditions)

(

)

∴T = ρQ r2Vt2 − rV
1 t1 = 1000 × 0.0421(0.125 × 6.77 − 0) = 35.6 N ⋅ m
W P = ωT = 83.8 × 35.6 = 2980 W

H t = ωT / γ Q = 2980 /(9810 × 0.0421) = 7.22 m
Q = 7.6 ×10−3 m3/s

12.4

ω = 2000 ×

π
30

= 209 rad/s

175
© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Chapter 12 / Turbomachinery
Q
7.6 ×10−3
=
= 1.94 m/s
2π r2b2 2π × 0.0625 × 0.01

Vn2 =

u2 = ωr2 = 209 × 0.0625 = 13.06 m/s
∴ Ht =

13.06
u2
(13.06 − 1.94cot 60°) = 15.9 m
(u2 − Vn2 cot β 2 ) =
9.81
g

 = γ QH = 9810 × 0.8 × 7.6 ×10−3 ×15.9 = 948 W
W
t

 = 948/ 746 = 1.21 hp
W
Compute loss in suction pipe:
2
⎛ L

⎞ Q
hL = ⎜ f + Σ K ⎟
⎝ D
⎠ 2 gA 2

11


= ⎜ 0.015 ×
+ 2 × 0.19 + 0.8⎟


0.1

12.6

0.05 2
2

⎛ π⎞
2 × 9.81 × ⎜ ⎟ × 0.1 4
⎝ 4⎠

= 5.85 m

Water at 20°C: γ = 9792 N/m3 , pv = 2340 Pa. Substitute known data into NPSH
relation, solving for Δz:
∴Δ z =

patm − pv


γ

101×103 − 2340
− 5.85 − 3 = 1.23 m
− hL − NPSH =
9792

Dimensional Analysis and Similitude
Q1 =

N
ω1
970
Q = 1Q =
× 0.8 = 0.65 m 3 / s
ω 2 2 N 2 2 1200

∴from Fig. 12.9, H1 ≅ 11.5 m and W 1 ≅ 91 kW.
2

⎛ω ⎞
⎛ 1200 ⎞
∴ H 2 = ⎜ 2 ⎟ H1 = ⎜
⎟ ×11.5 = 17.6 m
⎝ 970 ⎠
⎝ ω1 ⎠

12.8


2

3

⎛ 1200 ⎞
 = ⎛ ω2 ⎞ W

∴W

⎟ 1=⎜
2
⎟ × 91 = 172 kW
⎝ 970 ⎠
⎝ ω1 ⎠

12.10

CQ =

3

Q
Q / 3600
=
= 1.061× 10 −4 Q
3
ω D 304 × 0.2053

(Q in m 3 /h)


176
© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


Chapter 12 / Turbomachinery

CH =

gH
9.81H
=
= 2.526 × 10−3 H (H in m)
2
2
2
2
ω D 304 × 0.205

Tabulate CQ and CH using selected values of Q and H from Fig. 12.6:
CQ×10 −3
0
0.53
1.06
1.59
2.12
2.65
3.18

Q (m3/h)
0

50
100
150
200
250
300

H (m)
54
53
52
50
47
41
33

CH ×10−1
1.36
1.34
1.31
1.26
1.19
1.04
0.83

The dimensionless curve shown in Fig. 12.12 is for the 240-mm impeller. Since
the impellers are not the same (240 mm versus 205 mm), dynamic similitude
does not exist, and thus the curves are not the same.

Compute the specific speed: Ω P =

12.12

ω Q
( gH P )3 / 4

=

1800 ×

π

× 0.15
30
= 1.30 ,
(9.81 × 22)3 / 4

hence use a mixed flow pump. As an alternate, since Ω P is close to unity, a
radial flow pump could be employed.
Fig. 12.13: At η = 0.75 (best eff. ), CQ ≅ 0.048 ,
C H ≅ 0.018, C W ≅ 0.0011, C NPSH ≅ 0.023.

ω = 750 ×

π
30

= 78.5 rad/s

1/3


(a)
12.14

⎛ 1240 ×10−3 ⎞
D = ⎜⎜
⎟⎟
⎝ 0.049 × 78.5 ⎠
H=

= 0.685 m

0.018 × 78.52 × 0.6852
= 5.3 m
32.2

H NPSH =

0.023 × 78.52 × 0.6852
= 6.78 m
9.81

 = 0.0011×1000 × 78.53 × 0.6855 = 80,250 W = 80.25 kW
W

or
12.16

 = 82.25/0.746 = 107.6 hp
W


ω = 600 ×

π
30

= 62.8 rad /s,

Q = 22.7 / 60 = 0.378 m 3 / s,

177
© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


Chapter 12 / Turbomachinery

ΩP =

ω Q
( gH P )

=

3/ 4

2

62.8 0.378
= 0.751
(9.81×19.5)3/ 4
2


H 2 ⎛ ω 2 ⎞ ⎛ D2 ⎞
=⎜
⎟ ⎜
⎟ =2
H1 ⎝ ω1 ⎠ ⎝ D1 ⎠
2

3

Q2 ⎛ ω 2 ⎞⎛ D2 ⎞
=⎜
⎟⎜
⎟ =2
Q1 ⎝ ω1 ⎠⎝ D1 ⎠

2

⎛ ω ⎞ ⎛ D ⎞ ⎛ ω ⎞⎛ D ⎞
∴ ⎜ 2 ⎟ ⎜ 2 ⎟ = ⎜ 2 ⎟⎜ 2 ⎟
⎝ ω1 ⎠ ⎝ D1 ⎠ ⎝ ω1 ⎠⎝ D1 ⎠

12.18

∴Use a radial flow pump.

3

or


ω 2 D2
=
ω1 D1

4

⎛ω ⎞
∴ ⎜ 2 ⎟ = 2, ω2 = 4 2 ω1 = 1.19 ω1 and D2 = 4 2 D1 = 1.19 D1
⎝ ω1 ⎠

Assume a pump speed N = 2000 rpm or ω = 2000 ×

π
30

= 209 rad/s

 /(γ Q) = 200 ×103 /(8830 × 0.66) = 34.3 m
HP = W
f

∴Ω P =

ω Q
( gH P )

3/ 4

=


209 0.66
= 2.16
(9.81× 34.3)3/ 4

The specific speed suggests a mixed-flow pump. However, if N = 1000 rpm, a
radial-flow pump may be appropriate. Consider both possibilities.
Mixed flow: from Fig. 12.14, at best η :
CW ≅ 0.0117, CQ ≅ 0.148, CH ≅ 0.067

Use
12.20

CQ =

gH
Q
and CH = 2 P2
3
ωD
ωD

Combining and solving for D and ω
Q / CQ

D=

gHP / CH

ρ=


Q
CQD3

0.66 / 0.148
= 0.251 m
9.81× 34.3/ 0.067

∴D =

ω=

and ω =

0.66
= 282 rad/s or N = 282 × 30 / π = 2674 rpm
0.148 × 0.2513

γ
g

=

8830
= 900 kg/m3
9.81

178
© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Chapter 12 / Turbomachinery
 = C  ρω 3D5 = 0.0117 × 900 × 2823 × 0.2515
∴W
P
W

= 2.35 × 105 W or 235 kW
Radial flow: from Fig. 12.12, at best η :
CW ≅ 0.027, CQ ≅ 0.0165, C H ≅ 0.125
∴D =

ω=

0.66 / 0.0165
= 0.878 m
9.81× 34.3/ 0.125

0.66
59.1× 30
= 59.1 rad/s or N =
= 564 rpm
3
π
0.0165 × 0.878

 = 0.0027 × 900 × 59.13 × 0.8785 = 2.62 × 105 W
W
P

or 262 kW


Hence, a mixed-flow pump is preferred.
Use of Turbopumps

12.22

The intersection of the system demand curve with the head-discharge curve
yields Q = 2.75 m3 / min, H P = 12.6 m, W P = 7.2 kW.
N 1 = 1350 rpm, Q 1 = 2.75 m 3 / min, H 1 = 12.6 m,

12.24

W 1 = 7.2 kW, N 2 = 1200 rpm, D 2 = D1

179
© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


Chapter 12 / Turbomachinery
3

⎛ N ⎞⎛ D ⎞
⎛ 1200 ⎞
3
∴Q2 = Q1 ⎜ 2 ⎟⎜ 2 ⎟ = 2.75 ⎜
⎟ = 2.44 m /min
1350
N
D



⎝ 1 ⎠⎝ 1 ⎠
2

2

3

5

⎛N ⎞ ⎛D ⎞
⎛ 1200 ⎞
H 2 = H1 ⎜ 2 ⎟ ⎜ 2 ⎟ = 12.6 ⎜
⎟ = 9.96 m
⎝ 1350 ⎠
⎝ N1 ⎠ ⎝ D1 ⎠
2

⎛N ⎞ ⎛D ⎞
⎛ 1200 ⎞
W 2 = W 1 ⎜ 2 ⎟ ⎜ 2 ⎟ = 7.2 ⎜
⎟ = 5.06 kW
⎝ 1350 ⎠
⎝ N1 ⎠ ⎝ D1 ⎠
3

Efficiency will remain approximately the same.
Compute system demand:
2
2

14
⎛ L
⎞V

⎞ 3
= ⎜ 0.01 ×
+ 4 × 0.1⎟
= 0.40 m
H P = ⎜ f + ΣK ⎟
⎝ D
⎠ 2g ⎝
0.3
⎠ 2 × 9.81

12.26

Q = VA = 3 ×

∴Ω P =

π
4

× 0.32 = 0.212 m2

ω Q
( gH P )

3/ 4


=

31.4 0.212
= 5.19
(9.81 × 0.4)3/ 4

ω = 300 × π / 30 = 31.4 rad/s
∴Axial pump is appropriate.

(a)

12.28

The intersection of the pump curve with the demand curve yields H P ≅ 64 m
and Q ≅ 280 m3 / h. ∴ From Fig. 12.6, W P ≅ 64 kW and NPSH ≅ 8.3 m

180
© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


Chapter 12 / Turbomachinery

Use energy eqn. to establish system demand:
e⎤

f ≅ 1.325 ⎢ln 0.27 ⎥
D⎦

H P = Δz + f


−2

0.000255 ⎤

= 1.325 ⎢ln 0.27 ×
0.45 ⎥⎦


−2

= 0.017

0.017 × 5000
L Q2
= 192 +
Q2 = 192 + 381Q2
2
5
2
D 2 gA
2 × 9.81× (π / 4) × (0.45)

From Fig. 12.6, at best ηP , Q ≅
12.30

240 m3
= 0.067 m3/s, and HP ≅ 65 m
3600 s

Assume three pumps in series, so that HP = 3× 65 = 195 m. Then the demand

head is
H P = 192 + 381× (0.067) 2 = 193.7 m

Hence three pumps in series are appropriate. The required power is
WP = γ QHP/ηP = 9810× 0.86× 0.067 ×195/0.75 = 146,965 W
W P = 146,965/746 = 197 hp

or

(a) For water at 80°C, pv = 46.4 × 103 Pa, and ρ = 9553 kg/m3. Write the energy
equation from the inlet (section i) to the location of cavitation in the pump:
pi

γ

12.32

+

Vi2 pv
=
+ NPSH
2g γ

∴ NPSH =

pi − pv

γ


Vi2 (83 − 46.4) ×103
62
+
=
+
= 5.67 m
2g
9533
2 × 9.81

(b) NPSH1 = 5.67 m, N1 = 2400 rpm, N2 = 1000 rpm, D2/D1 = 4
2

2

⎛N ⎞ ⎛D ⎞
⎛ 1000 ⎞
∴ NPSH 2 = NPSH1 ⎜ 2 ⎟ ⎜ 2 ⎟ = 5.67 ⎜

⎝ 2400 ⎠
⎝ N1 ⎠ ⎝ D1 ⎠

2

( 4 )2 = 15.8 m

Given:
12.34

L = 200 m , D = 0.05 m , Δz = z 2 − z1 = −3 m , V = 3 m/s , ν = 6 × 10 −7 m 2 /s ,


ρ = 1593 kg/m 3 , pv = 86.2 × 103 Pa , pa = 101 × 103 Pa

Compute the pump head:

181
© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


Chapter 12 / Turbomachinery
Re =

3 × 0.05
6 × 10

−7

= 2.5 × 105

(

)

f = 1.325 ⎡ ln 5.74Re-0.9 ⎤



−2

= 1.325 ⎡ ln 5.74 × (2.5 × 105 ) −0.9 ⎤




−2

= 0.015

2
fL ⎞ V 2

⎛ 0.015 × 200 ⎞ 3
= −3 + ⎜ 1 +
= 25.0 m
H P = Δz + ⎜ 1 + ⎟

0.05
D ⎠ 2g

⎠ 2 × 9.81


(a) Choose a radial-flow pump. Use Fig. P12.35 to select the size and speed:
C H = 0.124, CQ = 0.0165, η = 0.75
Q = 3×
∴D =
∴ω =

π

4


4

× 0.052 = 0.00589 m 2

CHQ 2
CQ2 gH P
Q

CQ D

3

=

=

4

0.124 × 0.00589 2
0.01652 × 9.81 × 25.0

0.00589
0.0165 × 0.090

3

= 0.090 m

= 490 rad/s, or N = 490 ×


30

π

= 4680 rpm

(b) Available net positive suction head:
NPSH =

pa − pv
101×103 − 86.2 ×103
− Δz =
+ 3 = 3.95 m
1593 × 9.81
ρg

(c)

182
© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


Chapter 12 / Turbomachinery
Turbines
ω = 120 × π / 30 = 12.6 rad/s

α1 = cot −1 (2π r12b1ω / Q + cot β1 )
= cot −1 (2π × 4.52 × 0.85 × 12.6 /150 + cot 75D ) = 6.1D


Vt1 = u1 + Vn1 cot β1 = ω r1 +
= 12.6 × 4.5 +

12.36

Q
cot β1
2π r1b1

150
cot 75D = 58.37 m/s
2π × 4.5 × 0.85

Vt2 = u2 + Vn2 cot β 2 = ω r2 +
= 12.6 × 2.5 +

Q
cot β 2
2π r2b2

150
cot100D = 29.52 m/s
2π × 2.5 × 0.85

∴ T = ρQ(rV
1 t1 − r2Vt2 )
= 1000 ×150(4.5 × 58.37 − 2.5 × 29.52) = 2.83 × 107 N ⋅ m

 = ωT = 12.6 × 2.83 × 107 = 3.57 × 108 W or 357 MW
W

T

 =W
 , hence
Under ideal conditions ηT = 1, and W
T
f
HT = W T / γ Q = 3.57 × 108 /(9810 × 150) = 243 m
N 2 = 240 rpm , W 2 = 2200 kW , D 2 = 0.9 m, W 1 = 9kW , H1 = 7.5 m
3
5
2
2
W 2 ⎛ N 2 ⎞ ⎛ D2 ⎞
H 2 ⎛ N 2 ⎞ ⎛ D2 ⎞
From the similarity rules  = ⎜
=⎜
⎟ ⎜
⎟ and
⎟ ⎜

H1 ⎝ N1 ⎠ ⎝ D1 ⎠
W1 ⎝ N1 ⎠ ⎝ D1 ⎠

12.38

Substitute second eqn. into the first to eliminate ( N 2 / N 1 ), and solve for D 1 :
1/ 2
3/ 4
 ⎞1/ 2 ⎛ H ⎞3/ 4

⎛W
⎛ 9 ⎞ ⎛ 45 ⎞
1
2
∴ D1 = D2 ⎜  ⎟ ⎜
⎟ = 0.9 ⎜
⎟ ⎜
⎟ = 0.221 m
⎝ 2200 ⎠ ⎝ 7.5 ⎠
⎝ W2 ⎠ ⎝ H1 ⎠
1/ 2

⎛H ⎞
N 2 = N1 ⎜ 1 ⎟
⎝ H2 ⎠

⎛ D2 ⎞
⎛ 7.5 ⎞

⎟ = 240 ⎜

D
⎝ 45 ⎠
⎝ 1⎠

1/ 2

⎛ 0.9 ⎞

⎟ = 399 rpm

⎝ 0.221 ⎠

183
© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


Chapter 12 / Turbomachinery

Write energy eqn. from upper reservoir (loc. 1) to surge tank (loc. 2) and solve
for Q:
1/ 2



D
Q = ⎢ 2 gA2
( z1 − z2 ) ⎥
fL



1/ 2

⎡ 2 × 9.81 × (π / 4) 2 × 0.855

=⎢
(650 − 648.5) ⎥
0.025 × 2000




= 0.401 m 3 / s

Apply energy eqn. from loc. 2 to lower reservoir (loc. 3) and determine H T :
2
⎛ L
⎞ Q
HT = z2 − z3 − ⎜ f + K v ⎟
⎝ D
⎠ 2 gA2

12.40

⎛ 0.02 × 100 ⎞
= 648.5 − 595 − ⎜
+ 1⎟
⎝ 0.85


0.4012
⎛π ⎞
2 × 9.81× ⎜ ⎟ × 0.855
⎝4⎠
2

= 53.4 m

∴ W T = γ QHTηT = 9810 × 0.401 × 53.4 × 0.9 = 1.89 × 105 W or 189 kW

∴ From Fig. 12.32, use a Francis turbine.

A representative value of the specific speed is 2 (Fig. 12.20):
ΩT ( gHT )5 / 4
2(9.81× 53.3)5 / 4
∴ω =
=
= 306 rad/s
 / ρ )1/ 2
(W
(2.67 × 105 /1000)1/ 2
T

or

N = 306 × 30 / π = 2920 rpm

ω = 200 × π / 30 = 20.94 rad/s and from Fig. P12.42 at best efficiency

(ηT = 0.8), φ ≈ 0.42, cv = 0.94
V1 = cv 2 gHT = 0.94 2 × 9.81× 120 = 45.6 m/s

∴Q =

12.42

WT
4.5 × 10 6
=
= 4.78 m 3 / s
γ H T η T 9810 × 120 × 0.8


This is the discharge from all of the jets.
Determine the wheel radius r : r =

φ 2 gHT 0.42 2 × 9.81× 120
=
= 0.973 m
20.94
ω

Hence, the diameter of the wheel is 2r = 2 × 0.973 = 1.95 m
Compute diameter of one jet: D j = 2r / 8 = 1.95 / 8 = 0.244 m, or 244 mm
Let N j = no. of jets. Then each jet has a discharge of Q / N j and an area

184
© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


Chapter 12 / Turbomachinery
Q / Nj
V1
Nj =

=

π
4

D2j ∴Solving for N j :

Q

1
4.78
=
= 2.24
V1 ⎛ π 2 ⎞
⎛π ⎞
2
D
45.6
0.244
×
×

⎜ ⎟
j ⎟
⎝4

⎝4⎠

∴Use three jets

ΩT =

ω (W T / ρ )1/ 2
( gHT )5 / 4

=

20.94(4.5 × 106 /1000)1/ 2
= 0.204

(9.81 × 120)5 / 4

Q = 2082 / 6 = 347 m3 / sec (one unit)

HT =

WT
427,300 × 746
=
= 110.1 m
γ QηT 9810 × 347 × 0.85

Write energy eqn. from upper reservoir (loc. 1) to lake (loc. 2):
2
⎛ L
⎞ Q
+ HT + z2
z1 = ⎜ f + ΣK ⎟
2
⎝ D
⎠ 2gA

12.44

⎛ 0.01 × 390

∴ 309 = ⎜
+ 0.5 ⎟
D




which reduces to 2.4 −

347 2
⎛π ⎞
2 × 9.81 × ⎜ ⎟ D 4
⎝4⎠
2

+ 110.1 + 196.5

38,840 4980
− 4 =0
D5
D

∴ Solving, D ≅ 8 m

∴From Fig. 12.32, a Francis or pump/turbine unit is indicated.
(a) Let H be the total head and Q the discharge delivered to the turbine; then
HT = 0.95H = 0.95 × 305 = 289.8 m
and
12.46

Q=


W
10.4 × 10 6

T
=
= 4.30 m 3 / s.
γHT ηT 9810 × 289.8 × 0.85

Write energy eqn. from reservoir to turbine outlet:
2
⎛ L
⎞ Q
H = HT +⎜ f +∑K⎟
2
⎝ D
⎠ 2gA

4.32
⎛ 0.02 × 3000

∴ 305 = 289.8 + ⎜
+ 2⎟
D

⎠ 2 × 9.81× (π / 4)2 D 4

185
© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


Chapter 12 / Turbomachinery
which reduces to 15.2 −


91.67 3.06
− 4 =0
D5
D

∴Solving D = 1.45 m

(b) Compute jet velocity: V1 = cv 2 gHT = 0.98 2 × 9.81× 289.8 = 73.9 m/s
The flow through one nozzle is Q/4 and the jet area is πD 2j / 4. Hence

π D 2j
4

=

Q / 4 4.3/ 4
=
= 0.0146 m 2
V1
73.9
4 × 0.0146

∴ Dj =

π

= 0.136 m
2

12.48


⎡ 4.15 × (9.81 × 3.7)5 / 4 ⎤
6
WT = 1000 ⎢
⎥ = 4.99 × 10 W (one unit).
×
50
/
30
π



Total power developed is 9.21 × 10 6 W. Hence, required number of units is

9.21/ 4.99 = 1.8 ∴ Use two turbines.
(a)

H T = z1 − z 2 −

fL Q 2
D 2 gA 2

0.015 × 350 × 0.252
= 915 − 892 −
= 11.8 m
0.3 × 2 × 9.81× (0.7854 × 0.32 ) 2

 = γ QH η = 9810 × 0.25 ×11.8 × 0.85 = 2.46 ×104 W or 24.6 kW
W

T
T T
(b) Compute the specific speed of the turbine:
12.50

ω=N

π
30

∴ΩT =

= 1200 ×

 /ρ
ω W
T

( gHT )

5/4

π
30
=

= 126 rad/s

126 2.46 × 104 /1000


( 9.81×11.8)

5/4

= 1.65

Hence, from Fig. 12.20, a Francis turbine is appropriate.
(c) From Fig. 12.24, the turbine with ΩT = 1.063 is chosen:
CH = 0.23, CQ = 0.13, and ηT = 0.91.

186
© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


Chapter 12 / Turbomachinery

D=

ω=

4

CHQ2
=
CQ2 gHT

4

0.23 × 0.252
= 0.293 m or approximately 0.30 m

0.132 × 9.81 × 11.8

Q
0.25
30
=
= 71.2 rad/s or N = 71.2 ×
= 680 rpm
3
3
π
CQ D
0.13 × 0.30

W T = γ QHTηT = 9810 × 0.25 × 11.8 × 0.91 = 2.63 × 10 4 W, or 26.3 kW

Calculate a new specific speed based on the final design data:
ΩT =

71.2 × 2.63 ×104 /1000
(9.81×11.8)5/4

= 0.96

An acceptable value according to Fig. 12.20.

187
© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Chapter 12 / Turbomachinery

188
© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×