Tên SKKN: TIẾP TỤC HƯỚNG DẪN HỌC SINH KHÁ, GIỎI VẬN
DỤNG KIẾN THỨC TOÁN HỌC VÀO VIỆC GIẢI CÁC BÀI TẬP VẬT
LÍ NÂNG CAO
I
DO CHỌN
TÀI:
Việc giải các bài tập Vật lí, đặc biệt là các bài tập Vật lí nâng cao đối với
một số học sinh, kể cả học sinh giỏi gặp rất nhiều khó khăn. Nguyên nhân
chính là do các em thiếu vốn kiến thức Toán học hoặc các em đã có một số kiến
thức Toán học, nhưng chưa biết cách vận dụng vào bài toán Vật lí cụ thể để
giải. Qua kinh nghiệm giải bài tập cho thấy, nếu học sinh sử dụng đúng lúc và
sử dụng đúng loại kiến thức toán thì bài giải sẽ trong sáng và rút ngắn bài giải
đáng kể.
Chính vì lẽ đó, tôi đã sưu tầm và mạo muội nêu ra một số bài tập Vật lí
nâng cao, có vận dụng những kiến thức Toán học vào trong bài giải, nhằm củng
cố lại một số kiến thức toán học thường gặp để giúp học sinh vận dụng có hiệu
quả vào việc giải bài tập Vật lí nâng cao trong uá tr nh b i dư ng học sinh
giỏi.
Đề tài này giới hạn trong phạm vi nghiên cứu những kiến thức Toán học
cơ bản nhất, có nâng cao đúng mức ở chương trình THCS, mang tính chất điển
hình, thường được vận dụng trong các dạng bài tập Vật lí nâng cao; nhằm mục
đích phục vụ dạy b i dư ng học sinh giỏi nên t i chọn đề tài này. “TIẾP TỤC
HƯỚNG DẪN HỌC SINH KHÁ, GIỎI VẬN DỤNG KIẾN THỨC TOÁN
HỌC VÀO VIỆC GIẢI CÁC BÀI TẬP VẬT
NÂNG CAO ”
II C
S
C
ẬN VÀ THỤC TI N :
S
ẬN:
Để thực hiện mục tiêu: “Nâng cao dân trí, đào tạo nhân lực, b i
dư ng nhân tài” thì công tác b i dư ng học sinh giỏi là một trong những
công tác quan trọng bậc nhất mà chúng ta cần thực hiện; nhằm ươm mầm
và phát triển những tài năng tương lai của đất nước.
Vật lí học là một trong các bộ môn được tham gia tổ chức dạy b i
dư ng để học sinh dự thi học sinh giỏi các cấp. Đối với một học sinh giỏi
Vật lí cần phải hội đủ hai yếu tố đó là: giỏi về kiến thức Vật lí đ ng thời
nắm chắc và đầy đủ các kiến thức Toán học. Nếu thiếu một trong hai yếu
tố trên thì không thể trở thành một học sinh giỏi Vật lí; hay nói cách
khác, một học sinh giỏi Vật lí phải sở hữu một kiến thức Toán học phong
phú và biết cách vận dụng kiến thức đó để giải các bài tập Vật lí nâng
cao một cách có hiệu quả nhất. Như vậy Toán học là cơ sở, là tiền đề để
nghiên cứu Vật lí học. Trong để tài này, các cơ sở Toán học được l ng
ghép vào từng nội dung nghiên cứu.
-1-
C
S
TH C TI N:
Những kiến thức toán học như: Hệ thức Vi-et, tính chất dãy tỉ số
bằng nhau, hằng đẳng thức, bất đẳng thức Côsi, hệ số góc của một đường
thẳng, phương tr nh bậc 2 một ẩn, định lý Pitago v.v…là những kiến thức
cơ bản thường gặp trong việc giải bài tập Vật lí nâng cao. Chúng là kiến
thức cơ sở để vận dụng vào trong từng bài tập cơ, nhiệt, điện, quang.
Hiện nay một bộ phận học sinh bị mai một đi, một số kiến thức
Toán học cơ bản; hoặc cũng có một số học sinh chưa biết cách vận dụng
Toán học vào trong bài giải Vật lí. Mặt khác có một số kiến thức Toán
học nâng cao, trong chương trình chính khoá không có, nhưng học sinh
giỏi được phép vận dụng để làm bài thi. Do đó nếu học sinh được trang
bị lại một cách có hệ thống và nắm chắc cách vận dụng kiến thức Toán
vào trong bài tập Vật lí thì tôi tin chắc rằng việc giải các bài tập Vật lí trở
nên dễ dàng hơn và như vậy hiệu quả học tập của học sinh sẽ khả quan
hơn.
Trước đây việc giải bài tập Vật lí, tự thân mỗi người chúng ta đều
huy động những kiến thức Vật lí và những kiến thức toán học thích hợp
để giải chứ chưa có ai đi sưu tầm, nghiên cứu, liệt kê xem những kiến
thức Toán nào thường được vận dụng vào bài tập Vật lí hay bài tập Vật lí
này thì nên dùng những kiến thức Toán nào thì tốt hơn.
Qua nhiều năm dạy b i dư ng HS giỏi, tôi đã sưu tầm các bài tập nâng
cao, các đề thi HS giỏi, đề thi vào các trường chuyên. Sau khi giải, phân
tích xem những kiến thức Toán học nào được vận dụng trong bài tập đó
và tìm xem kiến thức Toán nào là điển hình nhất để từ đó phân loại về
mặt kiến thức Toán được vận dụng. Trong quá trình dạy chúng ta có thể
lần lượt đưa ra từng dạng kiến thức Toán học trước, sau đó cung cấp các
bài tập Vật lí có áp dụng kiến thức Toán tương ứng để học sinh giải.
III T
CHỨC TH C HIỆN CÁC GIẢI PHÁP:
G
:
Có một số bài tập Vật lí khi giải, nếu chúng ta không sử dụng một
kiến thức toán học nào đó thì có thể dẫn đến bài giải rất dài hoặc có thể
không giải được. nên t i đã áp dụng các kiến thức toán học vào việc giải
một số bài tập vật lí nâng cao, đối tượng áp dụng ban đầu là những học
sinh khá giỏi được đi b i dư ng.
T i bắt đầu áp dụng giải pháp này từ năm học 2 2 – 2
cho
đến nay. Sau đây là một số ví dụ vận dụng kiến thức Toán học vào việc
giải bài tập Vật lí nâng cao. Nó chỉ mang tính chất gợi ý, tham khảo,
nhằm giúp học sinh khi bắt gặp các dạng bài tập tương tự thì có thể vận
dụng kiến thức toán học thích hợp để giải.
-2-
C
:
ệt
a-Vậ
V -et :
a1) Cơ sở toán học để lí luận:
Nếu hai số x1, x2 có tổng x1 + x2 = S và tích x1.x2 = P thì x1, x2 là nghiệm
của phương trình: x2 – Sx + P = 0.
a2) Bài tập vật lí áp dụng:
Bài 1 : Có hai điện trở R1, R2 được mắc theo hai cách khác nhau vào
ngu n điện có hiệu điện thế không đổi là 5,4V. Biết rằng cách thứ nhất
có cường độ chạy qua toàn mạch là 0,27A, cách thứ hai là 3A. Tính điện
trở R1, R2.
Nhận xét:
-Hai cách mắc khác nhau chỉ có thể là nối tiếp và song song.
-Từ cách mắc nối tiếp ta tính được tổng của hai điện trở, kết hợp với cách
mắc song song ta tính được tích của hai điện trở. Vận dụng định lí Viet
để tính R1, R2.
Giải: Cách mắc nối tiếp có điện trở tư,ơng đương lớn hơn, nên ta suy ra
được cường độ dòng điện qua mạch nối tiếp là 0,27A, qua mạch song
song là 3A.
Điện trở mạch nối tiếp: R1 + R2 =
Điện trở mạch song song:
U
5,4
=
= 2 Ω.
I
0,27
U
5, 4
R 1.R 2
=
=
= ,8Ω
I'
3
R 1 R2
→ R1.R 2 = 20.1,8 = 36.
Vậy theo định lí Vi-et thì R1, R2 là nghiệm của phương trình
R2 – 20R + 36 = 0
R1 + R2 = 20 Ω.
(R1, R2 > 0)
(1)
R1.R2 = 36 Ω (2) ta phân tích phương tr nh bậc 2 và đưa về dạng
phương tr nh tích.
(3) (R1-18)*(R1-2)=0
(R1-18) =0 Suy ra R1= 18 Hoặc (R1-2)=0 suy ra R1= 2 Thay R1 vào (
ta được
R2 = 8Ω hoặc R2 = 2Ω.
Các nghiệm đều thoả mãn bài toán.
-3-
Bài 2: Nếu mắc nối tiếp hai điện trở R1, R2 và nối với hai cực của một
ngu n điện có hiệu điện thế U = 6V thì mạch này tiêu thụ một công suất
P1 = 6W. Nếu các điện trở R1, R2 được mắc song song thì công suất tiêu
thụ tăng lên là P2 = 27W. Tính R1, R2.
Giải:
Khi R1, R2 được mắc nối tiếp :
U2
P1 =
R1 R2
(1)
Khi R1 mắc song song với R2 :
U 2 ( R1 R2 )
P2 =
R1 R2
(2)
Thay các giá trị bằng số vào (1) và (2), 6 =
R1 + R2 = 6
27=
36
biến đổi ta được :
R1 R2
36.6
=> R1.R2 = 8
R1 R2
Áp dụng hệ thức Viet ta được phương trình R2 – 6R + 8 = 0
ta phân tích phương tr nh bậc 2 và đưa về dạng phương tr nh tích.
(3) (R1-4)*(R1-2) = 0 Giải phương trình ta được : R1 = Ω hoặc R1 = 2Ω.
Thay R1 vào ( ta được R2 = 2 hoặc R2 = 4
Các nghiệm đều thoả mãn bài toán.
b-Tổ
ủa
số tự
ê lê tế :
b1)Cơ sở toán học để lí luận :
Cho các số tự nhiên : ; 2; ;…..; n. Ta dễ dàng chứng minh được:
+ 2 + +…….+ n =
n(n 1)
2
b2 Bài tập vật lí áp dụng
Một xe mô tô chuyển động xem như thẳng đều từ A đến B với
AB = 40,5(km), xe bắt đầu đi từ A và cứ sau 15 phút chuyển động, xe
dừng lại nghỉ 5 phút, cho rằng trong 15 phút đầu tiên xe chuyển động với
vận tốc v1 = 3,6(km/h) và các khoảng thời gian chuyển động kế tiếp sau
đó xe có vận tốc v2 = 2v1, v3 = 3v1, v4 = 4v1. Tìm vận tốc trung bình của
xe khi đi từ A đến B.
Nhận xét:
-Ta xác định xem trên quãng đường AB = 40,5km có bao nhiêu đoạn
đường ngắn s1, s2, s3,… đi với các vận tốc v1, v2, v3,… tương ứng.
-4-
-Xác định s1, s2, s3, … sn.
- AB = s = s1+s2+s3+…+sn
-Thế số và biến đổi để được dạng tổng của n số tự nhiên đầu tiên.
-Từ đó tính được số đoạn đường n xe đã đi và bài toán trở nên dễ dàng.
Giải: Quãng đường xe đi trong 15 phút đầu tiên :
S1 = v1t = 3,6.1/4 = 0,9 km
Do đó v2 = 2v1 = 3,6.2 = 7,2 km/h
Quãng đường xe đi với vận tốc v2 (trong 15 phút).
S2 = v2t = 7,2.1/4 = 1,8 km
Tương tự V3 = 3v1 = 3.3,6 = 10,8 km/h
Quãng đường xe đi với vận tốc v3 (trong 15 phút)
S3 = v3t =
,8. / = 2,7 km…
Vận tốc vn của xe trên quãng đường cuối cùng là :
Vn = n.v1 = 3,6n
Do đó sn = vnt = 3,6n.1/4 = 0,9n
Ta có : s = s1 + s2 + s3 + … + sn = 40,5
s = ,9 + ,8 + 2,7 + … + ,9n =
s = ,9( + 2 + + … + n =
→ +2+ +…+n=
,5
,5
,5/ ,9 = 5
→ ( + n n/2 = 5 → n2 + n – 9 =
→n=9
Tổng thời gian mô tô chuyển động:
t1 = n.15 = 9.15 = 135 phút
Tổng thời gian mô tô nghỉ:
t2 = (n – 1)5 = (9 – 1)5 = 40 phút
Vận tốc trung bình của mô tô là:
vtb = s/(t1 + t2) = 40500/10500 = 3,857 m/s.
c-Hệ số ó
ủa đườ
t ẳ
:
c1)Cơ sở toán học để lí luận:
-Đ thị hàm số y = ax + b (a ≠
là đường thẳng có hệ số góc tgα = a ( a >0)
Cho 2 đường thẳng có hàm số tương ứng là:
y = a1x + b1 và y = a2x + b2.
-5-
2 đường thẳng song song với nhau khi và chỉ khi a1 = a2; b1 b2.
-Liên hệ đ thị chuyển động trong Vật lí:
Trên đường thẳng có hai vật chuyển động thẳng đều. Biểu thức quãng
đường chuyển động của hai vật là : s1 = v1t và s2 = v2t. Nếu hai vật có vận
tốc bằng nhau (v1 = v2) và chuyển động cùng chiều thì đ thị chuyển động
của hai vật là hai đường thẳng song song với nhau. Ngược lại nếu đ thị
chuyển động của hai vật là hai đường thẳng song song nhau thì hai vật đó có
cùng vận tốc chuyển động thẳng đều.
c2)Bài tập áp dụng:
Đoạn đường AB dài 36 km. Có ba người đi từ A đến B nhưng chỉ có một
xe đạp nên đi như sau : Ba người xuất phát từ A cùng một lúc. Người thứ
nhất chở người thứ hai đến điểm C và để người thứ hai tiếp tục đi bộ đến B.
Người thứ nhất quay lại gặp người thứ ba tại D và chở người thứ ba đến B.
Cả ba người đến B cùng một lúc. Biết rằng vận tốc đi bộ là 5 km/h và vận
tốc đi xe đạp là 15 km/h.
a. Dùng đ thị biểu diễn chuyển động của ba người để chứng tỏ quãng
đường đi bộ của người thứ hai và người thứ ba bằng nhau.
b. Tính tổng quãng đường mà người thứ nhất đã đi.
Nhận xét:
-Dựa vào dữ kiện bài toán vẽ dạng đ thị chuyển động của ba người trên
cùng một hệ trục toạ độ (không cần số liệu).
-Các vận tốc bằng nhau và chuyển động cùng chiều thì các đoạn đ thị
tương ứng phải song song nhau.
-Các đoạn thẳng song song và bằng nhau thì hình chiếu của chúng trên
cùng một trục sẽ bằng nhau.
Giải:
s
B’
B
C
(II)
C’ (I)
D
E
D’
(III)
t
A
-6-
a) Đoạn AD’ biểu diễn chuyển động (đi bộ) của người thứ III
Đoạn C’B’ biểu diễn chuyển động (đi bộ) của người thứ II. Do vận tốc đi bộ
bằng nhau nên hệ số góc của hai đường thẳng đi qua hai đoạn thẳng trên
bằng nhau. Suy ra AD’ // C’B’.
-Tương tự như trên ta có AC’ // D’B’. suy ra tứ giác AC’B’D’ là hình bình
hành, nên AD’ = C’B’ do đó các hình chiếu tương ứng trên trục tung cũng
bằng nhau. Tức là AD = BC. Vậy quãng đường đi bộ của người thứ II và
người thứ III bằng nhau.
b) Khi người thứ I đến C thì người thứ III đến E, có AC = 3AE (cùng thời
gian, vận tốc gấp 3 thì quãng đường gấp 3).
Khi người thứ I quay lại gặp người thứIII tại D, có DC = DE → EC = ED
→ ED = EC/ (*
AD = AE + ED = AE + EC/4 = AE + (AC-AE)/4 = AE + (3AE-AE)/4 =
3AE/2.
AB = AC + CB = AC + AD =3AE + 3AE/2 = 9AE/2
AE = 2AB/9 = 2.36/9 = 8km
AC = 3AE = 3.8 = 24km
EC = AC – AE = 24 – 8 = 16km
Từ (*) ta có ED = EC/4 = 16/4 = 4km
DC = EC – ED = 16 – 4 = 12km
Tổng quãng đường người thứ I đã đi:
2AC + DC = 2.24 + 12 = 60km.
d-G
trị tru
bì
ộ
:
d1)Cơ sở toán học để lí luận:
Cho các số: a1, a2, a3, …, an. Trung bình cộng của n số đó là:
atb =
a1 a2 ... an
n
-7-
Trong Vật lí học, ta thường gặp nhiều biểu thức mà trong đó, đại lượng
này được biểu diễn dưới dạng một hàm số, có chứa biến số là một đại
lượng kia. Việc tính giá trị trung bình của một đại lượng biến thiên có ý
nghĩa hết sức quan trọng; bởi vì giá trị trung bình của một đại lượng biến
thiên, đựơc xem như độ lớn của đại lượng đó và được dùng để tính toán
trong các biểu thức nhằm xác định một đại lượng khác cần tìm.
Đối với các biểu thức Vật lí dưới dạng hàm số bậc nhất, biến thiên theo
biến số; khi tính giá trị trung bình ta chỉ cần tính trung bình cộng của giá
trị đầu tiên và giá trị cuối cùng.
d2) Bài tập vận dụng:
Người ta đun 2kg nước trong một ấm điện có công suất 600W, ở nhiệt độ
250C. Cho rằng khi đun thì công suất hao phí do trao đổi với bên ngoài
biến đổi theo thời gian đun bởi biểu thức: P = 100+t; trong đó t tính bằng
giây, P tính bằng Watt; biết nhiệt dung riêng của nước c = 4200J/kgK.
Tính thời gian đun để nước trong ấm tăng đến 350C. Cho rằng thời gian
đun không vượt quá 10 phút.
Nhận xét:
-Tỉ số
AQ
là công suất hao phí do trao đổi với bên ngoài.
t
-Công suất hao phí biến thiên theo thời gian nên có thể tính giá trị trung
bình của P.
Giải:
Nhiệt lượng cần thiết để nước trong ấm tăng từ 25→ 50C
Q = c.m.(t2-t1) = 4200.2.(35-25) = 84000J
Công của dòng điện thực hiện trên ấm điện:
A = P1t = 600t
Tỉ số
AQ
là công suất hao phí do trao đổi với bên ngoài. Hàm số
t
P = 100+t biểu diễn công suất hao phí, biến thiên theo thời gian, nên ta
tính giá trị trung bình Ptb từ giây thứ 0 đến giây thứ t:
+ Ở giây thứ 0: P0 = 100+t = 100(W)
+ Ở giây thứ t: Pt = 100+t (W)
Ptb =
P0 Pt 200 t
2
2
Vậy
AQ
200 t
= Ptb =
.Thế số và biến đổi ta được phương trình bậc 2:
t
2
t2-1000t+168000 = 0
-8-
Giải phương trình ta được: t1 = 214s ; t2 = 786s (loại vì t2 > 10 phút)
e- S
đẳ
t
:
e1) Cơ sở toán học để lí luận:
(a - b)2 = a2 + b2 - 2ab
a b 2 0 dấu “ = ”xảy ra khi và chỉ khi a = b.
e2) Bài tập áp dụng:
Bài 1: Hai xe máy chạy theo hai con đường vuông góc với nhau, cùng tiến
về phía ngã tư giao điểm của hai con đường. Xe A chạy từ hướng Đ ng về
hướng Tây với vận tốc 50km/h. Xe B chạy từ hướng Bắc về hướng Nam với
vận tốc 30km/h. Lúc 8h sáng xe A và xe B còn cách ngã tư lần lượt là 4,4km
và 4km. Tìm thời điểm mà khoảng cách hai xe:
a)
Nhỏ nhất.
b)
Bằng khoảng cách lúc 8h sáng.
Nhận xét:
-Vì hai con đường vuông góc với nhau nên ta áp dụng định lí Pitago để
tính bình phương khoảng cách giữa hai xe.
-Biến đổi để có dạng bình phương của một tổng đại số.
Đ ng
A
Giải:
v1
v2
Bắc B
O
Nam
Tây
a)
Chọn gốc thời gian là lúc 8h.
+Sau thời gian t, xe A cách O một đoạn:
OA = 4,4 v1t 4,4 50t
+Sau thời gian t, xe B cách O một đoạn:
OB = 4 v2t 4 30t
Áp dụng định lí Pitago:
-9-
AB2 = OA2 + OB2 = (4,4-50t)2 + (4-30t)2
AB2 = 3400t2 – 680t + 35,36
1
5
AB2 = 3400(t2 - t
(*)
1
) + 1,36
100
2
2
1
1
AB = 3400 t 1,36 mà: 3400 t 0 AB 2 1,36
10
10
2
AB 1,166km
ABmin = 1,166km khi t = 1/10h = 6 phút.
Vậy thời điểm để hai xe cách nhau ngắn nhất là 8h 06phút.
b)
Vào lúc 8h hai xe cách nhau một đoạn l:
Ta có: l2 = AB2 = OA2 + OB2 = 4,42 + 42 = 35,36
Vậy ta cần tìm t để bình phương khoảng cách giữa hai xe là 35,36km.
Tức là AB2 = 3400t2 – 680t + 35,36 = 35,36
Suy ra t.(3400t – 680) = 0
t 0
680
t
0,2h 12 phut
3400
Vậy thời điểm để khoảng cách giữa hai xe bằng khoảng cách lúc 8h sáng
là: 8h + 12phút = 8h 12phút.
f-Bất đẳng thức Côsi:
f1) Cơ sở toán học để lí luận:
Cho 2 số a, b 0 ta có:
ab
ab ; dấu “ = “ xảy ra khi và chỉ khi a = b
2
f2) Bài tập áp dụng:
Một biến trở có giá trị điện trở toàn phần là R =
Ω, nối tiếp với một
điện trở R1. Nhờ biến trở có thể làm thay đổi cường độ dòng điện trong
mạch từ 0,9A đến 4,5A.
a)
Tìm giá trị của điện trở R1.
b)
Tính công suất toả nhiệt lớn nhất trên biến trở. Biết rằng mạch
điện được mắc vào hiệu điện thế U không đổi.
R1
A
R
B
C
+
U
M N
-10-
Nhận xét:
Biểu diễn công suất toả nhiệt trên Rx dưới dạng : Px = RxI2.
Biến đổi để tử thức là hằng số, mẫu thức là một tổng có chứa biến số.
Tích giữa hai số hạng có chứa biến số là một hằng số thì áp dụng được
bất đẳng thức Côsi.
Giải:
a) Cường độ dòng điện lớn nhất khi con chạy C ở vị trí A, và nhỏ nhất khi
con chạy C ở vị trí B của biến trở.
- Ở vị trí A ta có: 4,5 = U/R1
- Ở vị trí B:
0,9 =
(1)
U
R1 120
(2)
Giải hệ phương trình trên ta được: R1 =
Ω;U=
5V.
b) Gọi Rx là phần điện trở của biến trở từ A đến C, thì công suất toả nhiệt
trên phần đó là:
Px = RxI2 = Rx
U2
R1 Rx 2
U2
R1 R x 2 R1 R x
Rx
2
2
U2
2
(3)
R1
R x 2 R1
Rx
Để Px đạt giá trị cực đại, mẫu số của nó phải cực tiểu tức là lượng
R1 2
cực tiểu.
R
x
R
x
Vì tích của hai số hạng trên là hằng số, nên ta áp dụng bất đẳng thức Côsi ta
2
được:
2
R1
R
Rx 2 1 .Rx 2 R1 . Vế trái đạt cực tiểu khi lấy dấu “ = “
Rx
Rx
2
R1
R x 2R1
Rx
Thế R1 =
Ω và biến đổi ta được phương trình bậc 2:
R2x – 60Rx + 900 = 0
Giải phương trình trên ta được Rx =
Ω = R1. Thay vào (3) ta được:
Pmax = 1352/120 = 151,875(W).
ua nhiều năm giảng dạy vật lí và b i dư ng học sinh giỏi vật lí t i nhận
thấy các dạng bài tập phần điện mà có điện trở học sinh gặp rất nhiều khó
khăn trong khi giải kể cả học sinh giỏi.
g. Một số ấ đề ề lý t uyết:
g1) Khái niệm về biến trở:
-11-
Biến trở là điện trở có thể thay đổi được trị số và có thể được sử dụng để
điều chỉnh cường độ dòng điện trong mạch.
Biến trở có thể mắc nối tiếp, mắc song song hoặc mắc hỗn hợp với các
thiết bị trong mạch điện.
Có nhiều loại biến trở như biến trở con chạy, biến trở than hay biến trở
có tay quay...
Biến trở là dụng cụ có nhiều ứng dụng trong thực tế cuộc sống và kĩ
thuật như biến trở hộp trong các thiết bị điện đài, ti vi, ...
g2) Cách mắc biến trở vào mạch điện
+ Biến trở được mắc nối tiếp :
A
.
C B
R
M
+ Biến trở được mắc vừa nối tiếp vừa song song
.
C
M
Đ
M A
.
.
B
.N
Đ
A C
.
N
N
C
B
+ Biến trở được mắc vào mạch cầu:
R1
A
M
h. Một số ạ
bà tậ
DR 2
ề
C
ạ
đệ
B
N
ó b ế trở à
Dạng 1: Biến trở được mắc nối tiếp với phụ tải
Ví dụ 1: ( Bài 2 sgk vật lí 9 trang 2
U
Một bóng đèn khi sáng b nh thường
C
A
B
Đ
có điện trở là R1 = 7,5 và cường
độ dòng điện chạy ua khi đó I = ,6 A. Bóng đèn được mắc nối tiếp với
biến trở và
-12-
chúng được mắc vào hiệu điện thế U = 2 V. Phải điều chỉnh con chạy C
để RAC có giá trị R2 = ?để đèn sáng b nh thường?
Hướng dẫn
Khi đèn sáng b nh thường => Iđ = 0,6 A => Itm = ,6 A (v mạch nt
Itm =
U
0, 6 ( A)
RAC R1
Từ đó HS t m ra RAC + R1 và rút ra RAC khi thay R1 = 7,5
Bài giải
Theo đầu bài: R1 = Rđ = 7,5 và Iđm = 0,6 A
Để đèn sáng b nh thường Iđ = 0,6A. Vì Đ nối tiếp với RAC => I tm =
0,6 A.
Áp dụng định luật m cho mạch nối tiếp ta có.
RAC + Rđ=
U 12
20() RAC 20 7,5 12,5()
I 0, 6
Vậy phải điều chỉnh con chạy C sao cho RAC = 12,5 th khi đó đèn sẽ
sáng b nh thường.
Ví dụ 2: Cho mạch điện (như h nh vẽ
.
có UAB = 12 V, khi dịch chuyển con
M
.
A
R1
A c
B N
chạy C th số chỉ của am pe kế thay đổi từ ,2 A đến , A . Hãy tính giá trị R1
và giá trị lớn nhất của biến trở ?
Hướng dẫn
Khi C dịch chuyển => số đo của ampe kế thay đổi từ ,2 A đến , A nghĩa là
gì?
+) Khi C trùng A => RAC = 0 => RMN = R1 (nhỏ nhất => I = , A là giá trị
lớn nhất . Lúc đó Rtđ = R1 ... Biết I & U ta tính được R1
Ngược lại
+ Khi c trùng với B ..... I = ,2 A là giá trị nhỏ nhất
=> Rtđ = R1 + Ro . vậy biết U , R1 và I ta sẽ tính được Ro là điện trở lớn nhất
của biến trở.
-13-
Bài giải
1. Tính R1: Khi con chạy C trùng với A => Rtđ = R1 ( vì RAC =
và am pe kế
khi đó chỉ , A.
Mà UMN = 12 V => R1 = Rtđ=
U MN 12
30( )
I
0, 4
Vậy R1 = 30
2. Tính điện trở lớn nhất của biến trở:
Khi C trùng với B => Rtđ = R1 + Ro có giá trị lớn nhất => I đạt giá trị nhỏ nhất
=> I = 0,24 A
Ta có Ro + R1 =
U MN
12
50() Mà R1= 30( ) Ro = 50 – 30 = 20 ( )
I
0, 24
Vậy giá trị lớn nhất của biến trở là 2
Ví dụ 3 : Cho mạch điện ( như h nh vẽ
M
Khi con chạy C ở vị trí A th v n kế chỉ 2 V
.
khi con chạy C ở vị trí B th v n kế chỉ 7,2 V
R
A
C
B
N
.
Rx
V
Tính giá trị điện trở R (Biết trên biến trở có ghi 2 - 1 A )
Hướng dẫn:
Tương tự như VD2 khi c trùng với A => v n kế chỉ giá trị lớn nhất nghĩa là chỉ
UMN và khi đó Rtđ chỉ còn là R (RAC =
. Khi C trùng với B => RAC bằng số
ghi trên biến trở => HS dễ dàng giải được bài toán......
Bài giải
+) Khi con chạy C trùng với A khi đó RAC = 0 => Rtđ = R và khi đó v n kế chỉ
2 V nghĩa là UMN = 12 V
+ Khi con chạy C trùng với B khi đó RAC = 20 (bằng số ghi trên biến trở
và khi đó v n kế chỉ 7,2 V => UR = 7,2 V U AC U MN U R 12 7, 2 4,8 (V )
I AC
U AC 4,8
0, 24 ( A) V mạch nt I R 0, 24 ( A) mà UR = 7,2 V
RAC
20
Vậy: R
UR
7, 2
30 ()
I R 0, 24
-14-
Trên đây là một số ví dụ tiêu biểu cho dạng mạch điện có biến trở mắc nối
tiếp với phụ tải. Song để thành thạo loại bài tập này HS cần phải rút ra cho
mình một vài kinh nghiệm sau:
1 - Rtđ = Rtải + Rx trong đó Rx là phần điện trở tham gia của biến trở.
2 - I Rx là cường độ dòng điện trong mạch chính và URx = Utm - Utải
3 - Khi C trùng với điểm đầu lúc đó Rx = 0 & Rtđ = Rtải (là giá trị nhỏ nhất của
điện trở toàn mạch ) và khi đó I đạt giá trị lớn nhất ( vì UMN không đổi ).
4 - Ngược lại khi C trùng với điểm cuối lúc đó Rtđ = Rtải + Rx ( là giá trị lớn
nhất của Rtđ ) và khi đó I đạt giá trị nhỏ nhất ( vì UMN không đổi ).
Dạng 2: Biến trở được mắc vừa nối tiếp, vừa song song.
Với loại bài tập này biến trở được dùng như một điện trở biến đổi, ta phải sử
dụng bất đẳng thức ( 0 Rx Ro ) trong đó Ro là điện trở toàn phần của biến trở.
Và HS phải biết vẽ lại mạch điện để dễ dàng sử dụng định luât m trong mạch
nối tiếp cũng như mạch song song.
Ví dụ 4: (Bài 11.4 b SBT L9)
Cho mạch điện (như h nh vẽ , đèn sáng b nh thường
Đ
Uđm = 6 V và Iđm = 0,75A. Đèn được mắc với biến trở
C
Có điện trở lớn nhất băng 6 và UMN kh ng đổi băng 2V A
M
Tính R1 của biến trở để đèn sáng b nh thường?
Hướng dẫn
+ Trước hết HS phải vẽ lại được mạch điện & khi đó (Đ// RAC) nt RCB
Trong đó: RAC = R1
+ Khi đèn sáng b nh thường => Uđ = UAC =? -> UCB =?
+ Iđ + IAC = ICB
Trong đó:
I AC
U AC
R1
; I CB
U Ud
U
U Ud
Id d
(*)
16 R1
R1 16 R1
-15-
N
B
Học sinh giải PT (* -> T m được R1
Bài giải
Đ
Sơ đ mới:
16-R1
R1
+
A
C
B
.-
C
Ta có: RCB = 16 – R1
V đèn sáng b nh thường ->
Uđ = 6V
Iđ = 0,75A
-> UAC = Uđ = 6V-> IAC =
Ud
6
R1 R1
U Ud
16 R1
6
6
Hay 0,75 +
R1 16 R1
V (Đ//RAC) nt RAC => Id + IAC = IAC Mà I AC
6 12 6
R1 16 R1
3 6
6
1 2
2
4 R1 16 R1 4 R1 16 R1
Ta có PT: I d
R1 (16-R1) + 8(16-R1) = 8R1
16R1 – R21 + 128 – 8R1 = 8R1
R21 = 128 => R1 = 128
R1 = 11,3 ( )
Vậy phải điều chỉnh con chạy C để RAC = R1 = 11,3( th đèn sáng b nh
thường.
Ví dụ 5:
.
Cho mạch điện như h nh vẽ.
.N
I
Biến trở có điện trở toàn phần Ro = 12
A Ro B
Ix
Đèn loại 6V – 3W; UMN = 15 V.
C
a, T m vị trí con chạy C để đèn sáng b nh thường.
b, Khi định C -> Độ sáng của đèn thay đổi thế nào? Iđ
Rx
Bài giải:
Tương tư như ví dụ 5.
Mạch điện được vẽ lại:
.
A
Ro - Rx
C
M
-16-
B
.N
Gọi RAC = x (
điều kiện:
thì RCB = 12 - x ( )
Khi đèn sáng b nh thường: Uđ = Uđm = 6V
-> Iđ =
P 3
0,5( A)
U 6
Pđ = Pđm = 3 W
V (Đ// RAC) nt RCB -> Iđ + IAC = ICB và UAC = Uđ ->
UCB = U - Uđ = 15 - 6 = 9 (V)
Áp dụng định luật m trong mạch nối tiếp và song song:
Id
Ud U Ud
1 6
9
hay
x
12 x
2 x 12 x
x(12 x) 12(12 x) 18 x
12 x x 2 144 12 x 18 x
x 2 18 x 144 0
' 81 144 225 ' 225 15
9 15
9 15
x1
6(); x2
24
1
1
(loại
Vậy phải điều chỉnh con chạy C để RAC = 6( th khi đó đèn sáng b nh
thường.
b. Khi C A Rx giảm dần. Nhưng chưa thể kết luận về độ sáng của đèn thay
đổi như thế nào được. Mà phải t m I ua đèn. Khi C=>A => biện luận độ sáng
của đèn
U 2 dm 62
U
12.x
12 x 144 x 2
15(12 x)
Rd
12() RMN
12 x
I MN 2
( A)
Pdm
3
12 x
12 x
RMN x 12 x 144
Dòng điện ua đèn từ mạch song song:
Id I
x
15( x 12)
x
15 x
15
.
2
2
x 12 x 12 x 144 x 12 x 12 x 144 x 12 144
x
Khi C =>A làm cho x giảm => ( x 12
144
) tăng lên => Iđ giảm đi.
x
Vậy độ sáng của đèn giảm đi (tối dần khi dịch C về A.
-17-
U0
+ _
Ví dụ 6: Cho mạch điện (như h nh vẽ
Biết Uo = 12 V, Ro là điện trở, R là biến trở
A
am pe kế lí tưởng . Khi con chạy C của biến trở R từ
M đến N , ta thấy am pe kế chỉ giá trị lớn nhất I1 = 2 A
M
R
C
R0
Và giá trị nhỏ nhất I2 =1 A . Bỏ ua điện trở của các dây nối.
N
1 – Xác định giá trị Ro và R?
2 – Xác định vị trí của con chạy C của biến trở R để c ng suất tiêu thụ trên
toàn biến trở bằng một nửa c ng suất cực đại của nó?
Bài giải:
1 – Tính R0 & R?
Với mạch điện này th : RMC // RNC và RMC + RNC = R .
V vậy khi ta đặt RMC = x () RNC R x
khi đó chỉ số của am pe kế là: I
(0 x R) RMNC
x( R x)
R
U0
U0
R0 RMNC R x( R x)
0
R
+ Khi con chạy C ở M ( ở N th RMNC =
và lúc đó am pe kế sẽ chỉ giá trị
cực đại:
I1
U0
U
12
R 0 0
6 ( )
R0
I1
2
+ Để am pe kế chỉ giá trị nhỏ nhất th : RMNC
đại, ta triển khai RMNC: RMNC
x Rx
R
2
Để RMNC có giá trị cực đại bằng
x( R x)
phải có giá trị cực
R
R2 R2 R2
R
( x )2 R
4
4 4
2
4
R
R
x 2 Rx
R
R
R
thì : ( x ) 2 0 x () Tức là con
2
2
4
chạy C ở chính giữa của biến trở và RMNC
U0
R
12
( ) I 2
1(*)
4
R0 RMNC 6 R
4
Giải phương tr nh (* ta t m được R = 24 ()
Vậy: R0 = 6 và R = 24
-18-
2 - Để có phương án giải phần này ta phải áp dụng c ng thức P = I 2R và
định luật bảo toàn năng lượng trên toàn mạch điện.
Đặt RMNC y
x(24 x)
mà PMNC = RMNC.I 2
24
+ C ng suất tiêu thụ trên toàn biến trở là: P yI 2 (
U0 2
12 2
) .y (
) .y
R0 y
6 y
mà c ng suất của ngu n điện & c ng suất tiêu thụ trên R0 là Pn =UoI & PRo =
Ro I2
Theo định luật bảo toàn năng lượng ta có: Pn = PRo + P hay UoI = RoI 2 + P
R0 I 2 U 0 I P 0 (**)
(** là phương tr nh bậc 2 với ẩn là I
Để phương tr nh có nghiệm 0 U 0 2 4 R0 P 0 P
Vậy Pmax
U 02 122
P
12 2
6 (W ) (
) . y max 3 =>
4 R0 4.6
6 y
2
U 02
4 R0
144 y
3
36 12 y y 2
144 y 108 36 y 3 y 2
3 y 2 108 y 108 0
y 2 36 y 36 0
Phương tr nh có ' 17 y1 18 17 35 (loai) ; y2 18 17 1 ( )
Mà ta đặt y
x (24 x)
24
nên ta có phương tr nh
x (24 x)
1 x 2 24 x 24 0
24
Giải phương tr nh trên ta có ' 11 x1 12 11 1 () ; x2 12 11 23 ()
Vậy có 2 vị trí của con chạy C trên biến trở R sao cho R MC 1 hoặc
RMC 23 th c ng suất tiêu thụ trên toàn biến trở bằng một nửa c ng suất
cực đại của nó.
*) Những bài học kinh nghiệm mà HS cần phải được rút ra khi học & giải loại
bài tập này là :
1- Biến trở là một điện trở biến đổi.
2 - Phải vẽ lại mạch điện để bài toán đơn giản.
-19-
3 - Đưa bài toán về dạng giải bài toán bằng cách lập phương trình qua công
thức của mạch điện cân bằng.
Chọn RAC là ẩn, biểu diễn RCB theo ẩn là RAC.
Chú ý:
RAC =Ro không đổi (số ghi trên biến trở).
RCB = Ro - RAC <=> RAC = x thì ( 0 x R0 )
4 - Quy tắc toán học cần phải thành thạo.
- Giải phương trình bậc 2 một ẩn số.
- Giải hệ phương trình bậc nhất.
- Giải bài toán cực đại, bất đẳng thức Cô si…
IV-HIỆ
ẢC A
TÀI:
Việc trang bị cho học sinh khá, giỏi những kiến thức toán học cơ bản là
cần thiết. Qua đó giúp học sinh không những phân loại được bài tập, về phương
diện Vật lí, mà còn phân loại bài tập về phương diện kiến thức Toán học được
vận dụng. Qua thực tế giảng dạy cho thấy, những học sinh có kiến thức toán
vững chắc và phong phú, sau khi phân tích bài toán Vật lí, các em biết ngay cần
phải áp dụng kiến thức Toán học nào vào trong bài tập đó; qua đó các em cũng
thấy được, có thể có nhiều cách vận dụng kiến thức toán vào trong một bài tập
Vật lí; đ ng thời các em biến đổi bài toán rất linh hoạt, trình bày bài giải chặt
chẽ, gọn gàng.
Nếu giáo viên chỉ trang bị những kiến thức Vật lí đơn thuần, thì học sinh sẽ
lúng túng khi gặp các bài tập cần dùng đến các “công cụ” Toán học nâng cao
hơn.
Đề tài này tôi đã nghiên cứu từ đầu năm 2012 - 2013, và được áp dụng từ năm
học 2013-2
và tiếp tục áp dụng thêm một số dạng bài tập có biến trở trong
năm học 2
-2015. Tuỳ từng đối tượng học sinh mà mức độ đạt được có khác
nhau. Trong đề tài này, tôi có cập nhật các bài toán được trích từ các đề thi học
sinh giỏi cấp huyện, Do đó cấp độ kiến thức được nâng cao đáng kể. Tuy nhiên
kết quả nêu ra sau đây là kết quả đạt được từ cấp huyện. Để dễ so sánh, đối
chiếu kết quả, tôi chia ra làm hai nhóm đối tượng:
N ó đố tượ t
ất - học sinh có học lực khá, giỏi m n vật lí, được
trang bị kiến thức toán đầy đủ nhưng khả năng áp dụng kiến thức toán vào làm
bài tập vật lí chưa tốt.
Bảng: Kết uả khảo sát chất lượng sau khi thực hiện đề tài
-20-
Năm học
Biết áp dụng kiến thức toán
Chưa biết áp dụng kiến
Số
làm bài tập vật lí một cách
thức toán vào làm bài tập
HS
linh hoạt
%
SL
2013-2014
2014-2015
8
5
2
1
25
20
SL
%
6
4
75
80
N ó đố tượ t
a - học sinh học sinh có học lực khá giỏi m n vật lí,
được trang bị kiến thức toán đầy đủ.
Bảng: Kết uả khảo sát chất lượng sau khi thực hiện đề tài
Năm học
2013-2014
2014-2015
Số
HS
8
5
Biết áp dụng kiến thức toán
làm bài tập vật lí một cách
linh hoạt
SL
5
4
%
65,5
80
Chưa biết áp dụng kiến
thức toán vào làm bài tập
SL
3
1
%
34,5
20
Thời gian áp dụng đề tài này còn quá ít, chưa thể đánh giá hết được giá trị của
đề tài. Tuy nhiên qua đó cũng cho thấy phần nào về hiệu quả của để tài mà t i
đã áp dụng trong năm học 2014-2015.
V
T, KH
ẾN NGH KHẢ N NG ÁP DỤNG:
ua uá tr nh giảng dạy vật lí th t i thường yêu cầu học sinh học đến
đâu th hệ thống kiến thức lại đến đó, đặc biệt là hệ thống c ng thức để vận
dụng. Vậy t i đề xuất các giáo viên dạy toán cũng nên yêu cầu học sinh tự hệ
thống các c ng thức toán học đã học và giáo viên bổ sung thêm một số c ng
thức có liên uan.
Ở cấp THCS chưa được học về bất đẳng thức Côsi, Bunhia côpxki, còn
những kiến thức khác như: giá trị trung bình cộng, hệ số góc, parabol, tính chất
dãy tỉ số bằng nhau.v.v… Tuy được học r i nhưng nhiều HS quên đi hoặc còn
nhớ nhưng chưa biết cách vận dụng chúng vào trong từng bài tập Vật lí cụ thể.
Bởi vậy việc b i dư ng kiến thức Toán và phương pháp vận dụng kiến thức
Toán vào việc giải các bài tập Vật lí là rất quan trọng.
Việc áp dụng đề tài này vào thực tiễn giảng dạy có thuận lợi là một số
kiến thức Toán học được sử dụng có học trong chương trình chính khoá nên
học sinh vận dụng rất thuận lợi. Tuy nhiên cũng có khó khăn là: một số kiến
thức Toán học nâng cao HS chưa hề được học như: tổng của n số tự nhiên liên
-21-
tiếp, bất đẳng thức Côsi, Bunhia côpxki… (những kiến thức này ở bậc THCS
chỉ dạy cho HS nằm trong đội tuyển Toán).
Qua thực tiễn giảng dạy cho thấy rằng nếu HS bị hổng về kiến thức
Toán học thì các em sẽ bỏ qua nhiều bài toán Vật lí đáng tiếc trong các k thi
học sinh giỏi.
Đề tài này có thể áp dụng trong phạm vi dạy b i dư ng học sinh giỏi cấp
huyện. cũng có thể dành cho đối tượng học sinh khá, giỏi tự nghiên cứu kiến
thức Vật lí nâng cao.
Đề nghị các bạn đ ng nghiệp ủng hộ và hỗ trợ thêm tư liệu để bổ sung và
góp ý để đề tài ngày một hoàn thiện hơn.
VI- TÀI IỆ THAM KHẢO :
- Vật lí 9 nâng cao – Tác giả Nguyễn Cảnh Hòe – Nhà xuất bản Hải Phòng –
năm 2
- Tên tài liệu tham khảo : “Chuyên đề b i dư ng HS giỏi Toán THCS - Phần Đại
Số - Nhà xuất bản Giáo Dục - Năm xuất bản 2005.
-
http:// violet.vn
- Vật lí.org
VII- PHỤ ỤC:
Kết uả khảo sát nhóm học sinh được đi b i dư ng học sinh giỏi m n vật lí
trong 2 năm gần đây:
Nhóm đối tượng thứ nhất - học sinh có học lực khá, giỏi m n vật lí, được trang
bị kiến thức toán đầy đủ nhưng khả năng áp dụng kiến thức toán vào làm bài
tập vật lí chưa tốt.
Bảng: Kết uả khảo sát chất lượng sau khi thực hiện đề tài
Biết áp dụng kiến thức toán
Chưa biết áp dụng kiến
Số
làm bài tập vật lí một cách
thức toán vào làm bài tập
Năm học
HS
linh hoạt
SL
%
SL
%
2013-2014
C2014-2015
8
5
2
1
25
20
6
4
75
80
Nhóm đối tượng thứ hai - học sinh học sinh có học lực khá giỏi m n vật lí,
được trang bị kiến thức toán đầy đủ.
Bảng: Kết uả khảo sát chất lượng sau khi thực hiện đề tài
-22-
Năm học
2013-2014
2014-2015
Số
HS
8
5
Biết áp dụng kiến thức toán
làm bài tập vật lí một cách
linh hoạt
SL
5
4
%
65,5
80
Chưa biết áp dụng kiến
thức toán vào làm bài tập
SL
3
1
%
34,5
20
Phiếu thăm dò ý kiến của đ ng nghiệp ( trong tổ chuyên m n) Khả năng áp
dụng đề tài?
Năm học
Nhiều m n học
Một m n học
Số
gv
SL
%
SL
%
2013-2014
10
8
80
3
20
2014-2015
11
10
90,9
1
9,1
Khi cho học sinh làm bài tập
a- Vậ
ệt
V -et :
cho học sinh nhắc lại kiến thức:
Nếu hai số x1, x2 có tổng x1 + x2 = S và tích x1.x2 = p thì x1, x2 là
nghiệm của phương trình : x2 – Sx + p = 0.
êu cầu học sinh đọc và phân tích đề áp dụng kiến thức đã nêu vào làm bài
tập.
Bài tập1: Có hai điện trở R1, R2 được mắc theo hai cách khác nhau vào ngu n
điện có hiệu điện thế không đổi là 5,4V. Biết rằng cách thứ nhất có cường độ
chạy qua toàn mạch là 0,27A, cách thứ hai là 3A. Tính điện trở R1, R2.
Nhận xét :
-Hai cách mắc khác nhau chỉ có thể là nối tiếp và song song.
-Từ cách mắc nối tiếp ta tính được tổng của hai điện trở, kết hợp với cách
mắc song song ta tính được tích của hai điện trở. Vận dụng định lí Viet
để tính R1, R2.
Giải: Cách mắc nối tiếp có điện trở tư,ơng đương lớn hơn, nên ta suy ra
được cường độ dòng điện qua mạch nối tiếp là 0,27A, qua mạch song
song là 3A.
Điện trở mạch nối tiếp: R1 + R2 =
Điện trở mạch song song:
U
5,4
=
= 2 Ω.
I
0,27
U
5, 4
R 1.R 2
=
=
= ,8Ω
I'
3
R 1 R2
-23-
→ R1.R 2 = 20.1,8 = 36.
Vậy theo định lí Vi-et thì R1, R2 là nghiệm của phương trình
R2 – 20R + 36 = 0
R1 + R2 = 2 Ω.
R1.R2 = 6Ω
phương tr nh tích.
(R1, R2 > 0)
(1)
(2 ta phân tích phương tr nh bậc 2 và đưa về dạng
(3) (R1-18)*(R1-2)=0
(R1-18) =0 Suy ra R1= 18 Hoặc (R1-2)=0 suy ra R1= 2 Thay R1 vào (
ta được
R2 = 8Ω hoặc R2 = 2Ω.
Các nghiệm đều thoả mãn bài toán.
Bài tập: Cho mạch điện (như h nh vẽ
Biết Uo = 12 V, Ro là điện trở, R là biến trở
am pe kế lí tưởng . Khi con chạy C của biến trở R từ
M đến N , ta thấy am pe kế chỉ giá trị lớn nhất I1 = 2 A
Và giá trị nhỏ nhất I2 = A . Bỏ ua điện trở của các dây nối.
1 – Xác định giá trị Ro và R?
2 – Xác định vị trí của con chạy C của biến trở R để c ng suất tiêu thụ trên
toàn biến trở bằng một nửa c ng suất cực đại của nó?
Bài giải:
1 – Tính R0 & R?
Với mạch điện này th : RMC // RNC và RMC + RNC = R .
V vậy khi ta đặt RMC = x () RNC R x
khi đó chỉ số của am pe kế là: I
x( R x)
R
U0
U0
R0 RMNC R x( R x)
0
R
+ Khi con chạy C ở M ( ở N th RMNC =
cực đại:
I1
(0 x R) RMNC
U0
U
12
R 0 0
6 ( )
R0
I1
2
-24-
và lúc đó am pe kế sẽ chỉ giá trị
+ Để am pe kế chỉ giá trị nhỏ nhất th : RMNC
x( R x)
phải có giá trị cực
R
R2 R2 R2
R
x Rx
( x )2 R
x 2 Rx
4
4 4
2
4
R
R
R
2
đại, ta triển khai RMNC: RMNC
Để RMNC có giá trị cực đại bằng
R
R
R
thì : ( x ) 2 0 x () Tức là con
2
2
4
chạy C ở chính giữa của biến trở RMNC
U0
R
12
( ) I 2
1(*)
4
R0 RMNC 6 R
4
Giải phương tr nh (* ta t m được R = 24 ()
Vậy: R0 = 6 và R = 24
2 - Để có phương án giải phần này ta phải áp dụng c ng thức P = I 2R và
định luật bảo toàn năng lượng trên toàn mạch điện.
Đặt RMNC y
x(24 x)
mà PMNC = RMNC.I 2
24
+ C ng suất tiêu thụ trên toàn biến trở là: P yI 2 (
U0 2
12 2
) .y (
) .y
R0 y
6 y
mà c ng suất của ngu n điện & c ng suất tiêu thụ trên R0 là Pn =UoI & PRo =
Ro I2
Theo định luật bảo toàn năng lượng ta có: Pn = PRo + P hay UoI = RoI 2 + P
R0 I 2 U 0 I P 0 (**)
(** là phương tr nh bậc 2 với ẩn là I
U 02
Để phương tr nh có nghiệm 0 U 0 4 R0 P 0 P
4 R0
2
Vậy Pmax
U 02 122
P
12 2
6 (W ) (
) . y max 3 =>
4 R0 4.6
6 y
2
144 y
3
36 12 y y 2
144 y 108 36 y 3 y 2
3 y 2 108 y 108 0
y 2 36 y 36 0
Phương tr nh có ' 17 y1 18 17 35 (loai) ; y2 18 17 1 ( )
-25-