Tải bản đầy đủ (.pdf) (35 trang)

skkn một số giải pháp giúp học sinh năng khiếu toán làm tốt các bài toán tìm chữ số tận cùng của tích

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (792.68 KB, 35 trang )

THÔNG TIN CÁ NHÂN

Họ và tên: Nguyễn Thị Tuyết
Đơn vị: Tiểu học Hiệp Cường
Ngày tháng năm sinh: 03/11/1968
Nhiệm vụ được giao: Giáo viên chủ nhiệm lớp 5D Năm học 2015-2016
Đề tài nghiên cứu: Giúp học sinh năng khiếu toán làm tốt các bài toán
Tìm chữ số tận cùng của một tích.

1


PHẦN MỞ ĐẦU
1. LÝ DO CHỌN ĐỀ TÀI
Bậc Tiểu học là bậc học nền tảng, là nơi cung cấp những tri thức cơ sở
ban đầu và bền vững cho mỗi cuộc đời. Bồi dưỡng học sinh giỏi ở Tiểu học là
nền móng cho chiến lược đào tạo người tài của đất nước, là việc làm cần thiết và
có ý nghĩa quan trọng, được các nhà quản lí, các cấp lãnh đạo, các bậc phụ
huynh quan tâm. Để có được thành quả giáo dục nói chung hay những thành tích
cao của học sinh giỏi nói riêng, ngay từ cấp Tiểu học, các nhà trường phải có sự
quan tâm, đầu tư. Thời điểm bồi dưỡng học sinh giỏi không phải đợi đến lớp 4,5
mới tiến hành mà là cả một quá trình tạo nguồn, nuôi nguồn. Bởi cái tháp cao
nào cũng bắt đầu xây từ mặt đất.
Ở Tiểu học giáo dục toàn diện là dạy đủ các môn học trong chương trình
và dạy cho mọi học sinh, sao cho tất cả học sinh đều được học, được tiếp thu,
được vận dụng theo khả năng, trình độ của mình. Tuy nhiên đào tạo nhân lực,
bồi dưỡng nhân tài là hai nhiệm vụ song song mà mỗi giáo viên Tiểu học có
trách nhiệm phát hiện và bồi dưỡng ngay từ đầu bậc học. Mặt khác, chất lượng
học sinh giỏi là một tiêu chí không thể thiếu để đánh giá sự phát triển của một
nhà trường. Thành tích học sinh giỏi góp phần tạo nên chất lượng và thương
hiệu của một trường. Ước mơ trở thành học sinh giỏi là ước mơ chính đáng của


mỗi học sinh, phụ huynh học sinh. Một học sinh giỏi không những là niềm tự
hào của cha mẹ, thày cô mà là niềm tự hào của cả cộng đồng. Giáo viên và nhà
trường có trách nhiệm cho phụ huynh biết năng lực của con em họ để cùng phối
hợp bồi dưỡng. Để có kết quả của học sinh giỏi thì công tác tạo nguồn, bồi
dưỡng nguồn là chiến lược hết sức quan trọng, có tính chất bền vững trong công
tác bồi dưỡng học sinh giỏi ở Tiểu học.
Thực hiện Thông tư số 30/2014/TT-BGD ĐT ngày 28 tháng 8 năm 2014;
Chỉ thị số 5105/CT- BGD ĐT ngày 03/11/2014 của Bộ Giáo dục và Đào tạo, các
trường Tiểu học không tổ chức các lớp bồi dưỡng, nâng cao dành cho học sinh
giỏi, không tổ chức các hội thi hay giao lưu học sinh giỏi. Tôi rất tán thành với
chủ trương của Bộ Giáo dục là xóa bỏ trường chuyên, lớp chọn đối với Tiểu
2


học. Học sinh Tiểu học phải được học đều các môn, được giáo dục phát triển
toàn diện. Tuy nhiên cuộc thi giải toán trên Internet (Giải toán Violympic) vẫn
thu hút sự quan tâm của không ít phụ huynh và học sinh. Nhiều học sinh rất có
hứng thú với các vòng thi toán trên mạng và cũng có rất nhiều phụ huynh mong
muốn con em mình thử sức và rèn luyện tư duy toán học.
Cuộc thi giải toán Violympic là một sân chơi dành cho học sinh
Tiểu học và THCS. Các bài thi nhằm giúp các em củng cố, nâng cao kiến thức,
phát triển khả năng tư duy, sáng tạo. Khi các em làm bài, đồi hỏi phải nhanh,
chính xác, thao tác trên máy tính thành thạo. Nó tích hợp rất nhiều kĩ năng của
học sinh: kĩ năng tính và giải toán, kĩ năng xử lí tình huống, thu thập thông tin,
… Học sinh cần rèn kĩ năng phát hiện nhanh nhạy những tình huống có vấn đề
trong các bài toán trên mạng, phát hiện dạng toán, tìm phương pháp giải toán
cho phù hợp. Qua mỗi bài toán, học sinh cần rút ra bản chất của một dạng bài,
những điều cần lưu ý, những sai lầm có thể mắc phải. Trong khi đó các đề thi
violimpic, nội dung kiến thức rất phong phú, bài tập đa dạng. Nếu học sinh chỉ
có kiến thức tích lũy được trong các bài học trên lớp theo chương trình sách giáo

khoa thì khó có thể tham gia cuộc thi giải toán trên Internet. Vì vậy có những
dạng toán, bài toán giáo viên phải dạy, phải hướng dẫn học sinh rút ra quy tắc,
quy luật, công thức để làm bài. Thế nhưng không phải giáo viên nào cũng có thể
giúp học sinh trong lĩnh vực này, đặc biệt là đối với học sinh lớp 4,5. Qua hai
năm được giao nhiệm vụ bồi dưỡng học sinh có năng khiếu giải toán Violimpic,
tôi đã hướng dẫn học sinh nẵm vững cách giải một số dạng toán, trong đó có
dạng toán Tìm chữ số tận cùng của một tích. Tôi luôn mong muốn giúp học
sinh vượt qua các vòng thi tự luyện violimpic toán một cách nhanh nhất.
2. MỤC ĐÍCH NGHIÊN CỨU
Tìm hiểu những bài toán Tìm chữ số tận cùng của một tích, những lúng
túng, sai sót của học sinh khi thực hiện, từ đó đề xuất một số biện pháp giúp học
sinh tìm đáp số bài toán một cách nhanh nhất.

3


3. NHIỆM VỤ NGHIÊN CỨU
- Nghiên cứu cơ sở toán học, nguyên tắc dạy học sinh năng khiếu toán
- Khảo sát thực trạng dạy và học dạng toán Tìm chữ số tận cùng của một tích
- Đề xuất một số biện pháp nhằm nâng cao chất lượng bồi dưỡng học sinh
năng khiếu ở Tiểu học
4. ĐỐI TƯỢNG NGHIÊN CỨU
1. Mục đích nghiên cứu:
+ Các bài toán liên quan tìm chữ số tận cùng của một tích.
+ Cách giải các bài toán trên.
+ Biện pháp giúp học sinh làm tốt các bài toán đó.
2. Khách thể nghiên cứu:
Học sinh năng khiếu Toán lớp 5 trường Tiểu học Hiệp Cường- huyện Kim
Động- tỉnh Hưng Yên.
5. PHƯƠNG PHÁP NGHIÊN CỨU.

5.1. Phương pháp nghiên cứu lý thuyết.
5.1. Phương pháp điều tra.
5.3. Phương pháp thống kê.
5.4. Phương pháp phân tích và tổng hợp.

PHẦN NỘI DUNG
CHƯƠNG 1. CƠ SỞ LÍ LUẬN
Mục đích của quá trình dạy học ở bậc Tiểu học là nhằm cung cấp tới học
sinh những kiến thức cơ bản, toàn thể về tự nhiên và xã hội. Nhằm giúp học sinh
từng bước hình thành nhân cách, từ đó trang bị cho học sinh các phương pháp
ban đầu về hoạt động nhận thức và hoạt động thực tiễn. Mục tiêu đó được thực
hiện thông qua việc dạy học các môn và thực hiện theo định hướng yêu cầu giáo
dục, nhằm trang bị cho trẻ những kiến thức, kĩ năng cần thiết để trẻ tiếp tục học
ở bậc Trung học hay cho công việc lao động của trẻ sau này. Trong 9 môn học,
môn Toán đóng vai trò quan trọng, nó cung cấp những kiến thức cơ bản về số
4


học, các yếu tố hình học, đo đại lượng, giải toán, …môn Toán Tiểu học thống
nhất không chia thành môn khác. Bên cạnh đó khả năng giáo dục của môn Toán
rất phong phú còn giúp học sinh phát triển tư duy, khả năng suy luận, trau dồi trí
nhớ, giải quyết vấn đề có căn cứ khoa học, chính xác. Nó còn giúp học sinh phát
triển trí thông minh, tư duy độc lập sáng tạo, kích thích óc tò mò, tự khám phá
và rèn luyện một phong cách làm việc khoa học. Yêu cầu đó rất cần thiết cho
mọi người, góp phần giáo dục những đức tính quý báu: chịu khó, nhẫn nại, cần
cù trong học tập.
Bồi dưỡng, phát triển năng khiếu Toán ở Tiểu học là rất quan trọng và cần
thiết, nhưng vẫn đảm bảo những nguyên tắc sau:
1. Một số nguyên tắc dạy Toán nói chung và bồi dưỡng năng khiếu toán nói
riêng:

1.1. Đảm bảo sự thống nhất giữa tính khoa học và tính giáo dục
Tính khoa học trong quá trình dạy học ở Tiểu học trước hết bằng chính
nội dung dạy học ở Tiểu học. Tính khoa học được thể hiện trong phương pháp
dạy học, hình thức tổ chức dạy học.
Đảm bảo tính khoa học trong dạy Toán ở Tiểu học là dạy đúng, dạy đủ
những tri thức khoa học được quy định trong chương trình cấp học.
Tính giáo dục là thuộc tính bản chất của quá trình dạy học ở Tiểu học
nhằm đạt tới sự phát triển nhân cách toàn diện cho học sinh. Hình thành ở học
sinh thế giới quan khoa học và những phẩm chất đạo đức của con người mới.
Đảm bảo tính thống nhất giữa khoa học và giáo dục là trong quá trình dạy
học đồng thời giúp học sinh nắm tri thức khoa học và hình thành phẩm chất đạo
đức cho học sinh.
Vì vậy, yêu cầu mỗi giáo viên phải có trình độ chuyên môn vững vàng, kĩ
năng ngôn ngữ, tổ chức hợp lí các hoạt động dạy học, xử lí linh hoạt, sáng tạo
các tình huống có vấn đề. Bằng bản thân những kiến thức Toán học ta bồi dưỡng
cho học sinh một cách có hệ thống giúp học sinh có tình cảm đúng đắn đối với
môn học. Ngược lại, tình cảm yêu mến Toán học giúp các em tiếp tục làm chủ
kiến thức Toán học mới.
5


1.2. Đảm bảo sự thống nhất giữa tính khoa học và tính thực tiễn.
Trong quá trình dạy học, đồng thời giúp học sinh nắm kiến thức Toán học
(Kiến thức phù hợp với thực tiễn), hình thành kĩ năng vận dụng thành thạo nhằm
góp phần cải tạo hiện thực, cải tạo bản thân. Qua thực tiễn, nó khẳng định tính
đúng đắn của khoa học. Hệ thống các quy tắc, công thức Toán học chính là sản
phẩm nghiên cứu tìm ra chân lí của các nhà khoa học.
1.3. Đảm bảo tính cụ thể và tính trừu tượng.
Học sinh Tiểu học nhận thức từ cái riêng đến cái chung, từ cái cụ thể đến
cái khái quát. Vì vậy, giáo viên phải giúp học sinh tìm hiểu, phân tích qua những

ví dụ cụ thể rồi mới khái quát thành quy tắc, công thức Toán học.
1.4. Đảm bảo sự thống nhất giữa dạy và học
Trong quá trình dạy học, hoạt động học đóng vai trò chủ đạo. Học sinh tự
giác, tự lực tiếp thu kiến thức dưới tác động của giáo viên. Thông qua vai trò của
người giáo viên, học sinh phát huy được tính tự giác, tích cực, ham mê tìm kiến
thức mới.
1.5. Đảm bảo tính vững chắc của kiến thức với tính mềm dẻo của tư duy.
Tính vững chắc của kiến thức có nghĩa là hệ thống kiến thức mà học sinh
lĩnh hội được sẽ vận dụng vào các tình huống tương tự. Học sinh lĩnh hội vững
chắc kiến thức làm nền tảng lĩnh hội kiến thức mới.
Tính mềm dẻo của tư duy là khả năng linh hoạt, sáng tạo của học sinh khi
vận dụng kiến thức vào từng bài học cụ thể.
Để đảm bảo nguyên tắc này trong quá trình dạy học, đòi hỏi người giáo viên
phải làm cho học sinh nắm vững hệ thống kiến thức Toán học và khi cần có thể
nhớ và vận dụng linh hoạt trong từng tình huống. Người giáo viên biết hòa kinh
nghiệm của nhân loại với kinh nghiệm bản thân để giúp học sinh nắm được bản
chất vấn đề; Giúp học sinh biết nhớ nhiều, nhớ nhanh, nhớ lâu, nhớ chính xác
điều đã học.
1.6. Đảm bảo tính khoa học với tính vừa sức
Đây là một nguyên tắc vô cùng quan trọng khi bồi dưỡng học sinh năng
khiếu. Bởi yêu cầu, nhiệm vụ học tập phải phù hợp với trí tuệ học sinh. Dạy học
6


phù hợp khả năng, năng lực, trình độ phát triển của đối tượng học sinh, đảm bảo
học sinh đều được phát triển ở mức cao nhất. Những kiến thức toán học chúng ta
truyền tải đến học sinh phải được học sinh tiếp thu trên cơ sở phát huy hết khả
năng của mình. Bồi dưỡng học sinh giỏi không phải là dạy trước chương trình
và cũng không nên dạy những bài quá khó. Mà phải bắt đầu từ dạy chuẩn kiến
thức từng khối lớp. Trên cơ sở chuẩn kiến thức, giáo viên có thể mở rộng, khắc

sâu kiến thức cho học sinh có tư duy, tiếp thu nhanh hơn so với các bạn trong
lớp, trong khối. Bồi dưỡng theo nhóm trình độ là mấu chốt của sự thành công
bởi trong một lớp có nhiều đối tượng học sinh, không phải đối tượng nào cũng
có thể mở rông, khắc sâu kiến thức được. Nếu đưa những kiến thức quá cao đối
với các em, các em không những không hiểu mà còn dẫn đến việc chán học, lâu
dần các em sẽ bị mặc cảm với các bạn trong lớp. Hoặc nếu chỉ dừng lại ở việc
cung cấp kiến thức theo chuẩn thì khó có học sinh giỏi và không phát huy được
tính sáng tạo, tích cực học tập của học sinh.
Như vậy, để đảm bảo nguyên tắc này đòi hỏi người giáo viên phải có trình
độ chuyên môn giỏi, toàn diện, quan tâm đến trình độ phát triển chung của học
sinh cả lớp, trình độ phát triển riêng từng đối tượng học sinh. Từ đó mới có nội
dung dạy học phù hợp.
2. Nội dung dạy học Tìm chữ số tận cùng của một tích
Trong các đề thi violympic Toán Tiểu học, có rất nhiều kiến thức, nhiều
dạng bài các em chưa được học trên lớp, chưa được giới thiệu trong chương
trình học cơ bản.
Dạng bài tập Tìm chữ số tận cùng của một tích cũng vậy. Chương trình
Toán ở Tiểu học không đề cập tới nội dung này. Nếu có thì chỉ dừng lại ở những
bài tập đơn giản, cụ thể. Nhưng trong các đề thi Violympic Toán Tiểu học thì lại
đề cập đến và có nhiều dạng bài phong phú.

7


CHƯƠNG 2: CƠ SỞ THỰC TIỄN
1. Thực trạng bồi dưỡng học sinh năng khiếu tham gia giải toán violympic.
Tại trường Tiểu học Hiệp Cường- nơi tôi đang công tác, việc dạy bồi
dưỡng học sinh năng khiếu nói chung, năng khiếu Toán nói riêng, nhất là học
sinh khối lớp 5 trong những năm qua đã có nhiều chuyển biến và đạt được
những kết quả tích cực, góp phần vào kết quả chung của địa phương. Nhưng 2

năm vừa qua, Cuộc thi Giải toán violympic không bắt buộc mà chỉ là khuyến
khích học sinh tham gia, nên thực trạng bồi dưỡng học sinh năng khiếu toán
đang gặp những vấn đề sau:
1.1. Thuận lợi:
- Được sử chỉ đạo, quan tâm sâu sát và kịp thời của BGH, có kế hoạch cụ
thể, lâu dài trong công việc bồi dưỡng học sinh năng khiếu.
- Giáo viên có trình độc huyên môn vững vàng, có nhiều kinh nghiệm
trong công tác giảng dạy HS năng khiếu nhiều năm.
- Học sinh ngoan, có ý thức học tập, yêu thích môn học, say mê, ham học
hỏi. Học sinh cần cù tích lũy, chăm đọc sách tham khảo và tài liệu khác như
Toán Tuổi thơ, tích cực luyện thi các vòng để nắm chắc các dạng bài.
1.2. Khó khăn:
+ Đối với giáo viên: Nói chung, công tác bồi dưỡng học sinh có năng
khiếu ở nhiều trường chưa được quan tâm thỏa đáng, giống như “mì ăn liền”. Vì
vậy, cứ có kế hoạch thi cấp huyện thì mới tổ chức ôn luyện. Bên cạnh đó, thời
gian dành cho bồi dưỡng học sinh cũng ít, giáo viên chỉ tranh thủ ở buổi học thứ
hai.
Đa số giáo viên vừa phải đảm bảo chất lượng đại trà, vừa phải hoàn thành
chỉ tiêu mũi nhọn và công tác chủ nhiệm lớp, công tác kiêm nhiệm do đó cường
độ làm việc quá tải. Và việc đầu tư cho bồi dưỡng còn hạn chế.
Giáo viên đều phải tự soạn chương trình dạy, theo kinh nghiệm của bản thân,
theo chủ quan, tự nghiên cứu, tự sưu tầm tài liệu.
Ngoài ra, một số giáo viên chưa thực sự gắn bó với công tác bồi dưỡng học
sinh năng khiếu với nhiều lí do khác nhau nên cũng ảnh hưởng đến chất lượng
8


công tác này. Một số giáo viên, việc tiếp cận bài tập nâng cao hay tìm ra bước
trung gian để đi đến kết quả nhanh nhất, chính xác nhất chẳng mấy khi được
nghiên cứu kĩ.

+ Đối với học sinh: Học sinh phải học đầy đủ các môn học chính khóa cộng
với chương trình bồi dưỡng nên rất hạn chế về thời gian.
- Học sinh có năng khiếu thì lại hay tham gia các hội thi khác. Cụ thể, năm
học 2012-2013 đến nay, học sinh Tiểu học có các hội thi:
- Olympic Toán, Tiếng Anh, Toán- Tiếng Anh trên mạng
- Viết chữ đẹp
- Nghi thức Đội
- Chiếc ô tô mơ ước
- An toàn giao thông
- Giải bóng đá thiếu nhi
- Trạng nguyên Tiếng Anh
- Trạng nguyên Tiếng Việt, ….
Các cuộc thi cứ nối tiếp nhau, do vậy cũng gây áp lực cho cả giáo viên và
học sinh. Thời gian dành cho việc bồi dưỡng học sinh năng khiếu nhiều khi bị
gián đoạn, hoặc tranh thủ một ít thời gian hiếm hoi ở các buổi học thứ hai.
Hơn nữa, việc nắm kiến thức cơ bản nhiều khi ở dạng ghi nhớ là chủ yếu, ít
khi hiểu bản chất của vấn đề nên rất khó khăn trong việc tiếp cận các bài toán
nâng cao đòi hỏi chiều sâu về trí tuệ.
2. Thực trạng dạy và học dạng toán Tìm chữ số tận cùng của một tích:
- Đây là dạng toán hay nhưng không xuất hiện trong các đề thi học sinh giỏi
những năm trước. Trong các vòng thi violimpic cũng xuất hiện không nhiều. Có
năm, cả 19 vòng thi chỉ xuất hiện dạng bài này 2 đến 3 lần (thường là ở vòng 14,
15 trở đi). Mà kiến thức cơ bản học sinh cần phải nhớ để vận dụng giải quyết
vấn đề từng bài tập lại nhiều nên học sinh hay quên hoặc nhầm lẫn kiến thức này
với kiến thức khác. Vì vậy, giáo viên chưa quan tâm, chú trọng đến phương
pháp giải dạng toán này.
3. Một số lỗi sai sót, nhầm lẫn
9



Khi hướng dẫn học sinh những khóa học trước làm bài dự thi Olympic Toán
cấp Tiểu học, tôi nhận thấy phần Tìm chữ số của một tích của các em còn rất
hạn chế. Hầu như các em không biết cách làm.
Nguyên nhân dẫn đến những sai sót:
+ Chưa được trang bị kiến thức cơ bản về cách tìm chữ số tận cùng của một
tích.
+ Chưa được làm quen, thực hành thường xuyên với các dạng bài.
+ Bỏ sót một số thông tin, dữ liệu trong bài toán.
+ Nhầm lẫn dạng toán này với dạng toán khác
+ Tính toán với dãy số có nhiều số hạng còn lúng túng….
Do vậy ngay từ tuần 3 của năm học 2012-2013, tôi đã tiến hành cho học
sinh thực hiện bài khảo sát như sau với 6 học sinh lớp 5B, trường Tiểu Hiệp
Cường, huyện Kim Động, tỉnh Hưng Yên (thời điểm tháng 9 năm 2013) gồm
các em có tên sau:
1. Trần Anh Vũ
2. Dương Thị Hường
3. Dương Thị Nga
4. Lê Thị Ngọc Ánh
5. Dương Thu Hồng
6. Dương Công Mạnh.
2. Bài khảo sát số 1 ( Thời gian 20 phút)
Đề bài
Bài 1: (3điểm) Tích sau có chữ số tận cùng là chữ số nào:
4 x 14 x 24x 34 x 44 x 54
Bài 2: (3điểm) Thay dấu * bằng chữ số thích hợp:
21 x 22 x 23 x 24 x 25 x 26= 165765***
Bài 3: (4điểm) Tích sau có bao nhiêu chữ số 0 tận cùng:
1 x 2 x 3 x 4 x 5 x ..... 96x 97x 98x 99x 100

10



Kết quả
Tổng

Điểm

9 – 10

số HS

SL
0

%

7- 8
SL

Dưới 5

5-6
%

0

SL

%


SL

%

5

64

1

36

Kết quả như vậy là chưa cao, học sinh không biết cách làm. Có em ngồi
viết hết tất cả các số rồi tính, rồi đếm, mất rất nhiều thời gian.

CHƯƠNG 3
MỘT SỐ BIỆN PHÁP GIÚP HỌC SINH
LÀM TỐT CÁC BÀI TOÁN “TÌM CHỮ SỐ TẬN CÙNG CỦA MỘT TÍCH”

Trong quá trình dạy học, từ kết quả nghiên cứu, tôi xin mạnh dạn đưa ra
một số giải pháp sau:
1. Giải pháp 1: Giúp học sinh nắm vững một số kiến thức về dãy số tự
nhiên cách đều
Mục đích: Học sinh biết cách xác định số các thừa số trong một tích, xác định
thừa số đầu tiên hoặc thừa số cuối cùng của một tích, …
Cách thực hiện: Bằng các ví dụ từ đơn giản đến phức tạp hơn, kết hợp phương
pháp thuyết trình, giảng giải, giáo viên cung cấp cho học sinh một số công thức
toán học tổng quát:
Số các số hạng của một dãy số cách đều= (số cuối- số đầu): khoảng cách giữa
hai số liền nhau + 1

Các công thức được suy ra:
Số cuối của dãy= (Số các số -1) x khoảng cách giữa hai số liền nhau+ số đầu
Ví dụ áp dụng: Tích sau có bao nhiêu thừa số:
2 x 12 x 22 x 32 x …x …x 2012
Học sinh dễ dàng tìm được số các thừa số của tích như sau:
(2012- 2): 10 + 1= 202 (thừa số)

11


2. Giải pháp 2: Giúp học sinh nắm vững một số kiến thức về chữ số tận
cùng của tích
Mục đích: Học sinh ghi nhớ chữ số tận cùng của tích các thừa số có chữ số tận
cùng giống nhau.
Cách thực hiện: Giáo viên cung cấp cho học sinh một số công thức toán học
tổng quát:
1. Chữ số tận cùng của một tổng bằng chữ số tận cùng của tổng các chữ số hàng
đơn vị của các số hạng trong tổng đó.
2. Chữ số tận cùng của một tích bằng chữ số tận cùng của tích các chữ số hàng
đơn vị của các thừa số trong tích đó.
3. Tổng 1 + 2 + 3 + 4 +….+ 9 có tận cùng bằng 5
4. Tích 1 x 3 x 5 x 7 x 9 có tận cùng bằng 5
5. Tích của a x a không thể có tận cùng là 2; 3; 7 hoặc 8.
6. Tích của tất cả các thừa số có tận cùng là 1 thì có tận cùng là 1.
7. Tích của tất cả các thừa số có tận cùng là 6 thì có tận cùng là 6.
8. Tích của tất cả các thừa số có tận cùng là 5 thì có tận cùng là 5.
9. Tích của các số có tận cùng là 5 với 1 số chẵn có tận cùng là 0.
Ví dụ 1: Không tính cụ thể, hãy cho biết chữ số tận cùng của mỗi kết quả sau:
a) 21 x 23 x 25 x 27 – 11 x 13 x 15 x 17
b) 56 x 66 x 76 x 86 + 51 x 61 x 71 x 81

Ví dụ 2: Không làm tính, xét xem kết quả sau đúng hay sai:
ab x ab – 8557 = 0
3. Giải pháp 3: Giúp học sinh nắm được một số thủ thuật tính toán để
nhanh chóng tìm được kết quả.
Mục đích: Dạng toán tìm chữ số tận cùng của một tích là dạng toán hay. Nhiều
khi nó không đòi hỏi ta phải tìm tích nhưng bằng một số thủ thuật tính toán ta sẽ
nhanh chóng tìm được chữ số tận cùng của tích. Muốn vậy, học sinh cần nắm
được một số thủ thuật đố để tìm kết quả một cách nhanh nhất mà không mất
nhiều thời gian tính toán.
Cách thực hiện: Giáo viên giúp học sinh ghi nhớ một số thủ thuật sau:
12


- Trong một dãy tích gồm các thừa số giống nhau,
ta chia thành các nhóm để xét chữ số tận cùng. Các
thừa số có chữ số hàng đơn vị là chữ số lẻ ta chia
nhóm để có chữ số tận cùng của tích nhóm là 1. Các
thừa số có chữ số hàng đơn vị là chữ số chẵn ta chia
nhóm để có chữ số tận cùng của tích nhóm là 6. Nhvậy:
* Chữ số 2 ở hàng đơn vị ta chia nhóm 4 (2 x 2 x 2 x
2 = 16)
Ví dụ 1: Tìm chữ số tận cùng của tích:
2 x 12 x 22 x 32 x 42 x 42 x 62 x 72 x 82 x 92
x 102 x 112
Ta có:
(2 x 12 x 22 x 32) x (42 x 42 x 62 x 72) x (82 x
92 x 102 x 112)
có tận cùng là 6

x có tận cùng là 6


x



tận cùng là 6

tận cùng là 6
Vậy Tích

2 x 12 x 22 x 32 x 42 x 42 x 62 x 72 x 82

x 92 x 102 x 112 có tận cùng là 6.
* Chữ số 3 ở hàng đơn vị ta chia nhóm 4 (3 x 3 x 3 x
3 = 81)
* Chữ số 4 ở hàng đơn vị ta chia nhóm 2 (4 x 4 = 16)
* Chữ số 7 ở hàng đơn vị ta chia nhóm 4 ( 7 x 7 x 7 x
7 = 2401)

13


* Chữ số 8 ở hàng đơn vị ta chia nhóm 4 (8 x 8 x 8 x
8 = 4096)
* Chữ số 9 ở hàng đơn vị ta chia nhóm 2 (9 x 9 = 81)
Vớ d 2: Tìm chữ số tận cùng của tích: 209 x 219 x 229
x239 x 249 x 259 x 269
Ta có:
(209 x 219)
(249 x 259)


x

(229 x 239)

x

269

có tận cùng là 1
cùng là 1

x

x

có tận cùng là 1

x

có tận

x có tận cùng là 9


là 1

tận

cùng


x có tận cùng là 9

có tận cùng là 9
Vy tớch 209 x 219

x

229 x 239 x

249 x 259

x 269 cú

tn cựng l 9.
Vớ d 3: Tớch sau cú tn cựng l ch s no?
2017x 2007 x 1997 x 1987x x 17 x 7
Ta thy tớch trờn cú: (2017-7) :10 + 1= 202 (tha s)
Vỡ mi tha s u cú ch s tn cựng l 7 nờn ta chia nhúm 4 để có chữ
số tận cùng của tích mi nhóm là 1.
202: 4 = 50 (d 2 tha s)
=> (2017 x 2007 x 1997 x 1987) x x 17 x 7
cú tn cựng l 1 x (50 nhúm) x 17 x 7
cú tn cựng l 1

x cú tn cựng l 9
14


cú tn cựng l 9

Vy 2017x 2007 x 1997 x 1987x x 17 x 7 cú tn cựng l 9
4. Gii phỏp 4: Vn dng mt s kin thc liờn quan du hiu chia ht
Mc ớch: Nhiu bi tp tỡm ch s tn cựng ca tớch li liờn quan n du hiu
chia ht. Hc sinh bit da vo cỏc du hiu chia ht xột ch s tn cựng.
Cỏch thc hin: Giỏo viờn a ra mt s vớ d c th hc sinh vn dng
Vớ d:
Bit 21 x 22 x 23 x 24 x 25 x 26= 165765***. Hóy tỡm giỏ tr ca ch s *
Nh vy, hc sinh phi xỏc nh 3 ch s tn cựng ca tớch mt cỏch nhanh
nht da trờn dõu hiu chia ht.
Hng dn hc sinh phõn tớch:
21 x 22 x 23 x 24 x 25 x 26= 3 x 7 x 22 x 23 x 8 x 3 x 5 x 5 x 26
Khi ly 5 nhõn vi 1 s chn thỡ cú ch s tn cựng bng 0. Vy tớch trờn
cú 2 ch s 0 tn cựng. M tớch trờn l s chia ht cho 9 (3 x 3) nờn tng cỏc ch
s chia ht cho 9.
Ta có: 165765*00 có tổng các chữ số là:
1 + 6 + 5 + 7 + 6 +5 + * + 0 + 0 = 30 + *
Vậy * = 6. Kết quả đúng là:

165765600

5. Gii phỏp 5: Phõn loi dng toỏn
Mc ớch: Mi dng toỏn li cú phng phỏp, suy lun khỏc nhau. Vỡ vy phõn
loi cỏc dng toỏn v giỳp hc sinh nm chc cỏch gii tng dng cỏc em s nh
lõu hn.
Cỏch thc hin: Qua nghiờn cu, su tm, thu thp cỏc bi toỏn tỡm ch s tn
cựng ca mt tớch, tụi phõn loi thnh cỏc dng toỏn c bn sau:
Dng 1: Xỏc nh ch s tn cựng ca mt tớch:
Bi toỏn 1: Tìm các chữ số tận cùng của tích sau:
1 x 3 x 5 x 7 x 9 x x 2009 x 2011


15


(Đề thi Violympic vòng 18, năm học
2011-2012)
Phân tích:
Ta thấy rằng tích trên gồm các thừa số là số lẻ.
Mà 5 nhân với 1 số lẻ luôn có chữ số tận cùng là 5.
Vậy ta có cách giải nh- sau:
Bài giải:
Trong phép nhân có chứa thừa số 5 nên tích là một
số chia hết cho 5. Do đó chữ số tận cùng của tích là
0 hoặc 5. Vì các thừa số là số lẻ nên tích là số lẻ.
Vậy chữ số tận cùng của tích là 5.
Bài toán 2. Cho T= 2 x 2 x 2 x x 2 x 2 (tích có
2013 th-à số 2).
T có chữ số tận cùng là mấy?
(Đề thi Violympic vòng 17, năm học 2012-2013)
Phân tích:
Nếu ta chia tích trên thành các nhóm, mỗi nhóm có
4 thừa số thì kết quả của mỗi nhóm đều có tận cùng là
6 (vì 2 x 2 x 2 x 2 = 16) mà tích của tất cả các số
có tận cùng là 6 thì tích đó có tận cùng là 6. Do đó,
tích có số thừa số chia hết cho 4 thì có tận cùng là
6, nếu d- 1 thì có tận cùng là 2, d- 2 thì có tận
cùng là 4, d- 3 thì có tận cùng là 8. Từ đó ta có
cách giải nh- sau:
Bài giải:
Nếu nhóm các thừa số trên và các nhóm gồm 4 thừa
số, thì tích trên có số nhóm là:

2013 : 4 = 504(nhóm), d- 1 thừa số

16


Vì T gồm 2013 thừa số 2 nên chữ số tận cùng trong
mỗi nhóm là 6. Tích này nhân với 2( không thuộc 504
nhóm) đ-ợc số có tận cùng là 2. Vậy chữ số tận cùng
của T là 2.
Dng 2: Xỏc nh s ch s 0 tn cựng ca mt tớch
Bài toán 3. Cho P= 1 x 2 x 3 x 99 x 100 có bao
nhiêu chữ số 0 tận cùng.
Phân tích:
Ta thấy rằng: 5 nhân với 1 số chẵn thì sẽ đ-ợc
tích là 1 chữ số 0. Vậy ta nhóm thành các nhóm gồm 1
thừa số có tận cùng là 5 với 1 chữ số 0, cũng tạo
thành 1 nhóm. Trong tích có bao nhiêu nhóm thì sẽ có
bấy nhiêu chữ số 0.
Từ cách phân tích đó ta có h-ớng giải nh- sau:
Bài giải:
Các thừa số có chữ số 5 tận cùng trong tích trên
là:5, 15, 25, 35, 45, 55, 65, 75, 85, 95. Mà 25 = 5 x
5, 75= 5 x 5 x 5 nên thay 5 x 5 và 5 x 5 x 5 x 5 x 3
vào tích trên thì tích đó có 12 thừa số có tận cùng
là 5. Cứ lấy một thừa số chẵn nhân với một số có tận
cùng là 5 ta đ-ợc tích là số có tận cùng là một chữ
số 0. Mặt khác, tích trên có 9 thừa số tròn chục
là:10, 20, 30, 40, 50, 60, 70, 80, 90 mà 50=5 x 10
nên lấy 50 nhân với một số chẵn ta có 2 chữa số 0 tận
cùng. Thừa số 100 có 2 chữ số 0 tận cùng nữa.

Vậy tích trên có số chữ số 0 tận cùng là: 12
+10+ 2= 24 ( chữ số 0 tận cùng)

17


Bài toán 4: Tích của tất cả các số tự nhiên liên tiếp bắt đầu từ 1 đến 2015 có tận
cùng bao nhiêu chữ số 0.
(§Ò thi Violympic vßng 14, n¨m häc
2014-2015)
Ph©n tÝch:
Ta thÊy, bài toán 4 cũng tương tự như bài toán 3 những ta có thể
phân tích như sau:
+ Những số chia hết cho 5 có thể phân tích thành tích của ít nhất 1 thừa số 5 tạo
thành 1 dãy số cách đều 5 đơn vị:
5; 10 ; 15; 20 ; 25; ….
+ Những số chia hết cho 5 có thể phân tích thành tích của ít nhất 2 thừa số 5 tạo
thành 1 dãy số cách đều 25 đơn vị:
25; 50; 75; 100; …
+ Những số chia hết cho 5 có thể phân tích thành tích của ít nhất 3 thừa số 5 tạo
thành 1 dãy số cách đều 125 đơn vị:
125; 250; 375; ….2000
+ Những số chia hết cho 5 có thể phân tích thành tích của ít nhất 4 thừa số 5 tạo
thành 1 dãy số cách đều 625 đơn vị:
625; 1250; 1875; …
Bµi gi¶i:
+ Trong tích trên có các thừa số chia hết cho 5 mà tách thành tích của ít nhất 1
thừa số là 5 là:
5; 10; 15; 20; …; 2010; 2015
và có:


(2015- 5) : 5 + 1 = 403 (thừa số)

+ Trong tích trên có các thừa số chia hết cho 5 mà tách thành tích của ít nhất 2
thừa số là 5 là:
25; 50; 75; 100; … 2000
và có:

(2000 - 25) : 25 + 1 = 80 (thừa số)

+ Trong tích trên có các thừa số chia hết cho 5 mà tách thành tích của ít nhất 3
thừa số là 5 là:
18


125; 250; 375; …….. 2000
(2000 - 125) : 125 + 1 = 16 (thừa số)

và có:

+ Trong tích trên có các thừa số chia hết cho 5 mà tách thành tích của ít nhất 4
thừa số là 5 là:
625; 1250; 1875
và có: 3 thừa số
Tích trên phân tích thành tích trong đó có số thừa số là 5 là:
404 + 80+ 16 + 3= 502 (thừa số 5)
Mỗi thừa số là 5 nhân với 1 số chẵn cho ta số có tận cùng là 1 chữ số 0. Vậy
tích trên có 502 chữ số 0 tận cùng.
Dạng 3: Xác định chữ số tận cùng của tích dựa vào điều kiện
Bài toán 5:

Cho y = 1 x 2 x 3 x … x 19 x 20
Hái tæng cña 5 ch÷ sè tËn cïng cña y lµ bao
nhiªu?
Bài giải:
Ta cã:
4 x 5 x 10 x 14 x 15 x 20 = 840000
TÝch cña c¸c thõa sè cßn l¹i lµ:
(1 x 2 x 3 x 6 x 7 x 8) x (11 x 12 x 13 x 16 x
17 x 18)
Có tận cùng là 4

Có tận cùng là 4

Có tận cùng là 6
VËy tÝch c¸c ch÷ sè tËn cïng lµ …40000 hay tæng 5
ch÷ sè tËn cïng cña y lµ 4

(4 + 0 + 0 +0 +0).

Bài toán 6: Cho A= 2004 x 2004 x 2004 x 2004x …. x 2004 (có 2003 thừa số)
B= 2003 x 2003 x 2003 x 2003 x ….x 2003 (có 2004 thừa số)
19


Hi A + B cú chia ht cho 5 khụng?
Phõn tớch: Ta thy rng A+B cú chia ht cho 5 thỡ phi cú tn cựng l 0 hoc 5.
Nh vy ta phi tỡm ch s tn cựng ca A, ch s tn cựng ca B, ri tỡm ch
s tn cựng ca A + B.
Nếu ta chia chia tích A trên thành các nhóm, mỗi
nhóm có 2 thừa số thì kết quả của mỗi nhóm đều có tận

cùng là 6 (vì 4 x 4 = 16) mà tích của tất cả các số
có tận cùng là 6 thì tích đó có tận cùng là 6. Do đó,
tích có số thừa số chia hết cho 2 thì có tận cùng là
6, nếu d- 1 thì có tận cùng là 4.
Nếu ta chia chia tích B trên thành các nhóm,
mỗi nhóm có 4 thừa số thì kết quả của mỗi nhóm đều có
tận cùng là 1 (vì 3 x 3 x 3 x 3 = 81) mà tích của tất
cả các số có tận cùng là 1 thì tích đó có tận cùng là
1. Do đó, tích có số thừa số chia hết cho 4 thì có
tận cùng là 1, nếu d- 1 thì có tận cùng là 3, d- 2 có
tận cùng là 9, d- 3 có tận cùng là 7.
Từ đó ta giỳp hc sinh s dng thut toỏn gii bi toỏn nh sau:
Bài giải:
*

A= 2004 x 2004 x 2004 x 2004x . x 2004 (cú 2003 tha s)

Ta chia A thành các nhóm gồm 2 thừa số, thì tích
A trên có số nhóm là:
2003 : 2 = 1001 (nhóm), d- 1 thừa số
Vì A gồm 2013 thừa số có tận cùng là 4 nên chữ số
tận cùng trong mỗi nhóm là 6. Tích này nhân với

2004

( không thuộc 1001 nhóm) đ-ợc số có tận cùng là 4.
Vậy chữ số tận cùng của A là 4.
* B= 2003 x 2003 x 2003 x 2003 x .x 2003 (cú 2004 tha s)
Ta chia B thành các nhóm gồm 4 thừa số, thì tích
B trên có số nhóm là:

20


2004 : 4 = 501 (nhóm)
Vì A gồm 2004 thừa số có tận cùng là 3 nên chữ số
tận cùng trong mỗi nhóm là 1. Vậy chữ số tận cùng của
B là 1.
+ Chữ số tận cùng của A + B là 4 + 1 = 5
Vậy A + B chia hết cho 5.
- Trờn õy l mt s dng toỏn in hỡnh Tỡm ch s tn cựng ca mt tớch. Mt
bi toỏn cú th cú nhiu cỏch gii khỏc nhau. Nhng lm cỏch no hc sinh
d hiu, d nh v vn dng thnh tho l iu quan trng.
6. Gii phỏp 6. Nõng cao k nng tỡm ch s tn cựng ca tớch
Mc ớch: Trong cỏc vũng thi violimpic toỏn 4, 5 cú khỏ nhiu bi toỏn dng
Tỡm ch s tn cựng ca mt tớch. Cỏc bi toỏn cú ni dung phong phỳ, a
dng, ũi hi hc sinh phi tht s linh hot khi tớnh toỏn, tỡm ỏp s nhanh
nht. õy l dng toỏn hay, rốn k nng t duy khoa hc v tớnh cn thn. Nu
xột khụng theo quy lut nht nh v thiu mt trng hp thỡ dn n kt qu
sai. Vi mi ch s tn cựng ca mt tha s li cho ch s tn cựng ca tớch
khỏc nhau. Vỡ vy, giỏo viờn thng xuyờn a ra cỏc dng bi tp vi ni dung
gn gi, gn thc t hc sinh c cng c, rốn k nng, hng thỳ vi vic
hc tp. Giỏo viờn su tm cỏc b thi cỏc cp thụng quan cụng ngh thụng tin
nhm giỳp cỏc em tip xỳc, lm quen vi dng ; luụn tỡm c, tham kho cỏc
ti liu hay hng dn hc sinh. Giỏo viờn hng dn hc sinh c, tỡm hiu
ti liu, sỏch v phự hp vi trỡnh ca cỏc em cỏc em luyn tp thờm.
ng thi cho cỏc em luyn i luyn li ni dung kin thc ca mt vũng thi
cỏc em nm rừ cỏch gii tng dng toỏn.
Thc hin: Giỏo viờn su tm, thit k nhiu dng bi hc sinh c thng
xuyờn cng c, luyn tp.
Bi toỏn vn dng:


21


Bi 1: Lan hi cụ giỏo: Tha cụ, nm nay cụ bao nhiờu tui ?. Cụ tr li:
Tui ca cụ bng ch s 0 tn cựng ca tớch: 1 x 2 x 3 x 4 x .... x 159 x 160.
Lan cha ngh ra. Cỏc bn hóy tớnh giỳp Lan tui ca cụ nhộ.
Nh võy, hc sinh vn dng thut toỏn ó hc giỳp bn Lan tỡm s tui
ca cụ giỏo l 39 tui.
Bi 2: Cho tích:
A = 1 x 2 x 3 x 2012 x 2013
Gạch bỏ các th-à số chia hết cho 5 ta đ-ợc tích
B.
Tìm chữ số tận cùng của B
Sau đây là bài giải gợi ý:
Nhận xét:
A = 1 x 2 x 3 x 2012 x 2013
B = 1 x 2 x x 8 x 9 x 11 x 12 x 18 x 19 x 2001 x
2002 x 2008 x 2009 x 2011 x 2012 x 2013
Chia B thành các nhóm nh- sau:
B = (1 x 2 x x 8 x 9) x (11 x 12 x 18 x 19) x x
(2001 x 2002 x 2008 x 2009) x 2011 x 2012 x 2013
B = x 6 6 xx 6 x 6
Do tích các số tận cùng là 6 thì tận cùng là 6
nên chữ số tận cùng của B là 6.

Bài 3:
Cho A= 2013 x 2013 x 2013 x x 2013 + 2014 x 2014 x
2014 x . X 2014
Cú 2014 tha s


cú 2013 tha s

Tỡm ch s tn cựng ca A

22


Bài 4 : Hãy cho biết chữ số tận cùng của kết quả dãy tính sau:
a) 81 x 82 x 83 x 84 + 85 x 86 + 87 x 88 x 89 x 90 + 91 x 92 x 93
b) 81 x 63 x 45 x 27 – 37 x 29 x 51 x 12.
Giải: a) Ta thấy :
- Do 1 x 2 x 3 x 4 = 24 nên 81 x 82 x 83 x 84 có chữ số tận cùng là 4.
- Do 5 x 6 = 30 nên 85 x 86 có chữ số tận cùng là 0.
- Do 7 x 8 x 9 x 0 = 0 nên 87 x 88 x 89 x 90 có chữ số tận cùng là 0.
- Do 1 x 2 x 3 = 6 nên 91 x 92 x 93 có chữ số tận cùng là 6.
Vì 4 + 0 + 0 + 6 = 10 nên kết quả dãy tính có chữ có tận cùng là 0.
b) Ta thấy:
- Do 1 x 3 x 5 x 7 = 105 nên 81 x 63 x 45 x 27 có số tận cùng là 5.
- Do 7 x 9 x 1 x 2 = 126 nên 37 x 29 x 51 x 12 có chữ số tận cùng là 6.
Vậy : 81 x 63 x 45 x 27 – 37 x 29 x 51 x 12 = *…*5 - *...*6 = *…*9. Dãy số có
tận cùng là 9.
Bài 5: Các tích sau tận cùng bằng chữ số nào:
a) 24 x 34 x 44 x … x 114 x 124.
b) 198 x 208 x 218 x … x 448 x 458.
c) 3 x 13 x 23 x … x 103.
d) 17 x 37 x 57 x 77 x … x 157 x 177.
Bài 6: Hãy cho biết chữ số tận cùng của kết quả dãy tính sau:
a) 11 x 22 x 33 x 44 + 55 + 66 x 77 x 88 x 99.
b) 32 x 44 x 75 x 69 – 21 x 49 x 65 x 55.

c) 1991 x 1992 x 1993 x 1994 x 1995 x 1996 x 1997 x 1988.
….

7. Giải pháp 7. Rèn một số kĩ năng cần thiết
Mục đích: Cấu trúc một vòng thi Violympic Toán thường gồm có 3 bài, thời
gian làm bài khoảng 60 phút. Khi các em tham gia giải toán, các em không phải
trình bày bài giải chỉ điền kết quả. Ngoài việc làm chính xác, các em còn phải
23


chạy đua với thời gian. Những học sinh có cùng số điểm nhưng quỹ thời gian
của học sinh nào càng ít thì xếp giải càng cao. Bởi vậy, khi học sinh tham gia thi
giải toán Violimpic thì một yêu cầu cơ bản là các em phải làm thật nhanh, nhập
số liệu chính xác. Các em không có thời gian để kiểm tra kết quả dẫn đến những
sai sót không đáng có. Giáo viên là người giúp các em rèn một số kĩ năng cơ
bản: tính toán chính xác, xử lí nhanh các thông tin, lập kế hoạch thực hiện rõ
ràng, nhập số liệu chính xác, ....Có như vậy các em mới đạt số điểm như mong
muốn.
Cách thực hiện:
7.1. Rèn kĩ năng tính toán:
- Giáo viên phải thường xuyên theo dõi, uốn nắn các kĩ năng tính toán cho học
sinh, từ những kĩ năng cơ bản nhất: cộng, trừ, nhân, chia số tự nhiên, phân số, số
thập phân. Đặc biệt là kĩ năng vận dụng các quy tắc nhẩm, thủ thuật tính nhẩm.
7.2. Kĩ năng xử lí thông tin, giải quyết tình huống có vấn đề.
- Cần rèn cho học sinh: đọc kĩ đề bài, xác định ý trọng tâm để tìm tình huống có
vấn đề trong mỗi đề toán. Từ đó đưa ra hướng giải quyết nhanh, chính xác.
Ví dụ: Người ta lấy tích các số tự nhiên liên tiếp từ 1 đến 30 để chia cho
1000000. Hỏi phép chia có dư không?
Với bài toán này, học sinh phải xác định được vấn đề: tích của các số tự
nhiên liên tiếp từ 1 đến 30 có số chữ số 0 tận cùng ít nhất phải là 6. Hay chính là

đi tìm số chữ số 0 tận cùng của tích đó.
7.3. Rèn kĩ năng lập kế hoạch tìm đáp số bài toán
- Sau khi hưỡng dẫn học sinh đọc đề bài, phân tích, xử lí thông tin trong nội
dung bài toán, giáo viên cần hướng dẫn học sinh xác định dạng bài, từ đó mới
lập kế hoạch thực hiện.
Ví dụ: Tìm chữ số tận cùng của A, biết:
A= 14 x 24 x 34 x 44 x 54 x ………. x 2004 x 2014
A= 11 x 21 x 31 x 41 x … x 71 + 9 x 19 x 29 x 39 x … x 89
- Học sinh cần lập kế hoạch thực hiện theo các bước:
Bước 1: Tìm số thừa số của A
24


Bước 2: Xác định chữ số tận cùng của mỗi thừa số
Bước 3: Sử dụng thuật toán để chia số các thừa số thành các nhóm
Bước 4: Xác định chữ số tận cùng của A
Bước 5: Nhập đáp số.
7.4. Rèn kĩ năng thực hành nhanh, chính xác:
- Như chúng ta đã biết, học sinh tham gia giao lưu không cần trình bày bài giải
mà chỉ cần điền kết quả bài toán rồi nộp bài. Vì vậy, để kiểm tra việc thực hành
vận dụng kiến thức, thuật toán của học sinh, giáo viên nên thiết kế bài tập dưới
dạng trắc nghiệm khách quan. Học sinh được luyện tập nhiều sẽ nhớ lâu hơn,
thành thạo hơn.
Ví dụ: Cho A= 2014 x 2014 x 2014 x 2014x …. x 2014 (có 2017 thừa số)
B= 2017 x 2017 x 2017 x 2017 x ….x 2017 (có 2014 thừa số)
Chữ số tận cùng của A + B là:
a) 1

b) 3


c) 4

d) 9

- Học sinh tìm chữ số tận cùng của A bằng một số phép tính sau:
2017 : 2 = 1008 (nhóm có tận cùng là 6) và dư một thừa số có tận cùng là 4
A có tận cùng là 4
2014 : 4= 503 (nhóm có tận cùng là 1) và dư 2 thừa số có tận cùng là 7
B có tận cùng là 9
=> A + B có tận cùng là 3 (4 + 9 = 13). Chọn đáp án b.
Ví dụ 2: Tích sau có bao nhiêu chữ số 0 tận cùng:
20 x 21 x 22 x…. x 40
a) 3

b) 4

c) 5

d) 6

(Đề thi Violimpic toán 5, năm học 2012-2013)
- Học sinh chỉ cần đếm xem trong tích trên có các thừa số chia hết cho 5:
20; 25; 30; 35; 40
rồi tách chúng ra thành:
4x5x5x5x6x5x7x5x8x5
Có tất cả 5 thừa số là 5. Vậy tích trên có 6 chữ số 0 tận cùng. Chọn đáp án d.

25



×