Tải bản đầy đủ (.pdf) (72 trang)

tuyen chon 500 bai tap toan 10 nxb ha noi 2005 2 885

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (12.66 MB, 72 trang )

B a i 287. (Cfiu hoi trftc nghi^m)

b)

,

FhiTdng trinh (1) »

Phi^cfng trinh nao sau day c6 hai nghi$m X i , X2 thoa m a n bit't d^n
thii-c xi < 0 < X2 < 2.
a)

3x^ - 5x + 1 = 0

b)

3x -

.2

X

t = x^ - 2x + 2

(x' - 2x + 2)^ - 4{x'' - 2x + 2) + (2m + 4) = 0

(dieu k i ^ n : t >. 1)

- 4 t + 2 ( m + 2) = 0

c) Sx"* - 2x - 4 = 0



(*)

D a t fit) = t^ - 4t + 2(m + 2)

d) 3x - 5x - 4 = 0

+4 =0

PhUOng t r i n h da cho c6 n g h i e m x c=> Phifcfng t r i n h (*) c6 n g h i e m t > 1

• HUdng dan
D a t f(x) = ve t r a i phuong t r i n h bac h a i
Ta p h a i c6 :

B i e n d6'i phuong trinh (1).

f3.f(0) < 0

ff(0) < 0

3.f(2) > 0

f(2) > 2

Trifdng h<fp 1 : PhUOng t r i n h (*) c6 h a i nghiem t i , t2 > 1
S •
-

^


V, ,

-2

.
t2

Dap so : 3x^ - 2x - 4 = 0 (Cau c)

B a i 2 8 8 . (Cau hoi trie

nghi^m)

Vdi nhffng gia tri nao ciia a thi phi^c^ng trinh 3x^ - ax + a = 0 c6 hai
nghi^m X i , X2 thoa man - 2 < X i < 2 < X 2 hoSc
a ) a < - 1 2 V a > 4
c)

d)

A' = 4 - 2 ( m + 2) = - 2 m S 0

l.f(l) > 0

l.f(1) = 2m + 1 > 0
I

Xi<-2

b ) a < - 4 V a > 1 2

-4
A' > 0



-12
= 2 > 1

t i < 1 < t2 o

(hien nhien)

l . f d ) < 0 CO m < -

Hofp h a i k§'t quA -

T a p h a i co f ( - 2).f(2) < 0

2

Trufofng hcjTp 2 : Phuong t r i n h (*) c6 h a i n g h i e m t i , t2 sao cho f

* Hiidng dan
D a t f(x) = 3x^ - ax + a


<=>

2

- < m < 0 V m < - - t a c 6 m < 0
2
2

Dap so : m < 0

Dap so : a < - 4 V a > 12 (cau b)
B a i 290. (Toan ttf lu^in)
B a i 289. (Toan ti^ l u $ n )
a)

Tim g i a t r i n h o n h a t ciia h a m so' y = x^ - 2x + 2

b)

Cho phtfoTng t r i n h (x^ - 2x + 2f - 4(x - l)'^ + 2m = 0

* Hiidng ddn
Bien ddi y (

b)

Dat t =

Tim gia tri Idrn nhat ciia ham so y = - x"* - 4x'* + 5


b)

X a c dinh a de phtftfng trinh (- x'* - 4x'' + 5)^ - 2(x'' + 4x*) + m = 0 c6
nghiem.

(*). X a c d i n h m

de phifoTng t r i n h (*) c6 n g h i $ m .

a)

a)

f + hkng so' A > A

*Hudngd&n
a)

B i e n d o i y = h ^ n g so' (

b)

D a t t = - x"* - 4x^ + 5 r o i b i e n d o i phiTcfng t r i n h da cho t h ^ n h
phirong t r i n h bac h a i a \o t (dieu k i ? n t <

r o i b i e n doi phiTcrng t r i n h (*) t h a n h phifcrng t r i n h baC

hai in so t (dieu k i e n ciia t : cau a)
Phuong t r i n h da cho c6 n g h i e m


<=> Phuomg t r i n h (theo t ) c6 nghiein

t >

...) va liAi y x**, x^ > 0

Sau d6 g i a i gio'ng b a i 289.
Dap so :
b)

max(y) = 5 v i y = 5 - (x" + 4x^) < 5 (Dfi'u = xdy r a o
R

,

GlAl
a)

T a c6 y = x^ - 2x + 2 = (x - 1)^ + 1 > 1, Vx £ R
Dau = xay r a o

x = 1

Dap so : m i n ( y ) = 1 k h i x = 1
R

166

).


c)

Phucfng t r i n h da cho o>

x = 0)


t = - x"* - 4 x ^ + 5

(t < 5)

t^ + 2t + m - 10 - 0

(*)

*

T i e p tuc g i o n g b ^ i 289, t a c6 : - 25 < m < 11 V m < - 25 <=> m < 11
167


E.

KI^M TRA CAC KIEN THLfC VE TAM THUTC BAC

HAI

a i 294. (Cau hoi trac nghiem)
Gia silf tam thtfc bgc hai f(x) = (1 - m)x^ + 2mx + 4 c6 bang xet dau :


B a i 291. (Cau h6i trSc nghiem)

(xi, X2 la hai nghiem ciia f(x))

Tam thtfc bglc hai f(x) = (m^ - 3)x^ + 2mx c6 bang xet dau

+

+00

1

0

f(x)

0

-

0

+

c) m = 3

d) m = - 3

b)m

4[ HUdng ddn

• HUdng ddn

+

0

-

c)lml>l

d)|m|
f(x) > 0 k h i x e ( x i ; X2) n e n a = l - m < 0

c:>m>l

Dap so': m > 1 (cau a)

TU bang xet dau t a c6

f(l) = 0
- 3 > 0

B a i 295. (Cau hoi t r i e nghiem)
Tam thiJc f(x) = 2x^ - ax - 3 c6 hai nghiem X i , Xg thoa man dieu

Dap so : m = - 3 (cau d)


ki^n —

+ —

B a i 292. (Cau hoi trfic nghi^m)
Xac dinh cac gia tri cua m de bat phifoTng trinh x^ - 4x + 2m - 1 < (I
CO t^p nghi^m S = 0 ?
5
a)m<—
2

0

C a u nao sau day dung ?
a)m>l

b) m = - 1

+ 00

X2

-

f(x)

Hay tinh m ?
a) m = 1

— 00


X

- 00

X

5
b)m>—
2

5
c)m<—
2

d)m>

5

2

<=>

a) a = 15

= 5. Tinh a ?
b) l a I = 15

c) a = - 15


d) MOt gia tri khac.

* HUdng ddn
1

1

X-^

X2

1

2

S

P

Xj •X2

Dap so : a = - 15 (cau c)

* HUdng dan
Bat phifcfng t r i n h da cho v6 n g h i e m

X.,

- 4x + 2 m -


1 > d

n g h i e m diing vdi m o i x E R <=> A' < 0

B a i 296. (Cau hoi trac nghiem)
Tam thii-c f(x) = x^ - 2mx + 4 c6 gia tri nho nhat bSng 3. T i n h m ?

Dap so': m > — (cau b)
2

a) m = 1

c) I m

b)m = - l

I = 1

d) I m

I >1

* Hudng ddn
B a i 293. (Cau hoi tr&c nghiem)



T|lp nghiem cua b a t phufoTng t r i n h

_


2x - 1

>0 1a :

(x + l)(-x^ + 4x - 6)
a)

S = (- 1 ; ^ )

b)

S = [- 1 ;

1]

c) [- 1 ; ^ )

D a p s o : S = (- 1[ ^]

(cau d)

> 4 -

Vay minff(x)] = 4 -

= 3

Dap so : I m
d) (- 1 ; ^ ]


• HUdng ddn
Vi {- x^ + 4x - 6) < 0, Vx e R n e n bat phiTcfng t r i n h da cho tiTOng
2x — 1
1
duong vdri
<0
<=>-l2
*

f(x) = (x - m)^ + 4 -

B a i 297. (Cau hoi trSc nghiem)
Ham so y = ^2x^ - m x + 2 c6 tgp xac dinh S = R k h i :
a)

I m l <4

b)

I m l <4

c)

I m I < 16

d)

I m I < 16


* Hudng ddn
H a m so da cho xac d i n h t r e n R o
^ a p so : I m

168

I = 1 (cau c)

2x^

>o,

VxeR'<=>A<0

I < 4 (Cau a)
169


B a i 298. (C&u hoi trfic nghiem)
Cho tarn thtfc f(x) =
f(x + 1) = 0 la :
a)S=|l;3)

- 4x + 3. T|lp nghiem ciia phi^Ong trinh

b)S=|-l;-3|

c) S = |0; - 2|


d) S = {2; 0)
'

- 2

f(x) > 0, Vx

0

(f(x) > 0, Vx
X

+00

B a i 299. Cho a, b, c la dp dai ba canh cua mpt tarn giac.

D h a m so

+

- 00

E

R

D = R

e


R

D = R

Xi

+00

X2

(-00 ; x i j u fx2 ; +oo)

f(x)

x i , X 2 l a hai n g h i e m ciia f(x)

ChiiTng minh rSng tarn thrfc f{x) = (b + c)x^ - 2(a + b + c)x + 2(a + b + c )
ludn C O gia tri dUOng.
• HUdng

Xet dau fix)

-

g(x) = f(x + 1) = (x + 1)^ - 4(x + 1) + 3

Dap so': S = (2, 01 (cau d)




A'

- cx;

% HUdng d&n


m

Xi

=

-

2 - 7m + 2

Xg

=

-

2 + ^m + 2

(xi <

X2)

dan


Ti'nh A' cua f(x) va chii y r ^ n g a, b, c > O v a a + b > c , b + c > a ,

GlAl


f(x) = (b + c)x^ - 2(a + b + c)x + 2(a + b + c)
A' = (a + b + c)^ - 2(b + c)(a + b + c)
= (a + b + c)[(a + b + c) - 2(b + c)]
= (a + b + c)(a - b - c)

,

V i a, b, c la do dai ba canh ciia m o t t a m gidc nen a, b, c > 0
A' < 0

a < b + (

f(x) > 0, Vx € R

B a i 300. T u y theo m.'tim t§p xac dinh cua ham s6' y = ^x'^ + 4x - m + 2 (1)
• HUdng d&n


H a m so (1) xac d i n h o

x^ +

> 0




D a t f(x) = x^ + 4x - m + 2, t i n h

xet dau A'.

GlAl


H a m so (1) xac d i n h o

x^ + 4x - m + 2 > 0 (G9i D la t a p xac dinh

cua ham so)


D a t f(x) = x^ + 4x - m + 2, t a

"5,

CO

m + 2

-2

- 00

170


: A' = 4 - (- m + 2)

0

+

171


VECTO

Chu^'oii d o I
Kicn
I)

t h i f c coT

c)

*
->
Do dai cua vecta AB la dp dai ciia doan thang AB, ki hieu |AB|
0 CO do dai bang 0 ( 0 = 0 )
3) Hai vector bang nhau
Dinh nghla
Hai vecta bang nnau khi chiing ciing hudng va c6 dp dai b&ng nhau.
Chii y :
• a va b bang nhau, ki hieu a = b

ban


- >

C a c djnh nghTa

1) Vector
Dinh nghla
Vecta la doan thSng da dinh hirdng, nghla la da chon mot diem mut
lam diem dau, diem mut con lai la diem cuoi.



Vdi hai diem phan biet A va B, ta c6 hai vecta khac nhau :
AB va BA
• Vecta CO diem dau va di§m cuoi trung nhau, chang han: AA , MM ,
goi la "vector - khong", ki hieu 0
.
,
'
2) Phifofng, hi^oTng, dp dai ciia vectof
a) Dinh nghla
Hai vecta goi la ciing phuang khi hai vecta nay Ian liicrt nhm tren
hai dUcJng thang song song nhau hoac trung nhau.

H$ qua : Hai vecta cung phuang vdi mot vecta thuT ba thi hai vecta
do cung phi/ang.
b) Hai vectcf a va b cung phifcfng thi a va b c6 the cung hxidng
hoac ngUdc hi^drng
Chii y :
• 0 cung hudrng vdi moi vecta.

• hirdrng.
Hai vecta cung hudng vdri mot vecta thiJ ba thi hai vecta do cung
—>

172

a = b va b = c

doan th^ng
vecta
Vecta CO diem dau la A, diem cuoi la B, ki hieu : AB



Dinh nghla

>

a = c

• Cho san a va mot diem O, ta c6 duy nhat mot di§m A : OA = a
• Mpi vecta 0 deu bang nhau
II)

Phep cpng c a c vectd

1) Dinh nghla tong cac vectof
Cho hai vecta a va b .
Tii diem A tuy y, ve AB = a va BC = b .
Vector AC dUdc goi la tong hai vector a va b , ki hi^u : AC = a + b

Chii y :
• Tong a + b khong phu thuoc vao vi tri diem A.


Quy tac ba diem : AC = AB + BC (ba diem A, B, C tuy y) (hinh 1)



Quy tac dudng cheo hinh binh hanh.
ABCD la hinh binh hanh =5 AB + AD = AC (hinh 2)
A
D
B^
(Hinh 1)


2)

Tinh chat
->

^

a)

V6i moi a t a c d :

a + 0 = 0 + a=

b)


V d i m o i a , b , ta c6: a + b = b + a

c)

Vdi moi a ,

b, c,tac6:(a

(giao hoan)

V e c t d d o i c i i a mpt vectof

a)

Dinhli

a +
b)

X

=

b)

k. a = 0 neu k = 0 hoac a = 0

+ b) + c = a + (b + c)


(ket hcfp)

c)

Do dai ciia k. a la |k. a | = i k | . | a |

2)

Tinh chat

cho trUdc, lu6n c6 m^ot vecto

x

duy n h a t sao

cho

0

Dinh nghia

a)

k ( l . 2 ) = (k.l). a

b)

(k + 1). a = k . a + 1. a


c)

k( a + b ) = k. a + k. b

d)

1. a = a ; 0. a = 0 ; k. 0 = 0

3)

Dinhli
->

Neu vecto

a

+ b

= 0

—»

t h i vectof

b

dirge goi la vector doi cua

so' thiTc k sao cho b = k. a


d

a + (- a ) =
M 6 i vector c6 m p t vector doi duy n h a t .




->

k > 0



k < 0

Dinh nghia
Cho h a i d i e m j h a n biet A va B

b)

,

M chia doan t h ^ n g A B theo t i so' o
c)

= a+(-b)

1-k


OA -

^

k.OB

K h i k = - 1 t h i M la t r u n g d i e m ciia doan t h i n g A B .
Vay :

-

OM =

(k / 1)

H§ qua

Phep t i m hieu a - b goi l a phep trir hai vectcr.
>

cx> M A = k. M B

Dinh li

Dinh nghia

-

'


D i e m M chia doan t h ^ n g A B theo t i so k
Cho d i e m O tCiy y va k ?i 1 , ta c6 :

>

> ,.
'

H i ? u c i i a h a i vectof

-

o a v a b cung hddng
-*
—>
o a va b ngupc h d d n g

a)

Chiiy:

1)



D i e m c h i a d o a n t h a n g theo ti so' cho trifdfe

N e u b l a vector doi cua a t h i a la vector d o i ciia b n e n :


va vectd doi cua vector b nghia l a : a - b

IV)

->

0 t h i t o n t a i duy n h a t

4)


Hi#u cua vector a va vectcf b , k i hi^u a - b , la tong cua vectcf a



M la t r u n g d i e m ciia doan thSng A B
o

>

OM =

If

OA + OB

( 0 la d i e m tuy y )

Cho ba d i e m bat k i : A, B, C, ta c6 : AC = BC - B A


Phep nhan vectd v6l mpt so
Dinh nghia
T i c h ciia vectcr a v d i so thuc k la m o t vectcr, k i hieu k. a , dxxac xac
d i n h nhir sau :

,

->

a va b la h a i vector doi nhau.



->

—>

_>

2)

^Z",

->

Chii y :



' ;• -


Neu h a i vecta a va b ciing phddng va a

vector a va k i hieu l a - a

.


u

V d i m o i vectd a , b va m o i so thdc k, 1, ta c6 :

1)

a

k. a cung hudrng v d i vectcr a neu k > 0 ngugc hirdng v d i vectd a
neu k < 0

a

III) Phep trii hai vectd

Vdi m6i

a)

5)

T r o n g t a m c i i a tarn g i a c




Dinh li


G la t r o n g t a m ciia t a m giac A B C o

GA + GB + GC = Q



G la t r o n g t a m ciia t a m gidc A B C o

OG =

OA + OB + OC


Toan

K la t r o n g t a m t a m giac Q S U nen K Q + K S + K U = 0

B a i 1. Cho tam giac A B C , goi A' la diem doi xii'ng \6i B qua A, B' la diem
doi xxjfng vdri C qua B, C la diem doi xii'ng vofi A qua C.

<^

+


sk

+ U K

dan

c:> 3 G K + ( Q P + S R
va phu y

OA = OA' + A"A



TiTcfng t u doi v d i OB



AB + BC + CA =

va

A'A = AB
Ta l a i c6 :

= OB'

(3)
Q

C


UT = - A E
2
SR

Tuongtu- OB

d

= -CA

QP

: OA = OA' + A'A = OA' + AB

CO

+ UT ) =

OC

GIAI
Ta

(2)

3 G K + ( Q K + K P ) + ( sk + K R ) + ( U K + K T ) = (D

OA + OB + O C = OA' + O B ' + O C '




0

=

Cong (1) va (2) ta c6 :

Chu'ng minh rang vdti mpt diem O bat ki ta c6 :

* HUdng

QK

+ B'B

= OB'

(1) (vi

A"A = AB )
QP

(2)

+ BC

(3)

OC = OC' + C'C = OC' + CA


+ UT + SR =

(3) va (4)

Cong (1), (2) va (3) ta CO :

= -EC
2

=:> 3 G K

-

2

CA + A E + EC

= 0

o

GK = 0

= 0 (4)
ci> G = K

(dpcm)

Bai 3. Cho ti? giac A B C D . Goi M, N Ian lUgft la trung diem cac canh A B ,


OA + 013 + OC = OA' + OB' + OC' +

AB + BI: + CA

C D . Chu'ng minh 2 MN = A C + BD = AD + B C
GIAI
ChiJCng minh

= OA' + OB' + O C (dpcni)

B a i 2. Cho luc giac A B C D E F . Goi P, Q, R, S, T, U Ian li^grt la trung diem
cac canh AB, B C , C D , D E , E F , FA.
Chu'ng minh rdng hai tam giac P R T va Q S U c6 cung trong tam.
• HUdng

dan

Goi G va K Ian lucft la t r o n g t a m A P R T va A Q S U , ta chu'ng m i n h
n

1 -

'

.

u

- -


G K = 0 bang each chu y •

GP + GR

+ GT = 0

|KQ + KS + KU =

M N = AC + B D
Ta

CO

: •

AC = A M + M N + N C



BD = BM + M N + N D

'

' • '
\

Cong ve, ta difcfc: AC + B1) = A M + 2 M N + N C + B M + NT)
= A M + B M + 2 M N + N C + N D (1)


0

GIAI


G la t r o n g t a m t a m giac P R T nen G P + G R + G T = 0
GK

<=> 3 G K

+ KP
+ (KP

+ GK
+ KR

+ KR

+ GK

+ KT) =

0

+ KT
(1)

=

0


177


GIAI

M l a t r u n g d i e m ciia A B n e n A M + B M = 0

Mk

N



l a t r u n g d i e m cua CD n e n N C + N D = 0

L a y d i e m O t u y y , t a c6 :
A^i

Do d6, (1) t r d t h a n h : AC + BD = 2 M N


+

+

+ A

\


(dpcm)
- O A j ) + ( OB2 - OA2 ) +

=

( OBj

=

( O B i + OB2 +

+ (0B„ - 0A„ )

, .

T L r o n g t u t a c 6 : AX) + BC = 2 M N

T 6 m l a i , t a c6 : 2 M N = AC +
B a i 4. Mpt gia d9 dUpc gSn v a c

B1)

tvCdng

= A D + BC

nhvC




hinh l a . Tam giac A B C vuong

V i n d i e m B i , B2,
B„ cung Ih n d i e m A i , A2,
hieu m p t each khac, cho n e n t a c6 :
->
OBj

c a n cf diem C. Ngifori ta treo vao diem A mpt v|it nang 5N.
Hoi C O nhang Itfc nao tac dpng vao buTc tvTdng tai hai diem B va C ?

+ 0 B „ ) - ( O A i + OA2 +

->
+ OB2 +

Tir (1) va (2)

AjBi

, An nhitog ducfc k i

^

->

+ A2B2 +

+ A^B,, = 0


+ 0 B „ = O A j + OA2 +

+ 0 A „ ) (1)

->

+ 0A„
(dpcm)

B a i 6. Cho ba diem phan bipt A, B, C .
a)

Chiing minh rSng neu c6 mpt diem I nao do va mpt so thiic t sao
>
>
>

cho l A = t . I B + (1 - t ) l C thi vofi mpi diem I ' ta deu c6 :


/ .

I-A = t.I-B + ( 1 - t ) l ' C
b)

diem A, B, C thSng hang.

Hinh l b

Hinh l a


Chu-ng to rfing l A = t . I B + ( l - t ) l C la dieu k i ^ n o^n va dii de ba
GIAI

GIAI

a)

T a i d i e m A , liTc keo F hi/dng t h i n g dijfng xuong difcJi c6 ci^cfng dp

Theo gia t h i e t : l A = t . I B + ( 1 - t ) I C , t h i v d i m o i die"m I ' , t a c6 :
IF + I'A = t.

5 N , t a c6 t h e x e m F l a t d n g cua h a i vector Fj va F2 I a n lufcft n&m
t r e n h a i dir6ng t h i n g A C v a A B .
D i thay :

f-

ir + I'B

+( i - t )

i r + rc

= t . i ' B + ( i - t ) r c + ir

| Fj I = | F | va | F2 I = I F | x/2 (do t a m gidc A B C

b)


vuong can t a i C)

I'A = t i ' B + ( i - t ) r c

N e u t a chon I ' t r u n g vdi A t h i c6 0 = t A B + (1 - t ) A C , do l a dieu
k i e n can va du de ba d i e m A , B , C t h i n g hang.

Vay : C6 m p t luc 6p vuong goc vdi biJc tirdng t a i diem C v d i ciTdng
do 5 N , v ^ m p t life keo biJc tifcrng t a i d i e m B theo hi/dng B A v d i
cudng dp "5 V2 N (Xem h i n h l b )

—>

Chiing minh rfing : A j B j + AjBg +

vi

tri

ciia

diem

G

sao

cho


GA + G B + G C + G D = 0 .

B a i 5. Cho n diem tren mSt ph^ng. B a n Minh k i h i ^ u chiing l a A i , A2, An- B a n Mai k i hipu chiing la B i , B2,

8 a i 7. Cho tii giac A B C D .
a) H a y
xac
d}nh

, B„.
+ A„'B„

b)

Chiing minh rSng vdri mpi diem O, vectof O G l a trung binh cpng
ciia bon vectcf O A , O B , OC , OD , ttfc la

= 0

OG =

- OA + OB + OC + OD (Diem G nhii the' gpi la trong tam
4

ciia tii giac A B C D ) .
17«

179



• Hudng

a i 9.

dan

Siif d u n g c o i i g thufc M A

+ MB

= 2MO

(Ola trung diem

AB).
3)

GA

Tiiih

+ GB

GC

=

+^ G D

=


OA

e)

HA + H E + H C = 2 H O

f)

Du-ofng thflng H O d i q u a t r o n g t a m G c u a t a m g i a c A B C

Vi tri cua G

OH

+ GB

= 2GI

(I la t r u n g d i e m



GG

+ GD

=

(J la t r u n g d i e m


2GJ

a)

AB)

ChuTng m i n h t i r a n g t\i t a c u n g co C H // B ' A

GA + GB

+ GC + G D

= 2 GI +

GA + GB

+ GC + G D

= 0

(gt)

( i ) v a (j)

GJ

nen

GI + GJ


=

Tir GA + G B

=

1

Vay

GA + GB

+ GC + G D

b)

+ GC + G D

Ta

CO

+ OA

OG

=

4


+ GO

+ OB

+ GO

+ OC

+ GO

+ OD

=

0

c)

OA + O B + OC + O D

-

A B ' C H la h i n h b i n h h a n h

AH

=2 00

OA


= OH

+ HA

= OH

= OH

- 200

=

••

=:> A H

= B'C .
B'C

=2

00

(dpcm)
-

OH

AH

- (OB

+

OC)

= 0 , t a co :
«.

GO

^

(i)

(j)

O D l a d U d n g t r u n g b i n h cua t a m g i a c B B ' C n e n

0

V a y , G l a t r u n g d i e m ciia I J
Chii-ng m i n h G O

G o i B ' l a d i e m do'i x i J n g v d i B qua O, t a co B ' C 1 B C .
V i H l a t r i r c t a m t a m g i a c A B C n e n A H 1 B C . V a y A H // B ' C

CD)

C o n g ve ciia (1) v a (2), t a co :


Ma

(difcfng

GIAI

CO :

GA

o

+ OC =

t h d n g do goi l a di^dng t h i i n g 0 - Ic c i i a t a m g i a c A B C )



b)

+ OB

—>

d)
(2)

GIAI
Ta


AH = 2 0D

(1)

C o n g (1) v a (2) r 6 i sU d u n g g i a t h i e t ) .

a)

C h o t a m g i a c A B C n p i t i e p t r o n g d t T o T n g t r o n (O), H l a trii'c t a m t a m
g i a c v a D l a t r u n g d i e m c a n h B C . Chiifng m i n h r S n g :

OA

+ OB

+ OC

= OH

(dpcm)

G l a t r o n g t a m t a m g i a c A B C , t a co :
HA

+ HB + HC

= 3 HG

= 3( H O

= 3 HO

B a i 8. C h o d i e m O co d i n h v a difofng t h S n g d d i q u a h a i d i e m A , B co d i n h

+ OG ) = 3 H O
+ OA

+ OB

+ 3 OG

+

OC

K e t h o p v d i k e t qua ciia cau b t a co :

Chiirng m i n h r S n g d i e m M thuQC dUcfng t h ^ n g d k h i v a c h i k h i co s*>
HA

a s a o c h o O M = a O A + (1 - a) O B
d)

Vdri d i e u k i ^ n n a o c u a a t h i M t h u Q c d o a n t h a n g A B ?
GIAI
Ta

OM

->


' ->

= uOA

+ (1 - a ) O B

< o O M - O B = a { O A - O B )

180

= 3Hb

+ OH

= 3 H0

- HO = 2 HO

Vi G

la t r o n g t a m t a m giac A B C

nen

3 0G

= O H , do do ba d i e m H , 0 , G t h a n g

tCr k e t


qua

(dpcm)
cau

b t a co

hang.

CO :

->


+ HB + HC

Vi B M = a BA

->
OM

- > - > • - >
= u( O A

o B M = a B A

a i 10. C h o t a m g i a c A B C v a d i e m O t u y y.

~ OB ) + OB _


a)

1
H a y x a c d i n h v i t r i d i e m M sao c h o O M = — 3 0 B

b)

Vdri d i e m M d a dtfgfc x a c d i n h d c a u a , t i n h A M theo A B v a

+ OC

o M e d

n e n M thuoc d o a n t h S n g A B k h i va chi k h i 0 < a

AC

^
181

:


• HUdng

a)
b)

V$y F \k dinh thu- tiT cua hinh binh hknh

C B . (xem hinh ve)

d&n

T i n h B M theo B C (can ciJ gia t h i e t )
Cho O = A t a CO k e t qua.

Ta da c6 : CD = A B ; A E

GlAl
a)

=

^

30B + OC

o

4 OB + B M

cj.

4 0 B + 4 B M = 4 0 B + BC

= SOB +

b)
<=> 4 0 M


So sanh MA + MB + MC va MD + M E + M F

=
M D + M E + M F = ( M A + AD ) + ( M B + BE ) + ( M C

OB + BC

= (MA

<=> 4 B M

Vay d i e m M a t r e n doan t h i n g BC
b)

Chon d i e m 0 = A t a di/oc : A M
• -

= BC

<:=> B M =

AE

-BC
4



= -


SAB + AC
4(

=

MC

+

'

Tifcfng tir : B la t r u n g d i e m D F

• 2F'C

AB;

(1)
'

: '

vi CBFA la hinh binh hanh



=>AE

= - A F


= : > A l a t r u n g d i e m EF.

C la t r u n g d i e m D E n e n :

;

= DE + DF

=

FD

+ F"E

2 E B = ED +

M E = MA + B C ; M F = MB + C A .

E"F

Cong ve theo vf, t a ducfc :

Chu'ng minh rfing cac diem D, E , F khong phu thupc vao vi tri ciia
diem M,
b)

= C"B

A E + A F = B1: + C B = 0


- > - > - >

MD

= BC chufng m i n h t r e n

=>

2DA

Hay xac dinh cac diem D, E , F sao cho

+ M B + M C ) + ( A D + B E + CF )

>; .

AF

B M = - B C ( h i n h ve)
4

->

+ C¥ )

Ta l a i CO : <

B a i 11. Cho tam giac A B C va diem M tuy y,
a)


va B F = CA n e n D, E, F k h o n g

phu thuoc vao v i t r i cua M

V i t r i cua M
Ta CO : Q M

= BI:

ve tren hai canh C A v^

2(D'A + ¥C + E'B)

So sanh hai tong vectcf MA + MB + MC va MD + M E + M F

o D A + F C

=

(D'E

+ ED) + (DF + FD) + (FE + EF)

+ EB = ( ) o A b + B E

= 0

'


+ CF = 0 ( 2 )

v

GIAI
a)



T i r ( l ) va (2)

Xac dinh diem D

Ta CO: M D = M C + A B
o

M D - MC = AB

o

a i 12.



Xac dinh diem E

TLforng tir, t a c6 : M E = M A + BC

o


AE =

«

182

dan

Ta CO :
.

CH 1 AB
C H // A B '

AB' ±

AB

Tuong tir A H / / C B '

(2)

TCr (1) va (2) t a co A H C B ' la h i n h b i n h h a n h

Xac diuh diem F

Tucfng t y , t a c6 : M F = M B + CA

Cho tam giac A B C npi tiep trong difoTng tron (O).


HiCdng

B"C

Vay : E la d i n h thu" t\i ciia h i n h b i n h h a n h ve t r e n h a i can''
BA va B C (xem h i n h ve)

(dpcm)

Gpi H la trUc tam tam giac A B C va B' la diem doi xrfng vdfi B qua
tam O.
->
->
->
Hay so sanh cac vector A H va B ' C , A B ' va H C .

CD = A B

Vay : D la d i n h thu" tir ciia h i n h b i n h h a n h ve t r e n h a i caul'
A B va AC (xem h i n h ve)

=> M D + M E + M F = M A + M B + M C

o

Bli' = CA

A H = B'C va A B ' = H C

• '


• ' '

183


Bai

13. C h o h a i h i n h b i n h h a n h A B C D v a A B ' C ' D ' c6 c h u n g d i n h A .

K h i do u = - 4 O M va do do

Chufng m i n h r g n g :
a)

BB' + C'C + DD' = 0

b)

H a i tarn g i a c B C D v a B ' C D ' c6 c u n g t r p n g tarn.

Chu y : Cucli chgn dicin O sao cho v = 0

'

V

= ( A B ' - A B ) + ( AC - A C ' ) + ( A D ' - A D )

A B ' f A D ' = A C ( V i A B ' C ' D ' la h i n h b i n h h a n h )


B B ' + C'C + D D ' = A C ' - A C ' - A C + AC = 0

AM

=

^ • •• •

., •

^

GIAI

,

Goi 0 , O' I a n luat la t r u n g diem ciia A D va BC, ta c6 :

= ( G B ' + B'B ) + ( G C + C C ' ) + ( G D ' + D ' D )
= ( G B ' + GC + G D ' ) + ( B'B

+ CC' +

D'b )

^ ( G B ' + GC + G D ' ) - ( B B ' + C'C + D D ' )

00'


= OA + A B + BO'

00'

= ob

Neu G la t r o n g t a m t a m giac B C D t h i GIB + G C + G D do til (*) ta cung c6 G B ' + GC + G D ' = 0

0, i u c

OA

Ma

G cung la t r o n g t a m

tam giac B ' C D ' (dpcm)

+ D C + CO'

2 0 0 ' = ( OA +

= G B ' + GC + G D ' - 0 = G B ' + GC + G D ' ) ( )

Nen

+ ob

0"b ) + ( A'B + D C ) + ( B O ' + C O ' )
=


0 (vi O la t r u n g di§m A D )

BO' + CO' =

0 (vi O' la t r u n g d i e m BC)

2 0 0 ' = A B + DC

o

00'

=

Vay t r o n g t a m hai t a m giac B C D va B ' C D ' t r i i n g nhau.
14. C h o t a m g i a c A B C v a di^ofng t h S n g d. T i m d i e m M t r e n dufong
> ^

t h A n g d sao cho vectof u

+ GC

k A B va D N = k D C .

T i m t a p hdp c a c t r u n g d i e m 1 c i i a d o a n thfing M N .

(dpcm)'

Vdi diem G bat k i ta c6 :


Bai



v = 0 ta chon diem O sao cho GO = —GC
4

H a i t a m g i a c B C D v a B ' C D ' c6 c u n g t r o n g t a m

G"B + GC' + 0 0

'

i 15. C h o til" g i a c A B C D . Vdri so k tuy y, l a y c a c d i e m M v a N sao c h o

AIB + A D = AC ( V i A B C D la h i n h b i n h h a n h )

b)

''

= (OA + OB + OC) + OC = 3OG + OG + GC = 40G

Vay dc

= ( A B ' + A D ' ) - A C ' - ( A B + A D ) + AC

Nen


,

G la. trpng tam tam giac ABC, ta c6 :

B B ' + CC' + D D '

Ma

u | = 40M.

Do d l i vectcf u nho n h a t k h i va chi k h i 4 0 M nho n h a t hay M la
h i n h chieu vuong goc ciia O t r e n d.

GIAI
a)

I

- >

=

- >

->

M A + M B + 2 M C c6 dp d a i n h o n h a t .
GIAI

Vdi m o i d i e m O ta c6 : u = M A + M B + 2 M C

= OA - O M + 013 ~ O M + 2 ( 0 C - O M )

- A B + DC
2

(1)

Tuang t\i : 0 va I la t r u n g diem ciia A D va M N nen ta cung c6 :
01

=

1
2

f

I

>

1

J

2

AM + DN

k.AB


Tir (1) va (2) => 0 1 = k. 0 0 '

+ k.DC

=

O

f

k . i A B + DC
2

(2)

=> I e dir6ng thSng ( 0 0 ' )

Vay k h i k thay doi, tap hop cac d i e m I la dUcfng t h i n g
M

00'.

B

= OA + OB + 2 0 C - 4 0 M
Ta chon d i e m 0 sao cho v = OA + O B + 2 OC = 0
184

185



B a i 16. C h o t a m g i a c A B C , l a y d i e m D t r e n c a n h B C s a o c h o B C = - B D .
3
Gpi I la diem xac dinh bdi 4 lA + 2 I B + 3 I C

=

Bai

A D B , B C D v a A C D , G v a G ' I a n lUfft l a t r p n g t a m c a c t a m g i a c A B C
va PQR.

0.

C h u ' n g m i n h diToTng t h ^ n g G G ' d i q u a D .

Chii-ng m i n h A , I , D nftm tr%n m p t diXdng t h ^ n g .
• HUdng

• HU&ng

dan

Dua vao cac gid t h i e t , chiJng m i n h l A va I D cung phuong (chufng



GIAI


Taco:

BC

3 I C -- I B

= -BD
3

<^

( ->

-> A

»



Ta CO : 3 D ^ = D A + D B + DC (1) v i G la t r o n g t a m t a m giac A B C



Tu'ong tuf ta cung c6 :

(1)
3 D G ' = DP + DQ + DR

.


Theo gia t h i e t ; 4 l A + 2 I B + 3 IC = 0

(2)

Thay (1) vao (2) ta c6 : 4 l A + 5 I D = 0

o

3DP=Db

17. C h o t a m g i a c A B C , M
• ' ->
->
MA = 3 C M
NA

= 2BN

+

va N la hai diem

dxicfc

xac

(3)

3 D Q = D"B + D"C + D D = D B + DC


(4)

d i n h bcfi

3D1I

= DA

+

DC +

m)

= DA



+ DC

(5)

Cpng (3), (4), (5) ta dvtac :
= 2 D A + D B + DC

Tir (1), (2) va (6), ta CO : 9 D G ' = 6 D G
->

->


Vay D G ' va D G cung phiJcfng



Tir M A = 3 C M

o

4 B M

.

Tir N A = 2 B N + 3 C N

«

B A - B N - 2 B N + s f s N - B^C

3B1:

V-

(6)

SC'N

dan

=


^

+ D A + DB = D A + D B

DP + DQ + DR

C h i a n g m i n h b a d i e m M , N , B th&ng h a n g .
• HU&ng

(2)

IA = - | ID

I , A , D t h a n g h a n g (dpcm)

l A va I D cung phu'cfng

Bai

1,'

GIAI

5B1)

2,'&C =

J

3IC + 2IB = SID


A p dung t i n h chat sau :

M A + M B + M C = 3 M G de chu'ng m i n h D G va D G ' cung phuang.

= 5 I D -- I B
)

dan

G la t r o n g t a m t a m giac ABC va M la d i e m tuy y, ta c6 :

minh lA = k I D )



C h o tur g i a c A B C D . P , Q, R l ^ n Ivitft l a t r o n g t a m c a c t a m g i a c

18.

o

BA

+ BA

(1)

-


B M

=

3 BM -

o

DG' = - DG
3

D, G, G' t h a n g h a n g (dpcm)

BC

V

o

6 B N



Tir (1) v^ ( 2 ) t a dirac : 4 B M = 6 B N


186

->


= 3B"C

~*

+ BA

(2)

«

B M = - B N
2

B M va B N cung phiictng => B , M , N t h ^ n g h a n g (dpcm)
187


TRgC

C h u v o n .lo 2

D i n h li

TOfi D O T R E N T R G C

N e u h a i d i e m A v a B t r e n t r u e x ' O x I a n lu'cft eo t o a dp l a a v a b t h i

«

t h i f c cvi


Kicn
1)

ban

AB

True

4)

Dinh nghia
True

CO

t o a dp b - a

H(? t h u - c Salof

(Chales)

l o a do ( h a y t r u e ) l a m o t d u d n g t h f l n g t r e n do d a c h o n m o t

Vcfi ba d i e m A , B , C t r e n t r u e x ' O x c6 t h i J t u t u y y , t a c6 :

d i e m O l a m goc v a m o t v e c t o u c6 do d a i b f t n g 1 ( d o n v i c h i e u d a i )
l a m vecto don v i .




,

^

,"> 9
2)

i >



T r e n t r u e x'Ox, cho vecto u .

Toan

u va V e u n g p h u o n g n e n u = a. i
•>

(a e R )

>

So a t r o n g d a n g thiJc u = a. i

>

duoc g o i l a t o a do ciia v e c t o u t r e n '


Chu y :

*

o

u v a v c6 t o a do b a n g n h a u



T o a do cua vecto' 0 l a 0.



T o a do cua A B , k i h i e u : A B (doe l a : do d a i d a i so ciia v e c t o A B )
Ta

CO

a)

T i m t p a dp x c i i a d i e m M s a c c h o M A = k M B , k

b)

T i m t p a dp t r u n g d i e m I c u a d o a n t h i i n g A B .

c)

T i m t p a dp c i i a d i e m M s a o c h o 2 M A = - 5 M B


• Hitdng

t r u e d a cho.

u va v b a n g n h a u

: AB = AB . i

n i - u - i A T D - To
Phan biet : A B va A B

T i n h t o a do ciia M A v a M B

b)

lA + IB = 0

c)

A p d u n g k e t q u a eau a v d i k =

A B l a m o t vectcf

Tim toa (JQ X ciia M

Ma

u v a V l a h a i v e c t o t r e n e u n g m o t t r u e I a n lu'cft eo t o a do a, b.


T a eo :

Vay

->

a)

u +

V

CO

t o a do = a + b

b)

u

V

CO

t o a do = a - b

c)

k u CO t o a do = k a ( k l a m o t so t h u e )


3)

T o a do ciia m o t d i e m

"

o
b)



M A = (a - x) i



M B = (b -

X)

i

(l-k)x

Toa do trung

= a - k b

C h o d i e m M a t r e n t r u e x ' O x , t a c6 : O M = m . i
T o a do m eua v e c t o O M ducfc g o i l a t o a do eiia M
OM = m. i


<=>

m l a t e a dp cvia M

( m e R)

diem

<=>a-xi=xi-b

Can

=> k M B = k ( b - x ) i

• a - kb
x = - — ^
1 - k

o

nh& : Pliaii

(k /

1)

I ciia AB
o


Dinh nghia
^

(1)

tCr (1) t a eo : a - x = k ( b - x )

I l a t r u n g d j g m ciia A B

—>

2

T h e o de b a i : M A = k M ^ B ( k ^ 1 ) '

l a m o t so' t h i f c

-->

5

GIAI

Dinh li
Neu

1.

ddn


a)

a)

AB

»

B a i 19. T r e n t r u e x ' O x , c h o h a i d i e m A v a B c 6 t p a dp I a n lUpft b S n g a v a b

*

Dinh nghia



AC = AB + BC



T o a d o c i i a vectof t r e n t r u e

Vi

,

Dinh H

o x


hict

=

l A = B I vdi

lA

= a -

Bl

= xi - h

Xj

a + b

hai cdiig t/n/'c

AC

= AB + BC

(1)

AC

=AB


(2)

+ BC

189





c)

Cong
dung
khong
Cong
hang).

thiic (1) dung trong moi tritang hap nghia Id cong thi'ic (1)
khi A, B, C d tren cung mot true (thdng hang) hoac A, B, C
thdng hang.
thijCc (2) chi dung khi A, B, C d tren cung mot true
(thdng

Chiang minh
AB

A D BC = ( d - a)(c - b ) = cd - bd - ac + ab

0


,ru

Cong ve theo ve t a dugc : A B . CD + AC . D B + A D . BC

2(a - X M ) = - 5 ( b - X M )

<:i>

= 2a + 5b o

7XM

XM

=

2a + 5b

b)

ChuTng minh

o

1

MA = - - MB
2


XM

=

u
hay

XM

=

a + c
1 +

J

a + b + c + d

=

b + d.

Tirong tir : k + 1 =

2a + 5b
— - —
7

a + b + c+ d


Do do : i + j = k + 1

B a i 20. T r e n true x'Ox, eho ba diem A, B, C c6 toa dp Ian Itf^t la a, b, c.

Ma

Tim tpa dp cua diem 1 sao cho lA + I B + I C = 0

2

k +1

o i + j
2

2

l a toa do t r u n g d i e m ciia I J

. k +1
va
l a toa do t r u n g d i e m cua K L
2

• Hiicfng ddn
Goi toa dp ciia I la x, ta c6 :
*

=


=>

Ap dung k e t qua cau a v d i k = - — , ta c6 :
5,
^ + 2
~
1 + 5
2

=0

Goi i , j , k, 1 \An liTcft la toa do cua I , J , K, L, t a c6 :

C a c h khac :
2 MA = - 5 MB

CD = ( b - a)(d - c ) = b d - be - ad + ac

AC . D B = ( c - a)(b - d ) = b c - cd - ab + ad

Tog. dQ cua M
2 M A = - 5 M B

<=>

GlAl
a)

Vay I J va K L c6 chung t r u n g d i e m (dpcm).


i A = a - x,
GlAI

Goi toa do cua I la x



B a i 22. T r e n true (O; i ), cho ba diem A ( - 4), B ( - 5), C(3).

Tac6:iA=a-x, IB=b-x,
Dod6:TA+!B + IC=0
,
.
< » a - x + b - x + c- x = 0

I C = c - x

Tim diem M tren true da cho sao cho MA + MB + MC = 0 . Sau
^, ^, ^ MA
.MB
do tinh =
va
MB
MC

a + b + c
o x

=


GlAl

3
B a i 21. T r e n true x'Ox cho bon diem A, B, C, D tuy y. ChiJng minh :
a)

AB.CD + AC.DB + AD.BC = 0

b)

Goi I, J , K, L Ian l\i(ft la trung diem cac canh AC, BD, AB, CD.
Chtfug minh rhng I J va K L c6 chung trung diem.

• HUdng ddn
a)

Goi toa do cua A, B, ..... l a a, b,
T i n h A B . CD =

b)

(theo a, b,

)

T i m toa do ciia I , J , K, L r o i t i m toa do t r u n g d i e m cua I J vk K L
(xem l a i cau b bai 19)

iQn


Sau d6 t i n h A B , CD ,

M A + M B + MC = 0

o

3 M O + OA + OB + OC = 0

o

O M = - (OA
3

o

O M = - (- 4 - 5 + 3) = - 2
3
MA

+ OB + OC)

o
Vay

O M = -(OA
5^'

+ OB

+


OC)

M ( - 2)

= ' O A - O M = - 4 + 2 = -2

Tuong t u t a cung c6 : M B = - 3, M C = 5
Vay

MA
MB

2

MB

_

J3

~ 3 ' MC

"

5
191


B a i 23. Cho a, b, c, d thu"

a)

la tpa dp ciia cac diem A, B, C, D tren true x'Ox

b)

MA^ + M B ^ = ( M I + I A )

Chiirng minh rang khi a + b ^ c + d thi ta ludn tim diidc diem M sao

= 2 M I % I A ^ + I B ^ + 2 M I (lA + I B ) = 2 M I % 2!A^

cho M A . M B = M C . M D

(vi l A + I B = 0 va I B ^ = lA^).

Ap dung : Tim tpa dp ciia M, neu co, biet A ( - 2), B(5), C(3), D ( - 1)
b)

K h i AB va CD co cung trung diem thi diem M of cau a co xac dinh
khong ? T a i sao ?

c)

M A ^ - M B ^ = ( M I + I A ) ^ -- ((Mi
MI +
+ IB)

= ( M I + LA)^ - ( M ! - I A ) ^ = 4IA.MI


GIAI
a)

MA.MB = MC.MD

o

(OA -

o

OM(OD + O C ~ O A - O B )

CO

O M ) (OB -

Ma

OM)

= (OC -

=

OM) (OD

-

OM)


i A . - A I =

2

nen :

MI = - I M

OC.OD-OA.OB

MA

OM (d + c - a - b) = cd - ab

+ (MI + I B )

- MB = 4

AB

(-IM)

-

2AB.IM

(dpcm).

V i a + b ^ c + d lien c + d - a - b?^0, vay : OM = — — — ~ ~ ~ r '

d + c- a - b

Ap dung :
Vdi a = - 2, b = 5, c = 3, d = - 1, ta thay : a + b

c + d nen diem M

d M c xac dinh va ta co :
OM =

cd - ab

_
^

d + c- a- b
b)

3.(-l) -

— i —

(-2).5

-1 + 3 + 2 -

= - 7. Vay M(- 7)

5


G i a siif A B va C D co ciing trung diem I, khi do :
OA + OB

OC + OD
-

I

^\

I = Oil

1



-

U K



(xem lai cau b bai 19)

2
2
hay a + b = c + d. Vay diem M khong xac dinh.

B a i 24. Cho A, B la hai diem tren true (O; i ) va I la trung diem ciia doan
AB. Chufng minh rang vdi moi diem M ta luon co :

a)

M A . M B = MI^ - lA^

b)

MA

+ MB

= 2 MI

c)

MA

- MB

= 2 AB.IM

+ 2 lA

GIAI
I)



M A . M B = (MI + I A ) (MI + I B ) '

= ( M I + I A ) ( M I - ! A ) = MI"^ - lA^

192

aHu9

(dpcm)
193


Cliii.yen d e 3

IV)

HE TRUC T 0 6 t>P OECfiC VUONG GOC

1)

T p a dp cua mpt diem
Dinh nghia

T r o n g mp(Oxy), eho d i e m M tiiy y. K h i do, toa do ciia vecto O M goi
la toa do ciia diem M , k l hieu M(x; y)

K i e n thi?c coT ban



I)

>


Tom tat : O M =

He true toa dp vuong g o c
T r o n g m a t phSng, cho true x'Ox c6 veeto don v i i , true y'Oy c6
vecto don v i j sao eho i 1 j .
Dinh nghia

He gom h a i true n o i t r e n goi la he true toa do Deeac vuong goc, k i
hieu mp(Oxy).


True x'Ox goi l a true hoanh do.



D i e m O goi l a goe toa do.



True y'Oy goi l a true t u n g do.



X .

>



>


o

i + y. j

M(x; y )

2)

Dinh li

a)

AB

b)

IAB I=

c)

D i e m chia doan t h a n g theo t i so' cho tru'dc

= (XB -

y•

X A ; yB - Y A )

^(XB


X A ) ' + (yB -

-

Y A ) '

Dinh li

Cho h a i dieni : A ( X A ; YA) va B ( X B ; ys)

;'

x^ ~ k . X y

II) T p a dp cua vectci
Dinh li

M A

= k.MB

1-k

ci.

(k ^ 1)

T r o n g mp(Oxy), chp vecto u tuy y. K h i do, eo duy n h a t m o t cap so
thuc (x; y) sao cho : u = x. i + y. j


X,

D^c bi§t, I l a t r u n g d i e m A B

Dinh nghIa

- * - > - >
Neu u = X . i + y. j

XA

=

+ XB

o
_

->
t h i cap so' x va y goi l a toa dp eiia vectcr' u

yi

XA +

=

Xt


do'i vdi mp(Oxy), k i hieu : u = (x; y)
T o m t a t : u = (x; y) o

u = X. i + y. j

B a i 2 5 . T r o n g m p ( O x y ) , v i e t t o a dp c i i a c a c vectot s a u :

>

III)
1)

u +

V

= (x + x'; y + y')

b)

u -

V

= {x - x'; y - y')

a)

b)


194

2 >

>

b = - i - 5 j ;
3

I u i = yjx^

Toa dp a = 2 i + 3 j
Toa d 6 b = - i - 5 j
3

k. u = (kx; k y )

Toa dp c = 3 i

+ y2
-->

2)

«

->
;

->


c = 3 i

->
;



d = - 2 j

GIAI

a)

d)

->

Tinh chat

T r o n g mp(Oxy), cho u - (x; y) va v = (x'; y')

c)

>

a = 2 i + 3 j

Pheptinh


Tpadpd

c=-b=(-;~5)
3

o

= -27

c> a = (2; 3)

c = 3. i + 0. j
o

c = 0 i* - 2 j

c=> c = (3; 0)
d = (0; - 2)

~>

Q u a n h $ giiJa u v a v
u va

->

V c u n g phiTOng

—>


—>

u

= v

o

X

c:>

x

~

= x' va y = y'

x'

=

y
y'

B a i 2 6 . V i e t vector u diidi
u

= (2; - 3) ;


d a n g u = x. i + y. j k h i b i e t t o a dp c i i a u :

u = (- 1; 4) ;

u = (2; 0) ;

J = (0; - 1) ;

u = (0; 0)

195


GIAI

u = (2; - 3)
—>

So sanh (1) va (2) t a dirge : A B = - 2 AC =i> A B va AC cung phirong

<=> u = 2 i - 3 j


>



>




>

u =(-l;4)

<=>u = - i + 4 j

u = (2; 0)

»

u=(0;-l)

<:5.u=0i

u = (0; 0)

C5>

=>

A, B, C t h i n g h^ng.

b)

»

{Z = 2 I

J = 2 i' + 0 j

+ j

(u =

u = oT + 0 j

Theo k e t qua cau a, ta c6 : A B = - 2 AC
Vay diem A chia doan thSng BC theo t i k = - 2

j)



(u = 0 )

Ta
+ b , y = a - b , z

CO

Nen :




= (1 + 0; - 2 + 3) c;.

Toa do ciia y = a Ta

CO


CB

: a = ( 1 ; - 2) va b = (0; 3)
= (- 1; - 5)

y

Ta

: a = ( 1 ; - 2)

=^ 2 a = (2; - 4)

b = (0; 3)

3 b = (0; 9)
o

=

^BC
3

= (3; 3)

^

>


X

'

Vay C chia doan t h a n g A B theo t i so k " =

—^

-3b

Nen : z = 2 a - 3 b

= (-3;-3)

=^ B A

= ( 1 ; 1)

X

Toa do cua z = 2 a
CO

BC

-2)

C chia doan t h i n g A B theo ti so k " = ?

b


N e n : y = (1 - 0; - 2 - 3) o


= (-2;

Ta t i m k " sao cho CA = k". CB

: a = ( 1 ; - 2) va b = (0; 3)
X

BA

Vay B chia doan t h ^ n g AC theo t i so' k ' =

Toa do ciia x = a + b
Ta

CO :

=2a-3b.

GIAI


B chia doan thdng A C theo ti so' k' = ?

Ta t i m k ' sao cho B A = k'. BC

B a i 27. Cho a = (1; - 2) va b = (0; 3).

Tim toa dp ciia cac vector x = a

A chia dog.n thdng BC theo ti so k = ?

3

B a i 29. Cho tam giac A B C vori A = (xi; yi), B = (X2; y2) va C = (X3; ya) trong
mp(Oxy). Tim tpa dp trpng tam G cua tam giac A B C
GIAI
G la t r o n g t a m ciia A B C , ta c6 :

z=(2-0;-4-9)

z=(2;-13)

o

o

ChuTng minh ba diem A, B, C thSng hang.

b)

Tim ti so ma diem A chia doan thSng B C , diem B chia doan thdng
A C va diem C chia doan thang A B .

=

Xn


Vay

, M la diem tiiy y.

- M A + M B + MC
3

Chon M = 0(0; 0), ta c6 : OG

B a i 28. Cho ba diem A = (- 1; 1), B = (1; 3), C = (- 2; 0) trong mp(Oxy)l
a)

MG

=

X,

+

Xo

+

=

- OA + OB +
3

6c


Xn

^

_ Yi + y2 + ys



-

hay

G

x i + X2 + X3 _ y i + yg + y3

3

'

3

-3

GIAI
a)

B a i 30. Cho ba diem A = (4; 6), B = (5; 1), C = (1; - 3) trong mp(Oxy).


ChiJCng minh A, B, C thdng hang
Ta

CO

: A B = (XB

-

XA; y s - yA)

= (2; 2) = 2(

T

+ j )

AC = (xc - XA; y c - yA) = (- 1; - 1) = - (
196

T

+ j )

(1)
(2)

a)

Tinh chu vi cua tam giac A B C .


»

b)

Tim tpa dp tam dvCdng tron ngoai tiep tam giac A B C va ban kinh
dxfdng tron do.
197


a
a ii i3 3 . T r o n g m p ( O x y ) , c h o b a d i e m A ( - 2; - 1), B ( 0 ; 4), C ( 2 ; 2).

GIAI

T i m d i e m D sao cho A B C D la h i n h b i n h h a n h .
a)

2p - AB + EC

C h u v i c i i a tarn g i a c A B C :

Ma

AB = ^ „

Vay
b)

- x^f +


(YB

-

Y A ) '

BC = V ( x c - x „ f

+

(yc-YB)'

CA =

+

(YA

^(XA - X ( , f

-yc)'

+

OA

# HUcfng

= ^ l ' + (-5)'


= ^f26

= x/(-4f + ( - 4 f
=

+

92

= 4^2

ddn



ABCD la hinh binh hanh o



Goi (x; y) la toa do ciia D, tinh toa r j ciia AD va BC roi cho

=

AD = BC

2p = N/26 + 4N/2 + 3N/10

GIAI


T a r n I ( x ; y ) c i i a dUcfng t r o n n g o a i t i e p tarn g i a c A B C

Ta

CO :

(4-xf

lA^ = I B 2

<=>

<

4

IA2 = ic^

-

X

- 5Y + 13 = 0

x =

X

+ 3y - 7 = 0


5
^ = 2

X

+ (6-yf

Ban kinh R = lA

o

= (5-xf

(6-yf

Goi D(x; y), ta c6 :

+(l-yf

= (1-xf

+(-3-Yf

R = J| 4 +



ABCD la hinh binh hanh nen AD = BC

D a p so :


+ fe - 5 1 <=> R =
I

2J

-s/Tso
2

x +2 = 2

X

y + 1 = -2

y = -3

• HUc/ng

A, B, M thang hang o

AB va A M cung phi/cfng.
GIAI




M G Oy nen M(0; y)
DiTcfng thang (AB) qua M o M, A, B thSng hang


o

AB va AM cung phuorng, ma AB = (6; - 3) va AM = (4; y - 1) nen
4

y - 1

6

-3

c=> Y = - 1

D a p so :

M(0; - 1)

P ( 3 ; 4), Q ( - 1; - 3) t h a n g h a n g .

198

f5

D a p so :

C ( - 5 ; 5) ,

D ( - 3 ; 0).

ddn




Tim toa do AB va DC roi so sanh hai vector nay.



Tam I ciia hinh binh hanh ABCD la trung diem ciia AC (hoac ciia
BD)

'

B a i 3 5 . T r o n g m p ( O x y ) , c h o A ( - 2; 4), B ( - 4; 3), C ( 2 ; 1), D ( l ; 3)
a)

A, B , C C O t h a n g h a n g k h o n g ? T a i sao ?

b)

Chii'ng m i n h A B C D la mpt h i n h thang c a n , day B C

• HUdng

ddn

Giai giong bai 28

,

D a p so : I


B a i 3 2 . T r o n g m p ( O x y ) , t i m d i e m N t r e n t r u e h o a n h s a o c h o b a d i e m N,

* HUdng

B(-3;7)

h a n h nay.

dan



,

C h i i ' n g m i n h A B C D l a h i n h b i n h h a n h v a t i m t o a dp tarn h i n h b i n h

T i m d i e m M t r e n t r u e t u n g s a o c h o difcfng t h S n g ( A B ) d i q u a A .

M (0; y) e Oy

0

D(0; ~ 3)

A(-l;2)



=


B a i 3 4 . T r o n g m p ( O x y ) , c h o bo'n d i e m :

B a i 3 1 . T r o n g m a t p h d n g ( O x y ) , c h o h a i d i e m : A ( - 4; 1), B ( 2 ; - 2),

* HU&ng

AD = (x + 2; y + 1)
BC = ( 2 ; - 2 )


2

2

*

AD = BC

N -, 0
l7

ddn

a)

Xet phirong cua AB va BC ?

b)


Churng minh AD // BC va AB = DC, AD ^ BC.
199


GlAl

B a i 3 7 . T r o n g m p ( O x y ) , c h o t a m g i a c A B C : A(0, 6), B ( - 2; 2), C ( 4 ; 4)
a)

Chiifng m i n h A B C l a t a m g i a c v u o n g c a n .

b)

T i n h d i ? n tich tam giac A B C .

'i

• Hitdng dan

a) Tinh AB, BC, AC ta dugc ket qua.
b) Diing cong thufc tinh dien tich tam giac vuong.
GIAI

-4

-2

AB = 74 + 16 = 275

O

a) Ta CO :

a) Ta

-

AB = (- 2; - 1), BC = (6; - 2)
-1
nen AB va BC khong cung phuong
6
-2

CO

BC = ^36 + 4 = 2V1O
AB = AC
BC^ = AB^ + AC^

A, B, C khong th^ng hang (i)
b) ABCD ?
*

AD = (3; - 1) va B"C = (6; - 2)
3 - 1
~*
~*
Ta thay - = —- nen AD va BC cung phuang (ii)

-


T i r ( i ) v a ( i i ) ^ A D / / B C (1).
Ngoai ra, ta c6 :

=> ABC la tam giac vuong can tai A.
b) SAABC = -^AB.AC = - X 275.2V5 = 10 (dvdt).
Bai 38. Trong mp(Oxy), cho tam giac ABC, biet A(- 1; 5), B(- 3; 1) va
C(l; 4). Chiang minh ABC la tam giac vuong.
Tinh chu vi ciia tam giac ABC ?

AD = VlO , BC = 2 >/i0 , AB = VS , DC = Vs

• Hiidng

AB = DC va AD ^ BC (2)

AC = Vl6~+~4 = 2>/5

^ {.;;(}

dan

Tinh A B , AC, BC roi diing dinh l i Pitago dao.

Tir (1) va (2) ==> ABCD la hinh thang can c6 ddy BC, AD.

"''-^

Dap so': Tam giac A B C vuong tai A va c6 chu vi 2p = 3 N/S + 5
B a i 36. Trong mp(Oxy), chb ba diem A(- 2, - 5), B(2; 3), C(0; 4)
a) Chufng minh A, B, C khong 6 tren cung mpt dxicing thSng.

b) Tim diem D tren true hoanh Ox sac cho ABCD la hinh thang c6
CD va AB.

Bai 39. Trong mp(Oxy), cho A(- 2; 1), B(6; 0)
a) Tim diem M tren true tung sao cho tam giac AMB vuong tai M.
b) Chon M (cau a) c6 tung dp difotng.

ABCD CO phai la hinh thang vuong khong ?
• HUotng ddn

a) Giai giong cau a bai 32.
b) G o i D { x ; 0 ) e O x

Tim diem C sao cho AMBC la hinh chu" nhgit.
* Hiidng

JBT ^ «n6ri>J ^fi^H an fed) r") j-^^.j^ ,,,,

a) M(0; y) G Oy.

Dap so : D ( - 2; 0) va ABCD la hinh thang vuong tai B y^ C.
200

S^J;

'

Tinh A M ^ B M ^ A B ^
Diing dinh l i Pitago.


ABCD la hinh thang day AB va CD o AB va DC cung phuang.
Tinh A C ^ BC^ AB^ r6i so sdnh AC^ vdi AB^ + BC^.

\

ddn

b) Vi A M B = 90° nen A M B C la hinh chuT nhat
o

A M B C la hinh binh hanh o

M A = B"C
201


GIAI

GIAI

a)

«

M e Oy nen M(0; y), ta c6 :
AM^



65


A M ^ + B M ^ = AB^

<=>y^-y-12 = 0

<=> 2y2 - 2y + 41 = 65
<:i>y = 4 V y

= -3

(-2;-3)

ma
= (xc

-6;yc)

o

nen

MA

=

Xc

-

yc


=

6 = - 2
-3

4

= (3; 4)

OC

= (xc;yc)

nen <^

yc



Tinh M N . Q P

.

T i n h M N ^ N P ^ MP^ ^

=

yc


= 4

-4

-1 O

3



Chufng m i n h A B va DC bang nhau.

.

T i n h A B ^ B C ^ AC^ r o i dung d i n h l i Pitago dao.

^ M N P Q la h i n h b i n h h a n h .
r> M N 1 N P va M N = N P

a)

Tim giao diem ciia B C vofi phan giac trong cua goc A .

b)

Tim toa dp tam diiotng tron npi tiep tam giac A B C .

J * Hiicfng dan

o


B a i 41. Trong mp(Oxy), cho A ( - 4; 3), B ( - 1; 7). Co tim dtfdc diem C de
OABC la hinh vuong khong ? Giai thich ? Neu c6, hay cho biet toa
dp ciia C ? (O la goc toa dp)

Suf dung cong thuTc phan giac
DB

AB

DC

AC

D B = k.DC
Vi DB

= k
(k =

AB
AC

> 0)

va DC ngucfc hifdng nen DB = - k. DC

(D chia doan BC theo t i so - k )
b)


• Hxidng dan

Tiep tuc giong cau a doi v d i t a m giac A B D .

g

GIAI

T i n h OA, OB, A B r o i chufng m i n h t a m giac OAB vuong can t a i A
nen t 6 n t a i C sao cho OABC la h i n h vuong.
= OC ta se t i m diTofc toa do C.

=>

B a i 43. Trong mp(Oxy), cho tam giac A B C : A ( l ; 6), B(4; 0), C(9; 10).

a)

• Hiidng dan

TCr A B

3

Xc

-3

Chufng minh A B C D la hinh chff nh^t.


202

AB

OC

* HUdng ddn

BC

B a i 40. Trong mp(Oxy), cho bon diem A ( - 3; 0), B ( - 6; 2), C ( - 2; 8), D ( l ; 6).



B,

Chu-ng minh MNPQ la hinh vuong.

Dap so : C(4; - 3)



A

B a i 42. Trong mp(Oxy), cho bon diem M ( l ; 2), N(- 3; 5)* P(0; 9), Q(4; 6).

A M B C la h i n h b i n h h a n h

BC


T a m giac OAB vuong can t a i A.

Dap so': C(3; 4)

A M B = 90° nen A M B C la h i n h chiJ n h a t

=

5%/2

Toa do C

Ma

Chon M(0; 4)

MA

=

K h i OABC la h i n h vuong, ta c6 : A B =

Dap s6': M(0; 4) V M(0; ~ 3)

ci.

AB

VSO


Vay t o n t a i d i e m C de OABC la h i n h vuong.

T a m giac A M B vuong t a i M

b)

=

[OA^ + AB^ = OB^

BM'^ = 3 6 + y'^

o

: OA = 5, A B =: 5, OB

CO

OA

= 4 + ( y - l f

AB^ = 64 + 1 =

Ta

a)

Ta


CO

:

DB

_

AB

DC

"

AC

vcfi

{

A B = 79 + 36

= 3^/5 *

AC" = 764 + 16

=

4x/5
203



Vaiy

DB
DC
DB

3

DB =

4
va

B a i 4 5 . T r o n g m p ( O x y ) , c h o A ( - 5; 0), B ( - 1; 3), C ( 2 ; 7), D ( - 2; 4)

-DC

4

Chiyng m i n h A B C D la h i n h thoi. T i n h c h u v i v a d i ^ n tich ciia A B C D .

D C l a h a i vectd ngugc h i i d n g n e n D B

=

• Hudng

- - D C


3
(D c h i a d o a n E C theo ti so = - - ), do do :
4

.

Tinh AB

.

T i n h A B va B C

va

DC
^

=>
AB

=> A B C D l a h i n h b i n h h a n h .
BC

C h u vi ( A B C D ) = 4 A B

43
Xn

d&n


=

1

D i e n tich ( A B C D ) = - A C . B D

:

D a p s o ' : A B C D l a h i n h thoi c6 do d a i m 6 i c a n h = 5 v a d i e n t i c h = 7 (dvdt)
30
YD

=

1 .

D a p so : D

r43

7

^

B a i 4 6 . T r o n g m p ( O x y ) , c h o t a m g i a c A B C vdri A ( - 3; 0), B ( 2 ; 4) v a C ( l ; 5).
Chiang m i n h tam giac A B C c a n tai A. T i n h d i ^ n tich tam, giac A B C .

30


7 '

* Hudng

7;

b)

Ve p h a n giac trong c u a B , p h a n giac ii^y c ^ ^ D

=>

I l a t a r n dacfng t r o n noi t i e p t a m g i a c A B C .

T a CO :

lA

BA

ID

BD

BA

=

BD


=

-

tai I

dan

A

T i n h v a so s a n h A B v a A C .
T i m toa do t r u n g d i e m H ciia B C , t a c6 A H 1 B C n e n
SMBC=^AH.BC

3V5

v6i
D a p so : A B = A C = 4^
7

Vay
Ma



ID

lA

=

va

5

o

lA = - ID
5

I D ngMc

B a i 4 7 . T r o n g m p ( O x y ) , c h o h a i d i e m A(4; 1) v a B ( - 2; 5). T i m d i e m M t r e n
-*
nen I A

hudng

=

t r u e Ox s a o c h o t a m g i a c M A B c a n t a i M . T r o n g trUoTng hcfp

7
" 7 ID
o

=

=
-


4

5

{||.

Do do

nay

chuTng m i n h t a m g i a c M A B v u o n g c a n .
* Hudng

XT

SAABC = - (dvdt)
2

dan



M(x;

0)



T i n h M A ^ v a M B ^ roi cho M A = M B


D a p so : M ( -

1; 0)

;yD
yi

=

=
1

S a u k h i t i m dirac M , t i n h MA^, M B ^ v a A B ^ r o i d u n g d i n h l i P i t a g o .

5

+
B a i 4 8 . T r o n g m p ( O x y ) , c h o h a i d i e m A ( - 2; 3) v a B ( 3 ; 1). G o i (m; n) l a t o a

D a p so : 1(4; 5)

dp d i e m M .
B a i 4 4 . T r o n g m p ( O x y ) , t i m t o a dp t a m difofng t r o n n p i t i e p t a m g i a c A B C

Chiifng m i n h d i e u k i ? n c a n v a d i i de M of t r e n du'otng t r u n g t r i / c c i i a
d o a n t h a n g A B l a : 10m - 4 n + 3 = 0

b i e t A ( - 4; 1), B ( 2 ; - 2), C ( - 8; - 7)
* Hudng


• Hudng

dan

M cf t r e n du'dng t r u n g t r i / c ciia d o a n t h i n g A B

G i a i g i o n g b a i 40.
D a p s o ' : I ( - 3; 204

2)

dan

o

M A = M B v d i M A ^ =. ( m +

if

+

va MB^ =

+ (n -

1)^
205


GIAI


B a i 49. Trong mp(Oxy), cho diem M(2; 2). DrfcJng thiing (d) qua M va cAt tia

T a m giac A M N vuong t a i A <=> A M ^ + A N ^ = M N ^

Ox va tia Oy Ian Ividt tai A va B .

Xac dinh vi tri ciia (d) sao cho khoang each tiJf 0(0; 0) den (d) dai
nhat. Trong trxfdng hdp nay, tim tga dp ciia A va B ?

AM^
Taco :

A N ^ = (a - 3 f
MN^

Vay(*)

* IlUdng dan
Ve O H 1 (d), H e (d), chufng m i n h 0I^^< h^ng so.

= 16 + 4 =

sf

20

<=> (a + 1)^ + (b - 3)^ + (a - 3)^ + (b - 5)^ = 20

2a^ + 2b^ - 4a - 16b + 24 = 0


o

a^ + b'^ - 2a - 8b + 12 = 0 (dpcm).

B a i 51. Trong mp(Oxy), cho bon diem A ( - 2; 5), B(6; - 1), C ( - 1; - 2), D(5; 6).
Chu"ng minh rfing tx? giac A B C D npi tiep difofng tron c6 tam la
trung diem A B . A B C D la hinh gi ?



Ve O H 1 (d), H e (d)
O H = k h o a n g each ti^ 0(0; 0) den (d)



H = M , luc do O M 1 (d).

Vay k h o a n g each tCr 0(0; 0) den (d) dai n h a t

C a c h 1 : Chufng m i n h tam giac ABC vuong tai C va tam giac A D B
vuong tai D
(b^ng each t i n h A C ^ B C ^ A B ^

Ta CO O H < O M = 2 ^2 (hang so)
o

+ (b -

-3f


• HUdng ddn

GIAI

Vay niax(OH) = 2 ^2

+ (b

«

K h i O H dai n h a t t h i t a n i giac OAB vuong can t a i O n e n :
OA = OB = V2 .OM

= (a + i f

(*)

o

roi dung d i n h If Pitago dao)

! '

C a c h 2: T i m toa do t r u n g d i e m I ciia A B roi t i n h I A, I B , I C , I D .

Dap so : A B C D la hinh ehuT n h a t

(d) 1 O M .


K h i (d) 1 O M t h i t a m giac OAB vuong can t a i 0(0; 0)

B a i 52. Trong mp(Oxy), cho bon diem A(4; - 1), B ( - 2; 1), C(4; - 5), D(2; - 7).

(Vi O M vira la dtfdng cao vifa la duorng phan giac ve tii 0 ( 0 ; 0) ciia

a)

Tim diem I d tren true tung va each deu hai diem A va B.

t a m giac OAB).

b)

VoTi diem I tim dvtdc of cau a, chiJng minh rSng I cung each deu C
va D. Ket luan gi ve txi" giac A B D C ?

Vay OA = OB = O M V2

=4

* Hudng

Do do : A(4; 0) va B(0; 4)

a)

ddn

Gpi 1(0; y)

I each deu A va B nen l A = l b
T i n h lA^ va I B ^ theo y roi cho l A ^ = I B ^

Dap so : 1(0; - 3)
!• b)
B a i 50. Trong mp(Oxy), cho ba diem A(a; b), M(- 1; 3) va N(3; 5).
Chtfng minh rfing dieu k i ^ n can va dxi de tam giac AMN vuong tai

K h i CO toa do I , t i n h IC va I D ta c6 ket qua
So sanh bon doan l A , I B , I C , I D .

ArtS;:; f

Tu" giac A B D C ngi tiep ducfng t r o n t a m I , ban k i n h R = 2^5

A la : a^ + b^ - 2a - 8b + 12 = 0
• Hudng

T a m giac A M N vuong t a i A o
206

B a i 53. Trong mp(Oxy), cho ba diem A ( - 4; 6), B ( - 2; - 1), C(3; 4).

dan
A M ^ + AN'-^ = M N ^

Tim diem M tren true hoanh sao cho | MA + MB + MC I ngfin nhfi't.
207



• HUdng

dan

Sii'dung cong thufc

MA + MB + MC = 3 M G

(G la t r o n g tarn t a m

Chuyen de 4

T i s6

giac ABC)

K i e n thi?c c«r ban

GIAI



Ta CO M A + M B + M C = 3 M G vdi G la t r o n g t a m t a m giac ABC
3

G

=

I)


Ti so li/dng giac cua goc a e [0°; 180°]

1)

Mcf d a u

G ( - 1; 3)

+ yfi + yc

LCrONG GIfiC

T a m giac A B C vuong t a i A, t a c6 :

^ 3

B
Vay d =

I

M A + M B + MC

I =3I

MG

I=




3MG



2)

sinB =
tgB =

AC
BC
AC
AB



cosB =



cotgC =

AB
BC
AC
AB

T i so' Irfgfng g i a c c t i a m p t goc

T r o n g he true toa do Oxy, ve niira dirdng t r 6 n don \n

kinh

R = 1), nufa ducrng t r o n nay cdt true x'Ox t a i A va A', c^t t i a Oy t a i
C v d i A ' ( - 1; 0), A ( l ; 0), C(0; 1)


d ngan n h a t o M G ngSn n h a t ci> M G 1 Ox.
Luc do M ( - 1; 0) va min(d) = 3 M G = 9



Cach khac
Goi M(x; 0), t i m toa do ciia M A , M B , M C
vectcf
=

MA

= M A + M B + MC
+ (x + i f

> 9

o x

r o i suy ra toa do cu;i

u| = ^ ( - 3 - 3 x f


+ 81

hay
a)

= - l

Dinh nghia

T r e n nufa difdng t r o n don v i (.ban k i n h R = 1) lay d i e m M ( x ; y).
Dat a = A O M

B a i 54.

T r o n g m p ( O x y ) , c h o b a d i e m A ( - 4; 2), B ( - 7; 1), C ( - 1; 0).
T i m d i e m M t r e n t r u e t u n g sao c h o vectof
C O dQ d a i nhft n h a t .

* Hitdng

v

=

MA

+ MB +



MC



D a p so : M(0; 1) va m i n | v | = 12

Tung dp y eiia M goi la sin ciia goc a, k i hieu sina va t a e6 sina = .y.
H o a n h do x cua M goi la cosin cua goc a, k i hieu cosa va t a c6
cosa = X .

d&n

G i a i giong bai 53.




, y
y
T i so — (x 9t 0) goi la t a n g ciia goc a, k i hieu tga va ta c6 tga = — •
X



X

T i so' — (y # 0) goi la cotang ciia goc a, k i hieu cotga va ta cd
y
"
.


toga =

208

(0*^ < a < 180°), t a eo :

-.
y
209


b)

T i so Ivtifng giac ciia mOt s6' g6c cAn nh<3r
Goc



sin

0

60°

90°

1

72


s

1

2

2

V3

V2

1

2

2

2

V

V3

0

tg

45°


2

n
1

cos

30°

3

^/3

cotg

1

73

c)

D a u ciia cac ti so Itfdng giac



s i n a > 0 v 6 i m o i goc a

150°


72

1

2

2

1

72

73

2

2

2

-73

- 1

0

3

135"


2

0

V3

1

120°

73
3

- 1

73
3

3)

L i e n h ^ giu^a ti so' lifofng g i a c c i i a h a i goc bik n h a u

a)

dSO" - a) va a Id hai goc bu

180°

nhau


Dinh li
H a i goc bu nhau c6 sin hhng nhau, con cosin t h i d o i nhau, n g h i a 1^

0


sin(180° - a)

sina



cos(180° - a) =

-cosa

t g ( l 8 0 ° - a ) = - tga

Do do

c o t g ( l 8 0 ° - a ) = - cotga

- 1
b)

(90 - a) va a la hai goc

pht/inhau

Dinh l i

0

,

H a i goc phu nhau t h i s i n ciia goc nay b k n g cosin cua goc k i a va
ngucfc l a i , nghia la :

-73

sin(90

- a) = cosa

cos(90° - a) = sina

e [0°; 180°]

Do do

t g ( 9 0 ° - d ) = cotga
cotg(90° - a ) = t g a

loan

V d i 0 < a < 90° ta c6 0 < cosa < 1
V d i 90° < a < 180° ta c6 - 1 < cosa < 0


t g a va cotga (neu khac 0) deu cung dau vdi cosa.


II) Cac he thi/c glQa cac ti so lUting glac
1)

Cac

thiifc cot b a n

Dinh l i : V d i m o i goc a, t a deu c6 :
a)

.
sina
N e u cosa 5^ 0 t n i t g a =
cosa

b)

N e u s i n a * 0 t h i cotga = s—
ina

c)

sin^a + cos^a = 1

-.-r^'

2)

C O S cx


Cac

thufc k h a c

B a i 55. Biet cosa = - , tinh P = Ssin^a + 4cosV
2
• HUcfng dan



B i e t cosa, dung he thiJc : cos^a + sin^a = 1 de c6 sina.



B i e t sina, v i n diing he thuTc do de biet cosa.
GIAI
Ta CO : cos^a + sin^a = 1 ( d i n h l i )
1
2
1
cos a - — => cos a = — n e n
2
4
1
. 2
1
.
2
,
1

— + sin a = 1 o sin a = 1
=
4
4
3
Do do : P = 3sin^a + 4cos^a - 3.
Mk

:
3


4
+ 4.

1

13
4

Dinh l i :
a)
b)
210

N e u cosa ^ 0, ta c6 : 1 + tg^a =


cos a
1

N e u s i n a ?^ 0, t a c6 : 1 + cotg a =
sin^ a
211


Jai 57. Chiang minh h^ng d^ng thu"c : (sinx + cosx)^ = 1 + 2sinx.cosx

B a i 56.
a)

HUitng dan

Cho goc nhon P va sinP = — . Tinh cosp va tgP ?
4

b)

Cho goc a va cosa = - — . Tinh sina, tga va cotga.
3

c)

Cho tgx = 2\l2 . T i n h sinx v a cosx

M a sinP = — n e n
4

+ cos% = 1 c=> cos^p = 1 - — = — (i)
^


16



(dinh l i ) = ^
V15

1

8

,9

9

(dpcm)

(sinx + cosx)^ = 1 + 2sinx.cosx.

Vl5
B a i 58. Chu'ng minh hSng d^ng thu^c : (sinx - cosx)^ = 1 - 2sinx.cosx

Tuong tir bai 57

=
^yl5
1\

f


3

GIAI
2

+ sin^a = 1

nia sina > 0 nen sina =

CO

tga =

sina

2V2

2

Ta CO : (sinx - cosx) = (sinx)

2V2

2

+ (cosx) - 2sinx.cosx

- sin^ x + cos^ X - 2blxix.cosx
=
1.

- 2sinx.cosx

cosa

3

f 1^

(dpcm)

B a i 59. Chufng minh h&ng dSng thii^c : sin^x + cos^x = 1 - 2sin^x.cos^x
• 'lUc/ng dan

T i n h cotga

T a CO tgx = 2J2

f M . 2V2
. 3,

ung hai cong thiJc :

cos^ x
sin

X

cos X
Ta CO —V-


COS^ X

3

1



A p dung cong thufc : a^ + b^ = (a + b)^ - 2ab

2V2

GIAI

> 0 n e n sinx > 0 va cosx > 0
1

A p dung cong thuTc a^ + b^ = (a + b)^ - 2ab, t a c6 :

= l + tg"x

sin'^x + cos'^x = (sin^ x + cos^ x j

= tgx

= 1 + tg\ 1 + (2 V 2 )^ = 9 o

cos^x = -

(i)

9

V i t g x > 0 n e n cosx > 0, do d6 tCr (i) t a c6 cosx = - .
o
Ta CO 7-^— = t g x o sinx = cosx.tgx = - x 2\f2
cosx
3
212

+ 2sinx.cosx

T i n h tga

cosa
sina
c)

2

* HUcfng ddn

Tu cos^a + sin^a = 1 ( d i n h l i ) , t a c6 :

Ta


2

Vay


16

T i n h tgP
Ta c6 : tgp = ^
cosp

b)

s i n X + cos x = 1

1

V i p Ik goc n h p n n e n cosP > 0, do d6 til (i) t a c6 : cosp =




± 2ab

Ta CO (sinx + cosx)^ = sin^ x + cos^ x + 2sinx.cosx

T i n h cosP
Ta CO : cos^p + sin^p = 1 ( d i n h l i )
1

Sir dung (a ± b)^ = a^ +

GIAI

GIAI

a)



=

2V2

3

t

Vay

- 2 sin^x.cos^x

1^

- 2 sin^x.cos^x

1

- 2 sin^x.cos\

sin'^x + cos''x = 1 - 2 sin^x.cos^x

B a i 60. Chu'ng minh hdng dSng thtfc :
sinx.cosxd + tgx)(l + cotgx) = 1 + 2sinx.cosx
213



' a i 63. DoTn g i a n b i e u thiiTc : C = s i n a ^ l + t g ^ v d i 9 0 ° < a < 1 8 0 ° .

• Hitdng d&n



HUdng d&n

Khai trien (1 + tgx)(l + cotgx) roi sau do tinh va riit gon ve tra
, ,
sin X ,
,
cos X ,
(dung cong thUc tgx =
va cotgx =
)
cos X
sm X
GIAI
1 + sinx
cosx

Ta CO : (1 + tgxXl + cotgx) =

cos x

1 + cosx
sinx )
+


sui X

+

(

Do do : sinx.cosxd + tgx)(l + cotgx) = sinx.cosx 2 +

Siir dung cong thiJc 1 + tg^a =

.

VA^ =



90" < a < 180°

— ^
cos a

IAI

cosa < 0
GIAI

sin X cos x
.
sinx

cosx
cosx sinx
= 1+
+ 1
+
cos
X
sin
X
sin X
cos X
cos^ X + sin^ X
= 2 +
=2+
sinx.cosx
sin X. cosx
= 1+

-

1
sin x. cos

X



Ta CO C = sina v/l + tg^a - sma.
si




Vi 90° < a < 180° nen cosa < 0
.

Vay C =

sina
-cosa

cos^ a

sina
cosa

=> | cosa I = -cosa

= - tga

Bai 64. Tinh : 008^12" + cos^TS'* + cos^l° + c o s W
• HUdng

ddn

Su dung dinh h've ti so' lucfng giac ciia hai g6c phu nhau.

= 2sinx.cosx + 1 (dpcni)

Cong thiJc cos^a + sin"a = 1
Bai 61. Dan gian bleu thuTc : A = cosy + siny.tgy


GIAI

•¥ HU&ng ddn

Vi 12° + 78° = 90°, nghia la 12° va 78° la hai goc phu nhau.

^
, •
. ,
sin y ,
. 2
Dung hai cong thuc tgy =
va cos y + sm y = 1
cosy
GIAI
A = cosy + siny.tgy = cosy + siny.
= cosy +

* HUdng

cos^78° •= sin2l2°
cos^l2° + cos-78° = cos-12° + sinh2° = 1

siny
cosy

Tuong tu : 1° va 89° la hai goc phu nhau nen cos98° = sinl°

sin"' y


cos" y + sin" y

1

cosy

cosy

cosy

Bai 62. Dotn gian bieu thtfc : B =

Do do : cos78° = sinl2°

+ cosb.^1 - cosb

dan

cos^l° + cos^89° = cos^l° + sin^l° = 1
Tom lai cosh2° + cos^78° + cos^l° + cos'^89° = 2
Bai 65. Tinh : T = sin^3» + sin^l5° + sin^TS" + sin's?"
* HUdng

Tirang t\l bai 64

S\i dung cong ihufc \/a.v^ = \/ab (a, b > 0) va chii y 1 - cos% = sin"!

GIAI
B = x/l + cosb.^l - cosb = 7(1 + cosb).(l - cosb)

= sjl - cos" b = \/sin^ b = ! sinb I
Vi sinb > 0 nen j sinb! = sinb, do do : B = sinb

214

dan

Ta CO T = (sin^3° + sin^87°) + (sin^l5° + sin^75°)
,
/

GIAI
.

Ta CO sin^3° + sin^87° = sin^s" + cos^3° = 1



Tuong tiT sin"15° + sin-75° = sin^l5° + cos^l5° = 1
Vay T = sin^3° + sin^l5° + sin^75° + sin^87° = 2


×